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ABSTRACT Accurate and robust indoor location prediction plays an important role in indoor location
services. Markov chains (MCs) have been widely adopted for location prediction due to their strong
interpretability. However, multi-order Markov chains (k-MCs) are not suitable for predicting long sequences
due to problems of dimensionality. This study proposes a hybrid Markov model for location prediction that
integrates a long short-term memory model (LSTM); this hybrid model is referred to as the Markov-LSTM.
First, a multi-step Markov transition matrix is defined to decompose the k-MC into multiple first-order
MCs. The LSTM is then introduced to combine multiple first-order MCs to improve prediction performance.
Extensive experiments are conducted using real indoor Wi-Fi positioning datasets collected in a shopping
mall. The results show that the Markov-LSTM model significantly outperforms five existing baseline
methods in terms of its predictive performance.

INDEX TERMS Indoor location prediction, movement trajectory, Markov-LSTM.

I. INTRODUCTION
In recent years, traditional ‘‘brick-and-mortar’’ indus-
tries have been severely affected by rapid developments
in e-commerce [1]. Therefore, the traditional ‘‘brick-and-
mortar’’ industries urgently need to find ways to help mer-
chants establish relationships with customers and provide
them with personalized shopping experience to improve the
marketing ability of brick-and-mortar industries [2]. With the
development of indoor positioning technology and the popu-
larization ofmobile terminal devices, there has been an explo-
sive growth in the availability of indoor mobile trajectory
data [3]. Such data are an important basis for indoor location
services and provide new opportunities for the development
of these industries [4], [5].

Location prediction technology can infer the next location
of a user based on historical trajectory and provide flexible
services for users, the latter of which is a current concern for
organizations [6]–[8]. Previous studies have shown that 93%
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of user behavior is predictable [9]. To date, this technology
has been widely used in social security [10], [11], intelligent
transportation [12]–[17], and location services [18]–[20].

As a classical statistical model, the first-order Markov
chain (1-MC) has strong interpretability and is widely used in
time-series data prediction. However, 1-MC assumes that the
location at the next moment is only related to the current loca-
tion, which significantly limits the predictive performance of
the model [21], [22]. For this reason, Sha et al. [23] proposed
a multi-order Markov chain (k-MC) based on 1-MC. The
k-MC assumes that the location at the next moment is related
to the previous k locations but is prone to problems related to
dimensionality; i.e., its state space explodes with an increase
in k , which renders k-MC less practical in the field of time-
series predictions. In addition to the MC model, the hidden
Markov model (HMM) [24], [25] and association rule mining
algorithms [26], [27] can also be used for time-series loca-
tion prediction, but are still not suitable for predicting long-
term time-series data. To solve the long-term dependence
problem, previous studies have applied deep learning models
to time-series data prediction, such as the recurrent neural
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network (RNN) [28], long short-term memory (LSTM) [29],
and gated-recurrent-unit (GRU) models [30]. Compared with
the classical statistical model, deep learning models achieve
higher prediction accuracy; however, they are data-driven
empirical models that are hampered by difficulties interpret-
ing causal relationships in the model.

Therefore, we propose a hybrid Markov-LSTM model,
which combines the advantages of the Markov and LSTM
models to mine user movement patterns based on the user’s
transition probability (i.e., the transition probability is inter-
pretable and describes the movement tendency of the user),
as well as improve the performance of the location prediction
model. This study makes several significant contributions,
which are summarized as follows:

(1) A new multi-step Markov transition probability matrix
is presented, which divides the multi-order Markov model
into multiple first-order models and solves the shortcomings
of the multi-order Markov model in the dimension disaster.

(2) The prediction results of the multiple first-order
Markov models are combined based on the advantages of
the LSTM for predicting long-sequence data. This improves
the practicality of the multi-order Markov model for location
prediction.

(3) The performance of the Markov-LSTM model is eval-
uated using real indoor trajectories. The results demonstrate
the advantages of our approach compared with five baseline
methods.

The remainder of this study is organized as follows.
In Section II, we review current literature on location predic-
tion models based on trajectories. The basic definitions and
problems are described in Section III. In Section IV, we pro-
pose a new methodological framework for destination pre-
diction. The performance of this method and those proposed
in previous studies are compared using real indoor Wi-Fi
positioning data. These results are presented in Section V.
In Section VI, we summarize the study and provide sugges-
tions for future research.

II. BACKGROUND
Existing location prediction methods can be divided into two
approximate types: group-based and individual-based predic-
tion models.

Group-based models consider that movement behavior
‘‘follows the crowd’’ to a certain degree and use the history
trajectories of other users to predict user next location. These
models are predominantly used to mine similarity behaviors
from group users. For example, Morzy [27] used an improved
apriori algorithm that uses association rules to predict the
next location of user; Ang et al. [31] utilized a Markov
chain to convert location sequences into transition proba-
bilities for location prediction; Qiang et al. [32] presented
a spatiotemporal RNN (ST-RNN) based on RNN [33] to
model the location of group users; and Ying et al. [34] pre-
sented a geographic–temporal–semantic-based location pre-
diction model to predict the next location of group users.
Unlike single-object models, group-based models can mine

the movement patterns of group users in certain scenar-
ios [35]. In addition, group-based models do not require
long-term trajectories of individual users. However, there are
several deficiencies to these models. Group-based models
build a model for all users, ignoring the existence of sim-
ilarity subgroups. Therefore, some models only obtain the
movement trajectories for people that are somehow related
to the user. Zhang et al. [36] found a strong correlation
between the calling patterns and co-cell patterns of users.
Based on the results, they presented the NextCell model,
which aims to enhance location prediction by harnessing
the social interplay revealed by cellular call records. More-
over, Wen et al. [37] presented a fallback social-temporal-
hierarchic Markov model (FSTHM), which used modified
cross-sample entropy to quantify similarities between an indi-
vidual and their peers to enhance predictive performance.
Furthermore, Peixiao et al. [38] proposed a location predic-
tion framework based on the similarity of location sequences.

Conversely, individual-based models consider that the
movement behavior of each individual is independent; thus,
they use only the movement history of the specific user
to predict their next location. Individual-based models are
predominantly used to mine the periodic behavior of indi-
vidual users. For example, Lee et al. [39] presented a
spatiotemporal-periodic (STP) pattern to capture the peri-
odic behavior of an individual. Then, using an association
rule algorithm to mine periodic patterns in the STP pattern,
Vu et al. [40], [41] proposed a novel framework, named as
Jyotish, to obtain the periodic movement of people based
onWi-Fi/Bluetooth positioning data. Bayesian classifiers and
support vector machines were utilized to predict the next most
likely location. Minh Tri Do et al. [42] redefined the location
prediction problem from a new perspective and presented
a probabilistic kernel method to determine the dependence
between the user location and multivariate context variables
from sparse data.Moreover,Wu et al. [43] presented a spatial-
temporal-semantic neural network algorithm (STS-LSTM)
for location prediction and Zhang et al. [12] combined the
respective advantages of support vector regression and deep
learning to present a novel data embedding and ensemble
learning method. Furthermore, Zhou et al. [44] defined a
novel Markov chain via Markov transition matrix multipli-
cation and proposed the DestPD model.

However, the existing models suffer from certain defi-
ciencies. First, group-based models require a large number
of user trajectories and the prediction accuracy is relatively
low. Second, individual-based models have better predictive
performance but often require a significant amount of per-
sonal information. Finally, previous research has focused on
location prediction in outdoor environments, with relatively
few studies on indoor environments. Therefore, in this study,
we develop a novel indoor location prediction model for an
individual user, termed the Markov-LSTM. Compared with
existing models, the proposed model only requires the trajec-
tory of the user and combines the advantages of Markov and
LSTM methods to improve the prediction performance.
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III. PRELIMINARIES AND PROBLEM DEFINITIONS
Definition 1 (Trajectory): A trajectory, traj = {pti}ni=1, is an
ordered sequence of points for pti = (id, ti, xi, yi, fi), where
id is a unique user identifier, ti is the time that pti was col-
lected, and (x i, yi, fi) corresponds to the longitude, latitude,
and floor, respectively, of the user at time ti.
Definition 2 (Stay Point): In general, a stay point or points,

spid = (x, y, f , arrT , levT ) represent a geographic region in
which the user remained over a certain time interval, where id
is the unique user identifier, (x, y, f ) corresponds to the aver-
age x, average y, and floor, respectively, on which the user
stayed, and (arrT , levT ) represents the arrival and departure
times, respectively, of the user in the geographic region [45].
As shown in Fig. 1a, the stay point of user u is expressed as
spu =

(∑8
i=5 pti.x/4,

∑8
i=5 pti.y/4, 3, pt5.t, pt8.t

)
.

FIGURE 1. Basic definitions used in the prediction model: (a) movement
of a user on the third floor and (b) the location sequence of a user in the
indoor space.

Definition 3 (Location Set):The location set, lset = {li}Ni=1,
represents the set of regions in a specific application. The
application employed in this study is shops in a mall, where
li = (lid, shapei, fi), lid represents the unique identifier of
shop li, shapei represents the limited area of shop li, fi rep-
resents the floor identifier where shop li is located, and N
represents the number of shops in the mall.
Definition 4 (Location Sequence): A location sequence,

locSeqid =
{
l idi
}m
i=1, is an ordered sequence of locations

visited by the user, where l idi represents the shop visited
at the stay point, spidi . As shown in Fig. 1b, locSequ ={
lu1 , l

u
2 , l

u
3 , l

u
4

}
represents the location sequence of user u.

The main object of this study is to analyze the location
sequence, locSeqid , of individual users as a method of deter-
mining the behavior patterns and living habits of individual
users from their historical location sequences, which could
aid future location prediction for that user. Taking user u as
an example, their location is defined in (1) and (2):

ŷres = Mu
←
{
lui
}m
i=1 (1)

lum+1 = largmax(ŷres) (2)

where
{
lui
}m
i=1 represents the recent location sequence of

user u; Mu represents the established prediction model
based on the historical location sequence of user u;
ŷres = {ŷres1 , ŷ

res
2 , . . . , ŷ

res
i , . . . , ŷ

res
N }

T represents the predic-
tion result of modelMu, where ŷresi represents the probability
that the user’s next visit location is li; lum+1 represents the
result of the final prediction by the model; and argmax is a
function that finds the index of the maximum value in ŷres.

FIGURE 2. Schematic of the overall Markov-LSTM model process.

IV. METHODOLOGY
In this section, we describe the proposed hybrid model
for indoor location prediction, whose structure is presented
in Fig. 2. Based on the bottom-up design principle, our
method is divided into four phases: location sequence detec-
tion, multi-step transition probability matrix definition, adja-
cent location selection, and fusion multiple Markov chains,
which are discussed in Sections IV.A and IV.B, respectively.
First, considering the continuity of space, the trajectory is
not suitable for direct input into the prediction model. There-
fore, we must convert the trajectory into a location sequence
associated with a specific shop. Second, a novel multi-step
Markov transition probability matrix is defined, which con-
verts a higher-order Markov chain into multiple first-order
Markov chains. Third, we select the most appropriate adja-
cent locations for each user. Finally, the LSTM model is
used to integrate these first-order Markov chains to obtain the
predicted results of the target user.

A. LOCATION SEQUENCE DETECTION METHOD
Stay point identification is one of the important steps in loca-
tion sequence conversion. When the user is staying, there is
a greater probability of viewing the location service informa-
tion [46]. In this study, we used the indoor-STDBSCAN algo-
rithm to detect the stay point, spid , from the indoor individual
trajectory. The Indoor-STDBSCAN algorithm [38] divides
the indoor individual trajectory, traj, into k disjoint clusters
{C1,C2, . . . ,Ck}, where k clusters have k stay points. Indoor-
STDBSCAN, which is an improved version of the DBSCAN
algorithm [47], redefines the spatiotemporal neighborhood
of the indoor space based on DBSCAN. The spatiotemporal
neighborhood of the trajectory point, pti, can be defined using
the following expression:

Nε1,ε2 (pti) = {ptj ∈ traj|sd(ptj, pti)

≤ ε1 and td
(
ptj, pti

)
≤ ε2 and ptj.fj == pti.fi} (3)
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where sd is a function that calculates the spatial distance
between pti and ptj, td is used to calculate the time distance
between pti and ptj, and Nε1,ε2 (pti) represents a set of points
contained in the spatiotemporal neighborhood.

FIGURE 3. Schematic showing the method of nearest-neighbor search.

The stay point detected by the Indoor-STDBSCAN only
contains spatial information, not semantic information.
Therefore, we use the nearest-neighbor search to assign
semantics to each stay point. As shown in Fig. 3. For a stay
point spu1 that is inside the shop, we use the intersection
method to obtain the shop that user u visited at stay point spu1.
For a stay point spu2 that is outside the shop, the shop nearest
to point spu2 and the corresponding distance d are determined.
If d is less than the distance threshold δ, the nearest shop is
that which the user visits at stay point spu2.

B. HYBRID MARKOV-LSTM MODEL
1) DEFINITION OF THE MULTI-STEP TRANSITION
PROBABILITY MATRIX
The k-MC is a classic statistical model that describes the
movement of a user between locations from a transition
probability perspective. The k-MC treats each location in the
user location sequence as a random variable, using the joint
probability to predict the location of the user’s next visit.
Taking user u as an example, a location sequence,

{
lui
}m
i=1,

of length m can be expressed as a random variable,
{
Lui
}m
i=1,

of length m. Moreover, the k-order probability transition
matrix of user u, Yu ∈ Rk×N×N , can be expressed as
P(Lum+1|L

u
m,L

u
m−1, . . . ,L

u
m−k+1). With an increase in k , the

transition probability matrix, Yu, of user u increases rapidly,
which renders k-MC less practical for location prediction. For
this reason, we propose a novel k-step Markov chain, MC(k).
Definition 5 (1-Step Transition Probability Matrix): The

1-step transition probability matrix, Yu(1), of user u is equiv-
alent to the 1-order transition probability matrix, Yu(1)ij , which
represents the probability that user u moves from location
li through one step to location lj. Y

u(1)
ij is defined by the

following expression:

Yu(1)ij =

∑m−1
p=1 |{l

u
p=li∩l

u
p+1=lj}|∑m

p=1 |{l
u
p=li}|

Yu(1) ∈ RN×N

lup ∈ locSeq
u (4)

where locSequ represents the location sequence,
{
lui
}m
i=1,

of user u,
∑m−1

p=1 |{l
u
p = li ∩ lup+1 = lj}| represents the dis-

tance that user u moves from location li through one step

to location lj,
∑m

p=1 |{l
u
p = li}| represents the total distance

that user u moves from location li through one step to other
locations, and N represents the total number of shops in the
mall.
Definition 6 (k-Step Transition Probability Matrix):. The

k-step transition probability matrix, Yu(k), of user u is aN×N
matrix, ŷu(li→∗:k) = Yu(k)i→∗, which represents the probability
that user u moves from location li through k steps to other
locations. The definitions of Yu(k) and ŷu(li→∗:k) for user u
are expressed in (5) and (6), respectively:

Yu(k) = P(Lum+1|L
u
m−k+1)Y

u(k)
∈ RN×N (5)

ŷu(li→∗:k) = P(Lum+1|L
u
m−k+1 = lum−k+1)ŷ

u(li→∗:k) ∈ R1×N

(6)

where Yu(k) can be directly obtained by Yu(1); i.e. Yu(k) =(
Yu(1)

)k
, Lum−k+1 represents a random variable of user u,

Lum−k+1 = lum−k+1 indicates that user u determines to visit
location lum−k+1 at random variable Lum−k+1 (lum−k+1 can be
obtained in the position sequence locSequ), Yu(k) describes
the effect that cross-location has on the prediction results
from another perspective, and N represents the total number
of shops in the mall.

The aim of the MC(k) is to establish a transition probability
matrix of the same size as the 1-MC transition probability
matrix. Using this matrix, the k-MC can be decomposed into
k first-order Markov chains in order to avoid solving the
joint probability of k-MC and reduce the dimensions of the
transition probability matrix to a certain extent. To make this
theoretical analysis more rigorous, we provide mathematical
proof of the k-step transition probability matrix Yu(k). If the
location of user u at the random variable Lum−k is lum−k ,
the probability that user u moves from location lum−k to other
locations through k steps can be defined using the following
expressions:

ŷ(l
u
m−k→∗:k+1)

= ŷ(l
u
m−k→∗:1) ∗ P

(
Lum−k+2 |L

u
m−k+1

)
∗P
(
Lum−k+3 |L

u
m−k+2

)
∗ . . . . . . ∗ P

(
Lum+1 |L

u
m
)

(7)

ŷ(l
u
m−k→∗:1) = P

(
Lum−k+1 |L

u
m−k = lum−k

)
P
(
Lum−k+2 |L

u
m−k+1

)
= Yu(1)

P
(
Lum−k+3 |L

u
m−k+2

)
= Yu(1)

:

:

P
(
Lum+1 |L

u
m
)
= Yu(1)

(8)

where P
(
Lum−k+2 |L

u
m−k+1

)
∗P

(
Lum−k+3 |L

u
m−k+2

)
∗ . . . . . . ∗

P
(
Lum+1 |L

u
m
)
represents the k-step transition probability

matrix Yu(k); i.e., Yu(1) ∗ Yu(1) ∗ . . .Yu(1). As matrix multi-
plication satisfies the associative law, Yu(1) ∗Yu(1) ∗ . . .Yu(1)

can be expressed as
(
Yu(1)

)k
, i.e., Yu(k) =

(
Yu(1)

)k
.

2) SELECTION OF THE BEST ADJACENT LOCATIONS
Similar to the k-MC, the Markov-LSTM model must
also determine the hyper-parameter, k; i.e., the number of
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FIGURE 4. Fusion of multiple Markov models.

locations that the prediction result depends on. The appro-
priateness of the parameters has a substantial influence on
the prediction performance of the model. The k value is
primarily employed to determine the number of adjacent
locations. If the k value is too small, the model corresponds
to a first-order Markov chain that reduces the prediction
performance. If the k value is too large, the model becomes
more complex and overfitting is possible. Considering that
the selection of the k value significantly influences the pre-
diction performance, this value is typically determined using
cross-validation, which selects the k value that minimizes the
model prediction error [15], [48]. In this study, each user is
an independent individual; therefore, we select the optimal
k value for different users. Taking user u with a k value of ku
as an example, when ku > 1, the k-MC can be decomposed
based on the following expressions:

ŷu(l
u
m→∗:1) = P

(
Lum+1 |L

u
m = lum

)
ŷu(l

u
m−1→∗:2) = P

(
Lum+1 |L

u
m−1 = lum−1

)
...

ŷu(l
u
m−ku+1

→∗:ku)
= P

(
Lum+1 |L

u
m−ku+1

= lum−ku+1
) (9)

where
{
ŷu
(
lum−i+1→∗:i

)}ku
i=1

represents the prediction results of
multiple first-order Markov models for user u.

3) FUSION OF MULTIPLE MARKOV MODELS
For each user, u, we establish ku first-order Markov models.
Each model, however, has a limited prediction ability for the
next position. Therefore, this study combines ku first-order
Markov models to ensure good location prediction perfor-
mance. Considering the order of the ku first-order Markov

model prediction results; i.e.
{
ŷu
(
lum−i+1→∗:i

)}k
i=1

, we use the
LSTMmodel to merge the ku results. Improvements in model
prediction performance can be considered from two aspects:
(1) from a Markov model perspective, the multi-step tran-
sition probability matrix allows the use of multiple 1-MCs
to achieve k-MC predictive performance without problems
regarding dimensional disasters; (2) from an LSTM model
perspective, our model does not directly mine the location
pattern from the simple identification sequence but rather
mines the location pattern from the transition probability that
contains more of the user’s movement tendencies.

As an extension of the RNN model, the LSTM model has
a unique cell that effectively controls the rate of information
accumulation by introducing gate mechanisms (i.e., input
gate, forgetting gate, and output gate) and selectively forget-
ting certain historical accumulation information. As shown
in Fig. 4, the outputs of ku first-order Markov models are
merged in turn using the input gate, forgetting gate, and out-
put gate. This fusion method not only integrates the indepen-
dent influence ofmultiple outputs on the prediction results but
also determines the interaction betweenmultiple outputs. The
fusion process for user u can be expressed with the following
equations:

f m = σ (Whf hm−1 +W yf yu(l
u
m→∗:1) + bf )

im = σ (Whihm−1 +W yiyu(l
u
m→∗:1) + bi)

am = tanh(Whahm−1 +W yayu(l
u
m→∗:1) + ba)

Cm
= Cm−1

� f m + im � am

om = σ (Whohm−1 +Woyyu(l
u
m→∗:1) + bo)

hm = om � tanh (Cm)

ŷm = σ (Whhm + bh)

(10)

In this algorithm, f m, im, Cm, and om represent the for-
getting gate, input gate, control unit, and output gate,
respectively, hm−1 represents the hidden unit of the cor-
relation between the outputs of multiple Markov models,
Whf ,W yf ,Whi,W yi,Wha,W ya,Who,Woy, and Wh repre-
sent the weight matrices, � represents the Hadamard oper-
ation, ŷm represents the output of the Markov-LSTM model;
i.e., ŷres in the problem definition, and σ represents the sig-
moid activation function.
Our Markov-LSTM can be trained to predict ym by

merging multiple Markov outputs in order to minimize the
cross-entropy loss between the predicted and true locations
of a user. This loss function can be defined by the following
expression:

L (θ) = −

N∑
j=1

ymj ∗ log(ŷ
m
j ) (11)

where θ represents all learnable parameters; i.e., all W and
b parameters, in the Markov-LSTM model; N represents the
total number of locations; i.e., the number of shops; ŷmj repre-
sents the output of the model; and ymj represents the expected
output (true value) of the model.
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4) ALGORITHMS AND OPTIMIZATION
In this study, the location sequence of user u, locSequ,
is divided into three parts: historical samples, training sam-
ples, and test samples. The historical location sequence is
used to construct the k-step transition probability matrix,
Yu(k), of user u; the training location sequence is used to train
the θ parameter of modelMu; and the test location sequence
is used to test the prediction performance of model Mu.
Algorithm 1 shows the Mu training process.

Algorithm 1 Markov-LSTM Training Process
Require: Individual trajectory: traj = {(u, ti, xi, yi, fi)}mi=1

Hyper-parameters of Indoor-STDBSCAN:
ε1, ε2,MinPts

Distance threshold: δ
Length of adjacency locations: ku

1: Construct locSequ based on ε1, ε2,MinPts, and δ
//construct first-step transition probability matrix
2: Divide the locSequ into his_locSequ, tr_locSequ, and
te_locSequ

3: Construct Yu(1) based on (4) with his_locSequ

//construct training instances
4: D← ∅
5: For next i ∈ [ku, ku + 1, . . . ,tr_locSequ] do
6: Construct Yu(2),Yu(3), . . . ,Yu(ku) by Yu(1)

7: Obtain index of the previous ku locations of
tr_locSequ[i]: ix i, ix i+1, . . . ,ixku

8: Put a training instance
({Yu(1)[ix i], . . . ,Yu(ku)[ixku ]}s,tr_locSeq

u[i])
into D

//train the model
9: Initialize the parameters θ
10: Repeat
11: Randomly select a batch of instances Db from D

12: Find θ by minimizing (11) with Db
13: Until stopping criteria is met
14: Output the learned Markov-LSTM model Mu

5) MODEL COMPLEXITY ANALYSIS
Definition of the k-step Markov model is a key step in
Markov-LSTM model. In this section, we analyze the advan-
tages of the k-step Markov model from two perspectives:
space complexity and computational complexity.

From the perspective of space complexity, the number
of elements in the k-step transition probability matrix is
k ∗ N ∗ N ; however, the number of elements in the k-step
transition probability matrix is N ∗ N . Compared with the
k-order Markov transition probability matrix, the storage
space required for the k-step Markov transition probability
matrix is significantly reduced. Especially with an increase
of k , the advantages of the k-step Markov model become
increasingly significant.

From the perspective of computational complexity, accord-
ing to (7) and (8), the k-step Markov model only needs to

FIGURE 5. Sampling interval distribution of the trajectory data.

TABLE 1. Samples of user trajectory data.

calculate the first-order Markov transition probability matrix.
Compared with the k-order Markov model, the k-order
Markov transition probability matrix has higher computa-
tional complexity. Especially with an increase of k, the com-
putational complexity of the k-order Markov transition
probability matrix becomes increasingly large [49]. However,
the k-step Markov transition probability matrix does not
increase with an increase of k .

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA PREPARATION
1) DATASETS
The experimental data predominantly consisted of Wi-Fi
positioning information on 50 users and shops data for a shop-
ping mall in Jinan City, China. The indoor Wi-Fi data was
provided by Shanghai Palmap Science & Technology Com-
pany Limited (http://www.palmap.cn/) and collected using
fingerprint positioning technology. The data covered the
eight floors of the shopping mall from December 20, 2017,
to February 1, 2018. The positioning accuracy was approx-
imately 3 m. Fig. 5 shows the data sampling interval. Tra-
jectory points with a sampling interval of 1–5 s accounted for
more than 70% of the collected data points. There were a total
of 11,677,438 trajectory points and each user had an average
of 200,000 trajectory points. As shown in Table 1, the data
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TABLE 2. Sample shops in the shopping mall.

TABLE 3. Specifications of the experimental environment.

field included the user unique identifier, the record upload
time, the user’s XY-coordinates, and the unique identifier of
the floor. As shown in Table 2, there are 489 shops in the
mall, each with an average size of approximately 40 m2. Data
for each shop included its unique ID, its shape (a polygon
consisting of a sequence of coordinates), its name, and the
floor ID.

2) DATA PREPROCESSING
The original trajectory data for the indoor users were col-
lected through Wi-Fi positioning. Due to the unstable mobile
terminal signal and the artificial shutdown of Wi-Fi signal,
abnormal, erroneous, and invalid data were easily generated.
There were three types of noise in our data set:
(1) Abnormal coordinate points. If the trajectory point fell

outside the study area, it was treated as an abnormal
coordinate trajectory point.

(2) Abnormal time points. If the sampling interval of two
adjacent trajectory points was 0 s, it was considered an
abnormal time trajectory point.

(3) Abnormal floor points. If a trajectory point was not in
the study area or jumped between different floors in a
short time period, it was considered an abnormal floor
point.

3) TESTBED AND TEST DEVICE
Table 3 lists the experimental environment from two aspects:
hardware and software.

B. EVALUATION METRICS AND COMPARATIVE METHODS
1) EVALUATION METRICS
In this study, we treat location prediction as a classification
problem using Accuracy@X ,Precision@X ,Recall@X , and
F1−Measure@X (top X locations) as quantitative indicators
of the evaluation model [50]. Accuracy@X evaluates the

predictive performance of the model from the perspective
of binary classification; i.e., whether the top K predicted
shops were actually visited. Precision@X ,Recall@X , and
F1 − Measure@X use macro-averaging to evaluate model
performance using multiple classifications. To fully test the
prediction performance of the Markov-LSTM model, this
study used the top 1, 3, and 5 locations to test the prediction
ability of the model; i.e. X ∈ {1, 3, 5}. The Accuracy@X ,
Precision@X , Recall@X , and F1−Measure@X are defined
in (12), (13), (14), and (15), respectively:

Accuracy@X =
number of samples correctly predicted

total number of test samples
(12)

Precision@X =
1
N

N∑
i=1

TPi
TPi + FPi

(13)

Recall@X =
1
N

N∑
i=1

TPi
TPi + FNi

(14)

F1−Measure@X =
2× Precision@X × Recall@X
Precision@X + Recall@X

(15)

where N represents the total number of locations, that is,
the total number of shops, TPi represents the number of
samples for which the model correctly predicts that a user
will visit shop li, and FNi represents the number of samples
for which the model incorrectly predicts that a user will not
visit shop li. When the predicted shop ID is equal to the shop
ID of an actual visit, the prediction is considered correct, and
vice versa.

2) COMPARATIVE METHODS
To comprehensively evaluate the performance of theMarkov-
LSTMmodel, we used five baseline methods for comparison:

MC[21]: A Markov chain (MC) is a statistical model used
to describe discrete-time stochastic processes with Markov
properties. In our experiment, we compared 1-MC, where
1-MC represents the first-order Markov chain.

HMM[24]: A hidden Markov model (HMM) is a statisti-
cal model used to describe a Markov process with implicit
unknown parameters. The performance of the HMM model
corresponds to the number of states. We fixed the number of
states to one of 10, 15, 20. The three HMMvariants were then
compared; i.e., HMM-10, HMM-15, and HMM-20.

RNN[28]: A recurrent neural network (RNN) is a deep
learning model that can determine temporal dependencies.
Formally, the performance of the RNN model corresponds to
the number of hidden states. In our experiment, the number
of hidden states was fixed to one of {64, 128, 256} . There-
fore, the three RNN variants were RNN-64, RNN-128, and
RNN-256.

LSTM[29]: A long-short-term-memory network (LSTM)
is a new type of RNN capable of learning long-term temporal
dependencies. We conducted the experiments on three LSTM
variants; i.e., LSTM-64, LSTM-128, and LSTM-256, which
had identical settings to the RNN.
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FIGURE 6. Impact of the distance threshold (δ) on the prediction performance.

GRU[30]: A gated-recurrent-unit network (GRU) is a spe-
cial RNN that can be used to determine long-term temporal
dependencies. The GRU variants selected as the baselines
were GRU-64, GRU-128, and GRU-256, which had identical
settings to the RNN.

C. VARIABLE ESTIMATION
The hyper-parameters of the Markov-LSTM model predom-
inantly include the radius, ε1, time window, ε2, minimum
number of points, MinPts, distance threshold, δ, number of
best adjacent locations, k , and parameters in the LSTM. The
Indoor-STDBSCAN algorithm fixes ε1, ε2, and MinPts to
5 m, 7 min, and 100, respectively [38]. To further determine
the δ, k , and parameters in the LSTM, we used the control
variable method to obtain the combination of parameter val-
ues. In the parameter calibration phase, the distance thresh-
old, δ, was first determined, followed by the optimal k value
based on the distance threshold. Finally, the LSTM param-
eter was adjusted to obtain the optimal model parameter
combination.

1) CALIBRATING THE DISTANCE THRESHOLD
The distance threshold, δ, predominantly determines
the influence of shop matching results on the prediction

performance. If δ tends toward 0, the shop information only
matches the stay point inside the shop. If δ tends toward infin-
ity, any stay point will match the shop information. In this
study, δ obtains the optimal parameter from [0, 2, 4, . . . , 18].
Fig. 6 shows the effect of the distance threshold, δ, on the
prediction performance. When X ∈ {1, 3, 5}, Accuracy@X
and Precision@X first showed an increasing trend followed
by a decreasing trend that finally stabilized. Recall@X AND
F1 − Measure@X first showed an increasing trend then a
stable trend. When δ > 6M, the model prediction result did
not change significantly because the indoor space was small.
If δ is too large, δwill not act as a constraint.When 4 ≤ δ ≤ 6,
the model exhibited better prediction performance. In this
work, we fixed the distance threshold, δ, to 4 m.

2) CALIBRATING THE NUMBER OF BEST
ADJACENT LOCATIONS
In the Markov-LSTM model, the number of best adjacent
locations, k , plays an important role in the prediction process.
We suggest that all users are independent individuals; thus,
we select an optimal k value for each individual. During
the parameter calibration process, we set the range of k to
[1, 2, . . . , 30] and use cross-validation to obtain the optimal
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FIGURE 7. Impact of the number of best adjacent locations, k , on F 1 − Measure@1 for different users: (a) User 2, (b) User 28, and (c) User 42.

FIGURE 8. Number of best adjacent locations for each user.

combination of parameters for each user; this was performed
to obtain the best k value and optimal prediction performance.
To illustrate the experimental results more simply, we ran-
domly selected three users for F1−Measure@1 as examples
with which to calibrate the hyper-parameters. These users
were User 2, User 28, and User 42.

Fig. 7 shows the effect of hyper-parameter k on the predic-
tion model. The three users showed a consistent trend. As the
k value increased, the prediction performance exhibited a
rapid increase. When the k value reached a certain value, the
predictive performance of the model began to stabilize. These
results allowed us to obtain the optimal k value for the three
users (i.e., kuser2 = 5, kuser28 = 8, and kuser42 = 6). Fig. 8
shows the different optimal k values for each user, which
reflects the fact that each user is an independent individual.
These results also reflect the appropriateness of the method.

3) CALIBRATING THE LSTM PARAMETERS
In addition, we further validated the impact of LSTM param-
eters on model performance. In the LSTM, we calibrated the

number of hidden states and set the range of hidden states
to [32, 64, 128, 256, 512, 1024]. Fig. 9 shows the prediction
results. As the hidden size increased, the model predictive
performance first increased then became stable. When the
hidden size was 128, the model exhibited better prediction
performance.

4) MARKOV-LSTM MODEL PERFORMANCE
After determining the optimal combination of parameters,
the model proposed in this study was further analyzed from
the perspective of model prediction performance. Fig. 10 dis-
plays the results, which are summarized below.
(1) Comparing the four indicators for the dataset,

the model prediction performance gradually increased
with an increase in X . This was particularly true
when X = 3, when Accurary@3, Precision@3,
Recall@3, and F1 − Measure@3 reached 72.07%,
69.57%, 61.38%, and 65.22%, respectively. Compared
with X = 1, the indicators improved by 6.4%, 6.53%,
4.4%, and 5.36, respectively. Compared with X = 5,
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FIGURE 9. Impact of LSTM parameters on prediction performance: (a) location prediction accuracy, (b) location
prediction precision, (b) location prediction recall, and (d) location prediction f1-measure.

FIGURE 10. Location prediction performance of the Markov-LSTM model.

the indicators were only reduced by 1.7%, 1.96%,
3.49%, and 2.82%, respectively. When X increased
from 1 to 3, the performance of the model was greatly
improved. However, when X increased beyond 3,
the performance of the model deteriorated. Thus, if the
value of X is low, the prediction performance of the

model is low. If the value of X is too high, the model
prediction results would not have much value. The
experiments determined that X = 3 is the most suitable
value for this study.

(2) Compared to the Accuracy@3 value of the model,
the Precision@3,Recall@3, and F1 − Measure@3
for the Markov-LSTM were reduced by 2.5%,
10.69%, and 6.85%, respectively. This is predom-
inantly because the Accuracy@3, which is more
suitable for a binary classifier, can be misleading.
However, the Precision@3,Recall@3, and F1 −
Measure@3 values suggest that location prediction is
a multi-classification problem. As the test samples of
each classification were unbalanced, there was a slight
decrease in indicator values.

5) COMPARISON WITH BASELINE METHODS
In this section, the collected indoor trajectory data was used
to test the prediction performance of the Markov-LSTM
model with five existing baseline methods. These baseline
methods can be approximately divided into two categories.
The first category includes the MC and HMM methods,
which are regarded as classic statistical prediction models.
The second category includes the RNN, LSTM, and GRU
methods, which are regarded as data-driven deep learning
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FIGURE 11. Comparisons of baseline methods and the Markov-LSTM model using the shopping mall dataset: (a) location prediction
accuracy, (b) location prediction precision, (b) location prediction recall, and (d) location prediction f1-measure.

prediction models. The experimental results were analyzed
using Accuracy@X , Precision@X , Recall@X , and F1 −
Measure@X . Fig. 11 compares the prediction performance
of the five models.

(1) Overall, the prediction performance of the second
model type was significantly higher than that of the
first type, whereas the prediction performance of the
Markov-LSTM model was slightly higher than that of
the secondmodel type. If we take X = 3 as an example,
the average Accuracy@3, Precision@3, Recall@3,
and F1 − Measure@3 values of the 1-MC and HMM
models were 39.64%, 36.71%, 35.21%, and 35.87%,
respectively. Conversely, the average Accuracy@3,
Precision@3, Recall@3, and F1−Measure@3 values
of the RNN, LSTM, and GRU models were 64.74%,
62.10%, 55.91%, and 58.84%, respectively. In compar-
ison, the four indicators for the Markov-LSTM model
were improved by 7.33%, 7.47%, 5.46%, and 6.38%,
respectively.

(2) In more detail, the 1-MC model achieved poor pre-
diction performance, with Accuracy@3, Precision@3,
Recall@3, and F1 − Measure@3 values of 28.64%,
24.77%, 26.36%, and 25.54%, respectively. Con-
versely, corresponding values of 67.79%, 65.78%,
55.15%, and 55.99%, respectively, indicated good
predictive performance for the LSTM model. Over-
all, the Markov-LSTM model significantly improved
indoor location prediction performance by enhancing

the Accuracy@3 by 6.29–43.43%, Precision@3 by
3.79–44.8%, Recall@3 by 9.23–35.02%, and F1 −
Measure@3 by 13.80–39.68%.

VI. CONCLUSION AND FUTURE WORK
Accurate and robust indoor location prediction plays an
important role in indoor location services, particularly in the
retail industry. For example, the ability to predict the next
shop visited by users, as well as push information to the user
on shops of interest, not only provides a personalized shop-
ping experience to users but also boosts profits for retailers.
Markov chains have been widely adopted for location predic-
tion due to their strong interpretability; however, the k-MC is
not suitable for predicting long sequences due to problems
related to dimensionality. In this study, we proposed a novel
hybrid Markov-LSTM model for indoor location prediction.
First, a multi-step Markov transition matrix was defined,
which decomposed a k-MC into multiple 1-MCs, solving the
dimensional problem of the k-MC. Then, the LSTM model
was introduced to merge multiple 1-MCs and improve model
prediction performance. Experiments were conducted using
real indoor trajectories from 50 users over 45 days to verify
the predictive performance of the proposed model. First,
we used the control variable method to obtain the optimal
parameter combination of the Markov-LSTM model. When
employing the optimal parameter combination, the model
evaluation indicators Accuracy@3, Precision@3, Recall@3,
and F1 − Measure@3 were 72.07%, 69.57%, 61.38%,
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and 65.22%, respectively. Then, we analyzed the predic-
tive performance of the Markov-LSTM model using the
test dataset. We conducted a comparison with five existing
baseline methods, including the MC, HMM, RNN, LSTM,
and GRU models. Compared with the existing methods,
the Markov-LSTM model significantly improved indoor
location prediction performance by enhancing Accuracy@3
by 6.29–43.43%, Precision@3 by 3.79–44.8%, Recall@3
by 9.23–35.02%, and F1 − Measure@3 by 13.80–39.68%.
These results demonstrated the predictive performance of the
Markov-LSTM model.

The hybrid Markov-LSTM model is a generalized pre-
diction model that can be applied to more than simply
indoor environments in future research. However, before its
wider application, the following aspects require further study:
(1) verification of the proposed model with a variety of data
sources such as GPS trajectories, (2) comprehensive compar-
isons with other prediction models, and (3) integrate more
factors to boost model robustness, thereby further improving
the performance of location prediction.
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