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A B S T R A C T

Understanding the trip features and driving mechanisms of e-bikes, particularly their spatiotemporal variations,
is essential for improving traffic mobility, reducing pollution, and enhancing road safety. Currently, existing
studies have two main gaps: (1) the spatiotemporal variations of private e-bikes remain unclear, and (2) there is a
lack of explainable data-driven techniques that can analyze the spatiotemporal variation effects of driving
mechanisms, especially considering spatiotemporal heterogeneity. In this study, using the private e-bikes trips in
Wuhan, China as a case study, a novel explainable framework is proposed to analyze the spatiotemporal vari-
ations in their trip features and driving mechanisms. More specifically, a novel spatiotemporal random forest is
presented to build a nonlinear mapping between driving factors and private e-bike trips in the spatiotemporal
domain. Then, the classical SHAP method is extended to map Shapley values onto the time and space axes,
enabling the exploration of spatiotemporal variations in driving factors. Findings reveal that: (1) private e-bikes
are frequently used for short and medium-distance trips, typically exceeding 1 km, and play a crucial role in daily
urban commuting; (2) Factors such as Historical trip frequency, Commercial POI Density, and Hospital POI
Density are positively correlated with private e-bike trips; (3) the influence of driving factors on private e-bike
trips vary significantly across different spatial locations and time windows. This study offers an innovative
analytical framework for a more profound comprehension of e-bike trips. Additionally, the findings can aid
authorities in crafting more effective policies and planning strategies.

1. Introduction

As motor vehicle ownership continues to rise rapidly, urban traffic
congestion and environmental pollution have worsened, prompting
human to seek more environmentally friendly modes of transportation
(Ren et al., 2023; Zhou et al., 2023), such as bicycles or electric bikes (e-
bikes). In this context, understanding the trip features and driving
mechanisms of bicycle or e-bike usage is essential, as it provides valu-
able insights for improving traffic mobility, reducing pollution, and
enhancing road safety (Guo et al., 2021; Lv et al., 2021; Schläpfer et al.,
2021).

Recently, the growth of shared e-bike and bicycle systems has
accelerated the evolution of transportation modes and generated
extensive trajectory data on e-bike and bicycle trips, providing an
important data source for related research (Chen et al., 2020; Filipe
Teixeira et al., 2022). Currently, numerous studies have examined the
trip features and driving mechanisms of these trips to help authorities
develop more environmentally friendly and sustainable transportation
policies (Gao et al., 2021; Lee et al., 2023; Wu et al., 2021). For instance,
many studies have analyzed e-bike trip hotspots and cold spots (Xu et al.,
2023), examined how bicycle trips connect different transportation
modes (Guo et al., 2021), and explored the impact of the urban built
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environment on e-bike usage (Bi et al., 2022).
Despite extensive research on e-bike and bicycle trips, notable gaps

remain. For the empirical analysis, most studies mainly concentrate on
shared bicycle and e-bike trips, with less attention given to private e-
bike trips (Gan et al., 2021; Yu et al., 2022). Unlike shared bicycle and e-
bike trips, private e-bike trips generally reflect more stable trip pur-
poses, such as commuting, rather than temporary ones, like leisure or
shopping (Johnson et al., 2023). In many cities, private e-bikes have
become essential for daily commuting, and their high numbers on the
road have even disrupted normal traffic mobility, particularly during
morning and evening rush hours (Liu et al., 2023). Additionally, pro-
liferation of private e-bikes brings various infrastructure challenges,
such as the need for adequate parking and charging facilities and
planning for non-motorized lanes. Addressing these issues requires
analyzing the trip features and driving mechanisms of private e-bike
trips, with particular attention to their spatiotemporal variations.
However, studies on this topic are currently quite limited. Methodo-
logically, the relationships between trips and driving factors are typi-
cally modeled using either statistical methods, such as geographically
weighted regression (GWR) (Brunsdon et al., 1996), or machine learning
techniques, such as random forests (RF) (Zhang et al., 2023). The former
provides clear explanations of model results but struggles to identify
non-linear relationships between trips and driving factors. In contrast,
the latter can model these non-linear relationships effectively, but its
black-box nature makes the results difficult to interpret (Barredo Arrieta
et al., 2020). Although machine learning models combined with SHap-
ley Additive exPlanation (SHAP) techniques enhance interpretability,
they still cannot match the effectiveness of GWR models in demon-
strating the spatiotemporal variation effects of driving factors (Fu et al.,
2023). The reason for this is that sample independence assumption in
machine learning overlooks the spatiotemporal heterogeneity in trip
data.

To address the above challenges, a novel framework is proposed to
analyze spatiotemporal variations of private e-bike trips, focusing on
how trip features and driving mechanisms vary over time and space,
with specific contributions including: (1) the classical random forest is
extended to establish a nonlinear mapping between driving factors and
trips in the spatiotemporal domain; (2) the classical SHAP method is
extended to map Shapley values onto the time and space axes, exploring
the spatiotemporal variation effects of driving factors; and (3) sing the
private e-bikes trips in Wuhan, China as a case study, the spatiotemporal
variations of private e-bike trips are revealed.

2. Literatures

In this section, we first reviewed studies related to e-bike and bicycle
trips, and then reviewed the studies related to modeling driving
mechanisms.

2.1. Studies related to bicycle and e-bike trips

Recently, many studies have investigated the trip features and
driving mechanisms of shared bicycle and e-bike trips across cities
worldwide (Hu et al., 2021; Zhang et al., 2021; Zheng et al., 2022).
Studies suggest that shared bicycle trips are predominantly for short-
distance trips and effectively solve the first and last kilometer chal-
lenge in public transportation networks (Zuo et al., 2020). Moreover,
urban spatial attributes and daily activities influence the spatiotemporal
patterns of these trips, leading to significant spatiotemporal disparities
(Tang et al., 2024). Existing findings also show that shared bicycle trips
are influenced by weather conditions, socio-economic factors, spatio-
temporal attributes, and the built environment (Eren & Uz, 2020). For
example, a strong correlation was observed between shared bicycle trips
and subway/bus stations, underscoring the critical role of shared bi-
cycles in connecting different modes of transportation (Guo et al., 2021).
Similarly, the trip features and drivingmechanisms of shared e-bike trips

closely mirror those of shared bicycles (Li et al., 2024). For example,
shared e-bikes also provide first and last mile connectivity for public
transit, showing a positive correlation with the proximity of subway and
bus stations (Liu et al., 2023). In general, many studies have been con-
ducted on shared bicycle and e-bike trips, but notable research gaps
remain. More specifically, private e-bikes have now become essential for
daily commuting, but their trip features and driving mechanisms are still
unclear. Gaining insight into these patterns and mechanisms is crucial
for effective management of private e-bikes and optimizing road infra-
structure, especially with regard to their spatiotemporal variations.
However, current studies on private e-bike trips are notably limited.

2.2. Studies related to modeling driving mechanisms

Trip data is a classic example of spatiotemporal data. Modeling
driving mechanisms essentially involves creating a mapping between
spatiotemporal data and their driving factors, typically using regression
models in statistical learning (He et al., 2022; Hu et al., 2021; Hu et al.,
2022; Zhu et al., 2024). Linear regression (LR) is one of the earliest
methods for modeling driving mechanisms and is widely used in the
field of economics (Xu et al., 2016). However, its assumption of inde-
pendently and identically distributed data limits its effectiveness in
modeling spatiotemporal data. The reason is that LR model does not
consider the inherent spatiotemporal heterogeneity and struggles to
capture spatiotemporal correlations. To address these challenges,
geographically weighted regression (GWR) (Huang et al., 2010; Wu
et al., 2021), multi-scale geographically weighted regression (MGWR)
(Qu et al., 2023; Wu et al., 2019), and geographically and temporally
weighted regression (GTWR) (Fotheringham et al., 2015; Huang et al.,
2010) have been developed for modeling driving mechanisms in
spatiotemporal data. Numerous studies have demonstrated that GWR,
MGWR, and STGWR can uncover spatiotemporal relationships and
explain the impact of driving factors onmodel outputs, while accounting
for spatiotemporal heterogeneity. As research has advanced, many
scholars have found that spatiotemporal data not only includes spatio-
temporal correlations and heterogeneity but also exhibits strong
nonlinear relationships (Dorosan et al., 2024; Yang et al., 2024). While
statistical learning approaches like GWR can address spatiotemporal
heterogeneity and correlations, they struggle with capturing nonlinear
relationships within the data. Recently, machine learning models have
been increasingly used for driving mechanism modeling (Zhang et al.,
2023, 2024). Although these models achieve satisfactory accuracy, they
lack the interpretability of statistical learning methods in explaining
model results (Lundberg & Lee, 2017). Even when combined with SHAP
techniques to enhance interpretability, machine learning models still fall
short compared to GWR models in demonstrating the spatiotemporal
variation effects of driving factors. The reason is that, like the LR model,
machine learning models operate under the assumption of sample in-
dependence and overlook the spatiotemporal correlations and hetero-
geneity in the data.

2.3. Summary

As mentioned above, existing studies still face two gaps. First, private
e-bikes have now become essential for daily commuting, but the current
studies are mainly for shared e-bike and bicycle trips, leaving their trip
features and driving mechanisms unclear. Second, there is a lack of
exploration into the spatiotemporal variations of driving mechanisms,
particularly those that model nonlinear relationships with spatiotem-
poral correlations and heterogeneity. Therefore, a novel framework is
proposed to analyze the trip features and driving mechanisms of private
e-bike trips, with particular attention given to their spatiotemporal
variations.
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3. Materials

3.1. Study area

Among cities in China, Wuhan ranks among the top ten cities in the
country for private e-bike ownership. By 2023, the total number of
private e-bikes in Wuhan has surpassed 2 million, making them one of
the primary modes of transportation in the city. The chaos caused by
private e-bikes also disrupts normal traffic flow in Wuhan, which is why
Wuhan has been chosen as the study area. As depicted in Fig. 1, the study
concentrates on the area within the Third Ring Road. Although this area
covers only 6% of the city's total land, it accommodates about 50% of its
population. Referring to Fu et al. (2023), the study region is segmented
to a 200 m × 200 m grid.

3.2. Data sources

This study utilizes datasets including private e-bike trip data, traffic
road network data, point of interest (POI) data, Gaode congestion data,
housing price data, and population data.

The trip data of private e-bikes, extracted from their trajectory data,
spans a 9-day period from December 28, 2020, to January 5, 2021. As
shown in Table 1, each entry includes a unique trip identifier, a unique
user identifier, the departure time, the arrival time, as well as the co-
ordinates of both the origin and destination. In this study, >600,000
trips were used for the experiment.

In addition to the private e-bike trip data, we obtained road network
data, POI data, Gaode congestion data, housing price data, and popu-
lation data using web crawling technology. These datasets are utilized to
construct the driving factors for e-bike trips (further discussed in Section
4.2). Among them, the road network, POI, and Gaode congestion data
are sourced from the Gaode Open Platform, the housing price data from
Fang.com, and the population data from the WorldPop grid. Detailed
information about the data and preprocessing can be found in Appendix
A and B.

4. Proposed framework

Fig. 2 outlines the proposed framework, structured into three key
components: (1) features and spatiotemporal variations of private e-bike
trips, (2) driving mechanism modeling in spatiotemporal domain, (3)
driving mechanism analysis considering spatiotemporal heterogeneity,
as discussed in Sections 4.1–4.3. First, the trip features of private e-bike
trips are defined mathematically, and their spatiotemporal variations

are analyzed from both macro and micro perspectives. Second, a novel
spatiotemporal random forest is presented to build a nonlinear mapping
between driving factors and private e-bike trips in the spatiotemporal
domain. Finally, the classical SHAP method is extended to map Shapley
values onto the time and space axes, enabling the exploration of
spatiotemporal variations in driving factors.

4.1. Features and spatiotemporal variations of private e-bike trips

Trip features are statistical metrics that describe e-bike trips, and we
mainly discuss three trip features, including trip frequency, trip dis-
tance, and duration time, with their corresponding calculation methods
shown in Eqs. (1)–(3).

Frequencyti =
∑N

k=1
|{1 : odk ∈ gridi ∧ odk ∈ windowt}| (1)

Distancek = PathDistance(odk) (2)

Durationk = PathDuration(odk) (3)

where gridi represents the ith spatial grid, and windowt represents the tth
time window. In this study, the size of the spatial grid is 200 m× 200 m,
and the time window is 60min. odk represents the kth private e-bike trip,
and N represents the total number of trips. According to Eqs. (1)–(3),
Frequencyti represents the total number of trips in ith spatial grid during
tth time window, Distancek denotes the distance of a trip, referring to the
path length from the origin to the destination, and Durationk represents
the duration time of a trip, indicating the time spent from the origin to
the destination.

After defining the trip features, we mainly study the spatiotemporal

Fig. 1. Illustration of the study area.

Table 1
Examples of private e-bike trip data.

Trip ID User ID Departure
time

Arrival time Origin Destination

1 364,851 2020/12/28
12:15

2020/12/
28 12:19

Shape
(Point)

Shape
(Point)

2 486,214 2020/12/28
08:16

2020/12/
28 08:26

Shape
(Point)

Shape
(Point)

3 364,851 2020/12/29
19:18

2020/12/
28 19:32

Shape
(Point)

Shape
(Point)

...... ...... ...... ...... ...... ......
684,214 354,785 2021/01/05

14:24
2021/01/
05 14:42

Shape
(Point)

Shape
(Point)
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variations of e-bike trips from two perspectives: (1) Exploring the vari-
ations of trip features between workdays and non-workdays on a macro-
scale; (2) Exploring the variations of trip features in different time
windows and spatial positions on a micro-scale.

4.2. Driving mechanism modeling in spatiotemporal domain

The RF model is a traditional machine learning approach with strong
non-linear fitting capability, making them effective for modeling urban
trip mobility (Guidon et al., 2020). Despite achieving satisfactory ac-
curacy, the RF model has certain limitations. Specifically, most existing
methods are basic applications of classical random forests and do not
account for the spatiotemporal relationships in trip data (Zhang et al.,

2023). The assumption of independent and identically distributed
samples hinders classical random forests from capturing the complex
underlying mechanisms and interactions in the data. Therefore, the
classical random forest is extended to propose the spatiotemporal
random forest (STRF).

As depicted in Fig. 3, the STRF model extends the classical RF model
by incorporating a neighborhood context. It utilizes both internal and
external driving factors within the neighborhood to predict future trip
frequency. Internal driving factors refer to the historical trip frequencies
within the target grid. External driving factors refer to the urban built
environment, spatial location, time windows, and other information
within the target grid. Table 2 provides a detailed overview of the 14
driving factors used in the STRF model. Additionally, the driving factors

Fig. 2. Overview of proposed framework.

Fig. 3. Illustration of spatiotemporal random forest.
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of the target grid are integrated with those from neighboring grids to
ensure a one-to-one correspondence between the driving factors and trip
frequency. Specifically, the integration process is outlined in Eq. (4).

f̂
k
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j∈Ωi

f kj 5 ≤ k ≤ 13

∑

j∈Ωi

1
d2ij
f kj

∑

j∈Ωi

1
d2ij

k = 14
(4)

where fki and f̂
k
i represent the kth driving factor of the target grid before

and after fusion, with the first driving factor being the Historical Trip
Frequency in Table 1 and the fourteenth driving factor being the House
Price in Table 1; Ωi indicates the set of spatiotemporal neighbors of
target grid; d2ij indicates the distance between the target and neighboring
grids. According to Eq. (4), for the 5th to 13th driving factors, the fused
driving factors are the sum of the driving factors in the neighborhood.
For the 14th driver, the fused driver is the weighted average of the driver
factors in the neighborhood.

4.3. Driving mechanism analysis considering spatiotemporal heterogeneity

Although the nonlinear relationship between driving factors and
trips has been established in the spatiotemporal domain, the specific
impact of these factors remains unclear. The SHAP method can be uti-
lized to clarify the contributions of individual driving factors to private
e-bike trips (Lundberg& Lee, 2017). However, the current SHAPmethod
primarily reveals the impact weight of driving factors but does not

account for variations in these factors across different time windows and
spatial locations (Zhang et al., 2024). Therefore, an extension of the
classical SHAP approach is proposed to explore the spatiotemporal
variation effects of driving factors on private e-bike trips.

As shown in Fig. 4, we established a three-dimensional cube with the
spatial grid index as the S-axis, the time window as the T-axis, and the
driving factor as the F-axis. For any driving factor in the three-
dimensional cube, we can calculate the Shapley value of the driving
factor based on game theory principles, and map the Shapley value to
the corresponding spatial location and time window. After mapping all
driving factors, we can analyze how the driving factors change over
different time windows and spatial locations. The Shapley value of
driving factors in the three-dimensional cube can be calculated by Eq.
(5).

STRF
( {
f̂
1
i , f̂

2
i ,…, f̂

14
i
})

=

∑N

j=1
STRF

({
f̂
1
j , f̂

2
j ,…, f̂

14
j

})

N
+
∑14

k=1
SHAP

(
f̂
k
i

)

↓

↓

STRF
({

f̂
1
s,t, f̂

2
s,t ,…, f̂

14
s,t

})
=

∑NS×NT

j=1
STRF

({
f̂
1
j , f̂

2
j ,…, f̂

14
j

})

NS×NT
+
∑14

k=1
SHAP

(
f̂
k
s,t

)

(5)

where STRF stands for spatiotemporal random forest; f̂
k
i represents the

kth driver of the target grid; N represents the total number of time

windows and spatial grids, decomposed into NS× NT; f̂
k
s,t represents the

driving factor in the three-dimensional cube, obtained by the decom-

position of f̂
k
i ; SHAP

(
f̂
i
s,t

)
represents the Shapley value of the driving

factor for sth grid during tth time window. In this study, the impact
direction of driving factors on trips is determined by examining the

positive and negative Shapley values. Among them, SHAP
(
f̂
i
s,t

)
> 0

represents a positive effect, while SHAP
(
f̂
i
s,t

)
< 0 signifies a negative

effect.

5. Case study

5.1. Spatiotemporal variations of trip features

Fig. 5 illustrates the differences of trip distance and duration on
working and non-working days. It reveals a clear lognormal distribution
for trip distance and a Hill distribution for trip duration on both types of

Table 2
Driving factor in spatiotemporal random forests.

Factors Description

Historical Trip Frequency Historical trip frequency of the nearest grid to the
target grid

Spatial Location Indexing of the spatial grid
Hour of Day Hour in a day (0–23)
Day of Week which day of the week (1–7)
Road Density Total road length
Population Density Population calculated through WorldPop data
Commercial POI Density Including Dining, Shopping, and Service POIs
Education POI Density Including School, College, and University
Company POI Density Including Corporate Headquarter and Factory
Healthcare POI Density Including Clinic, Pharmacy, and Hospital
Government POI Density Including Townhall and Government Office
Transportation Station
Density

Including Bus and Metro Stations

Congestion Level Congestion duration of the target grid
House Price Average house price of the target grid

Fig. 4. Spatial mapping and temporal mapping of Shapley values.
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days. Apart from the statistical distributions, there are subtle differences
in trip distance and duration between working and non-working days.
Specifically, trips on non-working days tend to be slightly shorter in both
distance and duration compared to those on working days. For instance,
the proportion of trips with distances <2 km increases from 59.7 % on
working days to 60.3 % on non-working days, and the proportion of trips
with durations<10 min rises from 51.2 % on working days to 52.7 % on
non-working days. Additionally, compared to existing studies on shared
e-bikes and bicycle, private e-bike trips tend to have longer trip dis-
tances and durations. On working days, 48.7 % of trips have distances
between 1 and 4 km, and 45.8 % have durations between 5 and 20 min.
On non-working days, 49.1 % of trips have distances between 1 and 4
km, and 45.3 % have durations between 5 and 20 min. The above results
emphasize the crucial role that private e-bikes play in short- and
medium-distance trips.

Fig. 6 shows the differences in trip frequency between working and
non-working days, revealing a clear bimodal distribution on working
days, with peaks in the morning (7:30 to 9:00) and evening (16:00 to
18:30). In contrast, non-working days show no distinct morning or
evening peaks, indicating that private e-bikes are crucial for urban
commuting. Additionally, Fig. 7 presents the differences in trip fre-
quency across different time windows and spatial locations. The results
reveal significant heterogeneity in e-bike trips both spatially and
temporally. Spatially, the hotspots for private e-bike trips are predom-
inantly located within the city center. Temporally, these hotspots occur
during the morning and evening peaks on working days, while on non-
working days, they are more evenly distributed throughout the day. The
spatiotemporal heterogeneity depicted in Fig. 7 indirectly underscores
the necessity of establishing the STRF model.

5.2. Driving mechanism modeling and analysis considering
spatiotemporal heterogeneity

5.2.1. Fitting precision analysis
In this subsection, the fitting precision of the STRF model was

evaluated by comparing it with baseline models such as LR, XGBoost,
and RF models. Additionally, ablation studies were performed to assess
the validity of the model design. For instance, temporal random forest
(TRF) and spatial random forest (SRF) were employed to evaluate the
rationale for incorporating time and spatial relationships. Fig. 8 illus-
trates the fitting precision of the baselines, as well as the TRF and SRF
models. It was found that XGBoost and RF models significantly

Fig. 5. Illustration of trip distance and duration: (a) trip distance of working days, (b) trip distance of non-working days, (c) trip duration of working days, and (d)
trip duration of non-working days.

Fig. 6. Relative trip frequency on working and non-working days.
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outperformed the LR model, suggesting the presence of nonlinear re-
lationships between trips and their driving factors. Furthermore, the
fitting precision of the SRF and TRF models exceeds that of the classical
RF model, highlighting the effectiveness of integrating temporal and

spatial relationships into the classical RF approach. Finally, the fitting
precision of the STRF outperforms that of the SRF and TRF, highlighting
the necessity of simultaneously modeling spatiotemporal relationships.
Aside from fitting precision, Table 3 further shows the stability of the
STRF across different random seeds. The results indicate that the STRF
model not only achieves high fitting precision but also demonstrates
consistent stability, further highlighting its advantages.

5.2.2. Spatiotemporal variations of driver factors
Fig. 9(a) illustrates the impact weights of various factors on trips,

based on the driving mechanism modeling. Results indicate a strong
positive correlation between trips and factors like Commercial POI
Density, Healthcare POI Density, Transportation Station Density,
Congestion Level, and House Price. Notably, higher congestion levels are
associated with more frequent private e-bike trips, which could be
attributed to two reasons. First, private e-bikes provide a more conve-
nient transportation option in areas with severe congestion. Second, the
increased activity of e-bikes on the roads may displace space that would
otherwise be used by other vehicles or pedestrians.

Fig. 7. Spatiotemporal distribution of trip frequency: (a) spatial distribution of
trip frequency during working days, (b) spatial distribution of trip frequency
during non-working days, and (c) temporal distribution of trip frequency during
working days and non-working days.

Fig. 8. Comparison results of spatiotemporal random forest with baselines: (a) Linear Regression, (b) XGBoost, (c) Random Forest, (d) Spatial Random Forest, (e)
Temporal Random Forest, and (f) Spatiotemporal Random Forest.

Table 3
Fitting precision (mean ± std) of spatiotemporal random forest and baselines.

Models R2 Adj.R2

LR 0.2200 ± 0.0045 0.2199 ± 0.0045
XGBoost 0.5007 ± 0.0073 0.4989 ± 0.0073
RF 0.5137 ± 0.0066 0.5154 ± 0.0066
SRF 0.5237 ± 0.0073 0.5216 ± 0.0073
TRF 0.8489 ± 0.0052 0.8469 ± 0.0052
STRF 0.8601 ± 0.0052 0.8601 ± 0.0052

Bold indicates the results of our proposed model.
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Compared to the classical SHAPmethod, the improved SHAPmethod
offers the advantage of revealing spatiotemporal variations in impact
weights. In the temporal dimension, as shown in Fig. 9(b), the impact
weight of Commercial POI Density on trips exhibits a distinct bimodal
distribution in the temporal dimension, correlating with the trip fre-
quency shown in Fig. 6. The result indicates that the effect of driving
factors on trips is more pronounced during peak hours compared to non-
peak hours.

In the spatial dimension, Fig. 10 shows how these weights vary
across different spatial locations. It is worth noting that the improved
SHAP method can reveal phenomena that are difficult to detect with the
classic SHAP method. For example, when both high and low population
densities influence e-bike trips, the classical SHAP method struggles to
clarify the relationship between Population Density and private e-bike
trips, as illustrated in Fig. 10(a). In contrast, Fig. 10(b) and (c) not only
illustrate the spatiotemporal patterns associated with Population Den-
sity but also offer a detailed distribution of impact weights across
various spatial locations. Furthermore, we observed clustering patterns
in impact weights across different spatial areas. These findings suggest
that despite the relatively low importance ranking of Spatial Locations
in Fig. 10(a), they remain significant for private e-bike trips.

6. Discussion

Understanding the spatiotemporal variations of private e-bike trips is
crucial for improving trafficmobility, reducing pollution, and enhancing
road safety. In this study, a novel framework is proposed to analyze
spatiotemporal variations of private e-bike trips, with a focus on the
spatiotemporal variations of trip features and driving mechanisms.

Empirical insights reveal that, unlike shared e-bikes and bicycles
used primarily for short-distance or connecting trips (Ji et al., 2022; Xu
et al., 2023), private e-bikes have become crucial for daily urban
commuting and play a significant role in short- to medium-distance
trips. This finding suggests that governments may strategically plan
private e-bike parking areas and charging stations in high-density trip
zones to enhance commuting convenience and improve public

satisfaction, particularly on working days. Additionally, the factors that
impact private e-bike trips closely resemble those affecting shared e-bike
trips (Eren & Uz, 2020; Wu et al., 2021; Yang et al., 2024). Specifically,
private e-bike trips have a positive correlation with Commercial POI
Density, Healthcare POI Density, Housing Prices, and Congestion Levels.
Notably, higher congestion levels are correlated with more frequent
private e-bike trips, implying that while private e-bikes offer conve-
nience in congested areas (Yu et al., 2022), they can also disrupt normal
traffic mobility (Liu et al., 2023). To mitigate this, government au-
thorities could conduct field surveys in highly congested areas and
designate specific lanes for private e-bikes where they impede traffic,
thereby improving overall road efficiency.

Methodological insights highlight the necessity for developing
nonlinear, explainable data-driven techniques that account for spatio-
temporal heterogeneity. Compared to statistical models such as GWR
and GTWR (Brunsdon et al., 1996; Fotheringham et al., 2015), the
proposed framework not only uncovers spatiotemporal variations in the
impact weights of driving factors but also captures the nonlinear re-
lationships within the data. The framework reveals that the impact of
driving factors varies significantly across different time windows and
spatial locations. For example, driving factors have a greater influence
on e-bike travel during peak hours than off-peak periods, and their in-
fluence weights exhibit spatial clustering effects.

This study has some limitations. First, it focuses solely on the OD
flow of private e-bikes, leaving the full trip chain of their journeys un-
established. In the future, the full trip chain will be utilized to gain
deeper insights into private e-bike trip patterns. Second, the proposed
STRF method and the improved SHAP method offer a universal
explainable data-driven framework, but our analysis and validation
have been limited to private e-bike trips. In the future, the proposed
framework will be applied to modeling other trip mechanisms, such as
shared bicycle trips, bus journeys, and subway rides.

7. Conclusion

In this study, usingWuhan, China as a case study, a novel explainable

Fig. 9. Impact weights of driver factors and their temporal variations: (a) SHAP values for all driving factors, and (b) SHAP value of Commercial POI Density in
temporal dimension.
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framework is proposed to analyze the spatiotemporal variations in trip
features and driving mechanisms of private e-bike trips. More specif-
ically, a novel spatiotemporal random forest is presented to build a
nonlinear mapping between driving factors and private e-bike trips in
the spatiotemporal domain. Then, the classical SHAP method is
extended to map Shapley values onto the time and space axes, enabling
the exploration of spatiotemporal variations in driving factors. Findings
reveal that: (1) private e-bikes are frequently used for short and
medium-distance trips, typically exceeding 1 km, and play a crucial role
in daily urban commuting; (2) Factors such as Historical trip frequency,
Commercial POI Density, and Hospital POI Density exhibit strong pos-
itive correlations with private e-bike trips; (3) the influence of driving
factors on private e-bike trips vary significantly across different spatial
locations and time windows. This study offers an innovative analytical
framework for a more profound comprehension of e-bike trips. Addi-
tionally, the findings can aid authorities in crafting more effective pol-
icies and planning strategies.
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