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Sequence analysis of local indicators of spatio-temporal association for 
evolutionary pattern discovery
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ABSTRACT
The Local Indicators of Spatial Association (LISA) is one of the most widely used methods for identifying 
local patterns of spatial association in geographical elements. However, the dynamic trends of spatial- 
temporal (S-T) autocorrelation remain poorly understood, yet capturing these patterns is essential for 
analyzing the evolution of spatial processes. To fill the gap, we propose a novel S-T LISA methodology to 
automatically discover co-occurrences LISA subsequences over time by incorporating sequence analysis 
techniques. First, we extend the classical LISA to a dynamic context, and clarify the definition, properties, 
and classification of S-T LISA sequences. Second, we adopt an enhanced Hamming distance to quantify 
the similarity of LISA sequences, followed by hierarchical clustering to group similar LISA sequences. 
Next, an improved FP-Growth algorithm is applied to identify frequent patterns. Finally, we conduct 
experiments using grid-scale social media check-in records and city-scale carbon emission data to 
discover significant evolutionary patterns. The results verified the applicability of the proposed method 
in both human and physical geography. The proposed approach outperforms traditional S-T cube 
methods in its ability to automatically capture dynamic, complex, and transient S-T association trends as 
well as irregular outliers. The integration of sequence analysis with LISA statistics presented in this article 
provides an effective framework for identifying evolutionary patterns of S-T association.
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1. Introduction

The Local Indicators of Spatial Association (LISA) (Anselin  
1995), as one of the most widely used spatial statistical 
methods, has been extensively applied to identify local 
patterns of spatial association in various fields, including 
transportation (Berglund and Karlstrm 1999), regional 
economies (Song et al. 2020), disease prevalence (Jesri 
et al. 2021), and air pollution (Hoffmann et al. 2024). LISA 
typically considers the localized association as static vari-
ables at specific locations. But apparently, the dynamic 
phenomena are prevalent in geographical analysis. For 
example, Figure 1(a) shows distribution patterns of 
microblog check-ins for the adjacent company and 
shopping center over a week. The number of check-ins 
not only varies across different locations but also 
changes dynamically during weekdays and weekends. 
This highlights the urgent demand for methods which 
can identify S-T association patterns. As shown in 
Figure 1(b), the LISA sequences act as genetic encodings 
of human activity dynamics to quantitatively detect the 
evolving trends of S-T association, which resemble the 
role of DNA sequences in geoscience.

The inherent dynamic characteristics of physical 
world make strong demands for investigating the evolu-
tion of spatial structure (Zhang et al. 2024). At present, 
many studies have tried to incorporate the temporal 
dimension to the LISA algorithms by extending the spa-
tial weight matrix to S-T weight matrix. For example, 
S-T distances between observations were calculated to 
construct S-T weight matrix (Huang, Wu, and Barry 2010; 
Wu, Li, and Huang 2014). Lee and Li (2017) proposed 
a method that computed spatial and temporal weight 
matrices independently and then combined them 
through multiplication, based on the assumption that 
space-time effects could be modeled as the product of 
spatial and temporal effects. Additionally, two 
S-T proximity structures, the contemporaneous and 
lagged S-T weight matrices, were proposed and used 
to extend LISA statistics (Griffith and Paelinck 2018; 
Wang and Lam 2020). On this basis, Tao, Chen, and 
Thill (2023) applied these S-T weight matrices to quantify 
the S-T proximity of flows, proposing S-T flow LISA. The 
output of all these methods consists of variables calcu-
lated through local Moran’s I or local Geary’s C at 
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a specific time and place, generating a series of result 
maps of the same study area in each timestep. Further 
comparison of these result maps is necessary to explore 
the distributional dynamics of spatial processes.

Mapping LISA results at different time periods is 
one of the most common methods to detect the 
dynamics of spatial processes. Although this method 
enables interactive examination of temporal profiles 
of S-T patterns, visual analysis can be subjective, time- 
consuming and may overlook certain patterns, espe-
cially when dealing with high-dimensional 
S-T datasets. This limitation puts forward another 
research direction involving time-series analysis of 
LISA results to track changes. For instance, the 
Emerging Hot Spot Analysis and Local Outlier 
Analysis in ArcGIS detect trends such as new, intensi-
fying, or persistent clusters in a space-time cube 
(Cheng 2020; Gui et al. 2024; Xu et al. 2022). These 
methods predefined several patterns according to 
fixed classification criteria, but they are lack of adapt-
ability and fail to expose undefined hidden patterns. 
Additionally, the classification of local Moran statistics 
has been integrated into Markov chain modeling to 
assess spatial patterns at various temporal intervals 
(Rey 2010). However, due to the memoryless nature of 
the Markov chain, this method cannot capture the 
long-term evolutionary patterns of S-T association. In 
a related study, a diagram of LISA over time was 
developed to illustrate the dynamic changes of the 
spatial value of a particular location in relation to its 
neighboring regions (Ye and Rey 2013). However, this 
study only focused on visualization and did not 
include quantitative calculations of S-T association. 
Another study measured the spatial autocorrelation 

of time-series data based on their similarity (Gao et al.  
2019; Guo et al. 2024). However, this method assumes 
that a location maintains a single S-T autocorrelation 
pattern over a period, thereby ignoring the dynamic 
trends in S-T autocorrelation. Research on quantita-
tively detecting the dynamic evolutionary patterns of 
LISA at specific local regions is still lacking.

To overcome this problem, we developed a method 
framework for processing the S-T LISA sequence to 
explore evolving S-T association patterns. The main con-
tributions of this paper are as follows:

● Introduction of S-T LISA Sequences: We propose 
LISA sequences to model the temporal evolution 
of local spatial associations, encoding transitions as 
ordered trajectories. The definition, properties and 
classification of S-T LISA sequences are clarified.

● Data-Driven Framework for Evolutionary Pattern 
Discovery: We integrate hierarchical clustering and 
frequent pattern mining to automatically process 
the S-T LISA sequence, enabling the identification 
of dominant evolutionary trends and rare 
anomalies.

● Validation with Real-World Case Studies: We 
demonstrate the framework’s robustness 
through two datasets, carbon emission intensity 
of 200 cities in China from 2001 to 2020 and over 
1.8 million social media check-in records in 
downtown Beijing in 2017.

The rest of the paper is organized as follows: Section 2 
introduces the basic definition and properties of LISA 
sequences. Section 3 provides a detailed introduction to 
the architecture of how to identify the dynamic 

Figure 1. Potential S-T distribution patterns of microblog check-ins for adjacent companies and shopping centers over a week. (a) 
Schematic diagram of the adjacent companies and shopping center. (b) The LISA sequences proposed in this article.
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evolutionary patterns of S-T association. Section 4 
describes two case studies quantifying the temporal 
shifts of S-T association of carbon emission intensity 
and human activity patterns respectively. Section 5 dis-
cusses the implications and limitations of this work. 
Section 6 concludes the paper and outlines possible 
future research directions.

2. Preliminary

2.1. S-T LISA

The Local Moran statistic is arguably most widely 
adopted LISA statistics to identify local spatial clusters 
(hot spots, cold spots) and outliers. At time t, the local 
Moran’s I of spatial unit i is defined as Equation 1, 

where Iit represents the local Moran’s I statistic of 
spatial unit i at time t; σ denotes the standard 
deviation between observations; vit is the attribute 
value of region i at time t; Wi;j is the S-T weight 
between unit i and unit j. Considering the influence 
of temporal nonstationarity mentioned by (Tao and 
Chen 2023), �v represents the average of observation 
value across all time periods, allowing for compar-
isons of absolute value changes over time. Statistical 
significance is determined using a conditional per-
mutation method. The specific principles are 
beyond the scope of this article, and readers may 
refer to (Anselin 1995) for further details.

The Moran Scatterplot is a graphical expression of 
LISA, which can intuitively characterize spatial aggre-
gation and dispersion patterns. As shown in formula 
(2), the x-axis of the Moran scatterplot represents the 
original variable, while the y-axis represents the spa-
tially lagged variable. 

All points to the right of the vertical axis have vit �

�v > 0 and all points to the left have vit � �v < 0. These 
values are referred as high and low respectively, in the 
limited sense of higher or lower than average. 
Likewise, the values for the spatial lag above and 
below the horizontal axis can be classified as high 

and low. The scatter plot is naturally divided into 
four quadrants. The upper-right and lower-left quad-
rants correspond to High-High (HH) and Low-Low (LL) 
positive spatial autocorrelation respectively. In con-
trast, the lower-right and upper-left quadrants corre-
spond to High-Low (HL) and Low-High (LH) negative 
spatial autocorrelation.

2.2. S-T LISA Sequence

2.2.1. Definition of S-T LISA Sequence
For a spatial location si, an S-T LISA trajectory Traji 

is obtained by connecting all Moran points corre-
sponding to the region in chronological order. As 
illustrated in Figure 2(a), the S-T LISA trajectory of 
si is a time-ordered sequence of Moran points 
associated with this region. The color of the tra-
jectory points in Figure 2(b) represents the spatial 
quadrants of each trajectory point in Traji, defining 
the LISA sequence of location si. As previously 
described, the upper-right and lower-left quad-
rants correspond to High-High (HH) and Low-Low 
(LL) cluster types, while the lower-right and upper- 
left quadrants correspond to High-Low (HL) and 
Low-High (LH) outlier types. A LISA sequence Seqi 

is formally defined as formula(3):

where qik is an elements from the alphabet {NS, 
HH, LL, LH, HL}, where HH, LL, LH, HL represent 
statistically significant High-High cluster, Low-Low 
cluster, Low-High outlier and High-Low outlier, 
respectively, while NS represents a statistically insig-
nificant case. The parameter P denotes the length 
of Seqi.

2.2.2. Characteristics of S-T LISA Sequence
The LISA sequence can be simplified as 

qi1; . . . ; qik; . . . ; qiPf g. An example LISA sequence, 
Seqi ¼ LL;NS;HL; LH;HHh i, is depicted in Figure 2(b). 
The LISA sequence exhibits the following key properties:

● Elemental finiteness: the elements of the LISA 
sequence take values from the set {NS, HH, LL, 
LH, HL}.

● Time-scale dependence: the length of the LISA 
sequence is determined by the time scale. Under 
a uniform time-axis scale, LISA sequences of dif-
ferent locations have the equal length.

GISCIENCE & REMOTE SENSING 3



● Time-ordered structure: the elements of LISA 
sequence are arranged in chronological order.

The S-T LISA sequences are categorized as either 
simple sequences or composite sequences based on 
the proportion of each mode Percmode. A LISA 
sequence is considered a simple sequence if it con-
tains only one statistically significant cluster mode, 
satisfying PercNS þ PercHH or LL or LH or HLjjjjjj ¼ 100%. 
Otherwise, it is categorized as a composite sequence 
with multiple statistically significant cluster modes. 
Additionally, if PercHH or LL or LH or HLjjjjjj > 50%, the domi-
nant mode of the composite sequence is determined 
by the highest percentage.

2.2.3. Collection of S-T LISA sequences
As shown in Figure 2(c), all LISA sequences across the 
research area collectively construct the S-T LISA cube 
QS�T , where S represents space and the T dimension 
represents time. Each entry qst within this cube corre-
sponds to the association pattern at location s and at 
time step t. Units associated with the same physical 
location represent a LISA sequence. Different LISA 
sequences maintain the same length, dictated by 
the chosen time scale.

3. Identification of evolutionary patterns of 
S-T association

This section presents the architecture of the 
method for identifying evolving S-T association 
patterns, as illustrated in Figure 3. To begin with, 
the S-T LISA sequence and S-T LISA cube were 

constructed based on the S-T data, which has 
been introduced in section 2. Then, we improved 
the hamming distance to measure the similarity of 
LISA sequences, as detailed in Section 3.1. Based 
on the generated similarity matrix, the agglomera-
tive hierarchical clustering algorithm is applied to 
cluster the LISA sequences, as detailed in 
Section 3.2. Finally, the frequent pattern mining 
algorithm for interpretation of cluster results is 
introduced in Section 3.3.

3.1. Similarity measure based on improved 
Hamming distance

Hamming distance is used to compare the similarity 
of two sequences of equal length. The elements are 
compared at corresponding positions in the two 
sequences. Traditional Hamming distance uses 
a binary approach: 0 for matches and 1 for mis-
matches. This simplification treats all mismatches 
equally, overlooking the semantic difference of mis-
matches between LISA category. Inspired by the sub-
stitution scoring matrix of DNA sequences (Trivedi 
and Nagarajaram 2020), the modified Hamming dis-
tance assigns tiered penalties to LISA category mis-
matches: 0 for identical elements, 1 for partial 
mismatches, and 2 for complete mismatches. If one 
mismatch is statistically insignificant, the average 
score of 1 is assigned. For any two elements 
q;q0 2 NS;HH; LL; LH;HLf g, the element-wise dis-
tance function d q; q0ð Þ is defined as: 

Figure 2. Schematic diagram of the S-T LISA. (a) S-T LISA trajectory. (b) S-T LISA Sequence. (c) S-T LISA Cube (Q5�5�5).
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Then, the similarity between two sequences of 
equal length is computed by summing the distance 
scores between elements at each position. To com-
pare the similarity of sequences with varying lengths, 
the similarity is normalized by dividing it by the 
sequence length. For two LISA sequences 

Seqi ¼ qi1;qi2; . . . ;qiPð Þ and Seqj ¼ qj1;qj2; . . . ;qjP

� �

of equal length P, the improved Hamming distance is: 

The comparison between the traditional and mod-
ified Hamming distance calculations is depicted in 
Figure 4. Using the improved Hamming distance, 

HH;HL; LL; LH;NSf g is more similar to 
HL;HH;NS; LL; LHf g than LL; LH;NS;HL;HHf g. By dif-

ferentiating mismatch types, our method provides 
a more precise and nuanced measure of similarity.

3.2. Hierarchical clustering of LISA Sequences

The Agglomerative Hierarchical Clustering algorithm is 
used to cluster the LISA sequences. Agglomerative 

Figure 3. Flowchart of the method proposed in this study.

Figure 4. Illustration of the Hamming distance calculation. (a) Traditional Hamming distance. (b) Improved Hamming distance.

GISCIENCE & REMOTE SENSING 5



Hierarchical Clustering algorithm is an unsupervised 
machine learning algorithm for data clustering and 
grouping. The algorithm operates in a bottom-up fash-
ion, commencing with each data point in a cluster and 
iteratively merging together the most similar clusters 
until all data points belong to one cluster. Hierarchical 
clustering naturally supports pairwise distance matrices 
used in our framework, making it more suitable for our 
custom metric than alternative methods like k-means, 
which relies on Euclidean distances, or DBSCAN, which is 
density-based. Notably, hierarchical clustering does not 
require a predefined number of clusters, making it ideal 
for S-T sequences that exhibit complex and evolving 
behaviors, where the number of meaningful clusters is 
not known in advance. Additionally, it offers a visual 
representation of the clustering outcomes through 
a dendrogram, offering flexibility for a wide range of 
datasets and application scenarios.

For the LISA sequence set Seq1; :::; Seqi; . . . ; Seqnf g, 
the similarity of the LISA sequences is measured by the 
improved Hamming Distance. The algorithm of the 
Agglomerative Hierarchical Clustering is as 
Algorithm 1. Average linkage is selected to calculate 
the average distance between all pairs of points in two 
clusters, which helps generate more balanced and 
representative clusters by minimizing the influence of 
outliers. The number of clusters is determined based on 
the dendrogram visualization and the elbow method. 

Algorithm 1 Hierarchical Agglomerative Clustering

Input: LISA sequence set Seq1; . . . Seqi; . . . ; Seqnf g LS; 
Output: A set of LISA sequence clusters C; 
1: Create an active set A ¼ ;; 
2: for all i = 1, 2, · · ·, Iter do 
3: Add Seqi as its own cluster: A ¼ A[ Seqif g ; 
4: end for 
5: Create a cluster set C = A; 
6: while |A| > 1 do 

7: d Ck; Clð Þ ¼
PCkj j

m¼0

PClj j

n¼0

hamDis Ck m½ �;Cl n½ �ð Þ

Ckj j� Clj j
; 

8: C�k ; C�l ¼ argmind Ck; Clð Þ; 
9: Delete Ck

�; Cl
� from A, add Ck

�; Cl
�f g to A and C; 

10: end while 
11: return C.

3.3. Interpretation of cluster results based on 
frequent pattern mining

Inspired by FBPM Algorithm (Chen and Liu 2011), 
which was originated in biological sequences fre-
quent pattern mining, we employed FBPM to discover 
most commonly LISA subsequences in each cluster, 

facilitating the interpretation of pattern 
characteristics.

The FBPM algorithm is an enhanced version of 
the FP-Growth algorithm, designed to meet the 
specific needs of mining sequences. Unlike stan-
dard FP-Growth, which processes transactional 
data consisting of unordered itemsets, the LISA 
sequence requires a time-ordered representation. 
To address this, the concept of primary pattern, 
which is a specific substring within a LISA 
sequence, is introduced to construct a prefix 
tree. For the LISA sequence 
Seq ¼ q1; . . . qi; . . . ; qnf g, and for any mode 
x 2 NS;HH; LL; LH;HLf g, if 
qi1 ¼ qi2 ¼ . . . ¼ qim ¼ x; i1 < i2 < . . . < im, substring 

qik ; qikþ1; . . . ; qikþ1� 1
� �

is the kth primary pattern of 
Seq with respect to x, and denoted as Sx kð Þ. Let’s 
take a LISA sequence of length 10 

HH;NS;HL;HH;HH;NS;HL; LH;HH; LLf g as an exam-
ple. Focusing on mode HH, the elements at posi-
tions 1, 4, 5, and 9 are HH. The first primary 
pattern, SHH 1ð Þ, starts from the first HH and 
includes all elements up to (but not including) 
the next HH, forming SHH 1ð Þ ¼ HH;NS;HLf g. By 
analogy, SHH 2ð Þ ¼ HHf g; SHH 3ð Þ ¼ HH;NS;HL; LHf g;

Then, in order to optimize search efficiency, 
a candidate primary patterns table is constructed, 
where modes are arranged in alphabetical order 
as fNS;HH; LL; LH;HLg. The primary patterns table 
of fHH;NS;HL;HH;HH;NS; HL; LH;HH; LLg could be 
easily derived, as shown in Tab.1. The loc column 
denotes the beginning position of Sx in Seq.

Next step, we build a Prefix rooted tree of pri-
mary patterns, according to the candidate primary 
patterns table. To preserve both sequence order 
and positional information, the edges of prefix tree 
represent ordered transitions between LISA states, 
while the nodes store the location within the 
sequence. The Prefix Tree is denoted as T, where 
LISA subsequences are modeled as edges connect-
ing the root to every leaf node, corresponding to 
a specific primary pattern. The tree is constructed 
recursively, as outlined in Algorithm 2, starting from 
the root and expanding layer by layer. Based on the 
primary patterns in Tab.1, the constructed prefix 
tree is shown in Figure 5(a). Each node contains 
a set n1; n2; . . . ; nkf g, representing the starting 
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locations of the edge connecting the node to its 
parent. Let’s take the leftmost branch of the tree in 
Figure 5(a) as an example. The edge connecting 
node 1 to the root is NS. As shown in Table 1, NS 
appears in two primary patterns: Sx; locð Þ

NS;HL;HH;HHf g; 2ð Þ and NS;HL; LH;HH; LLf g; 6ð Þ. 
Therefore, node 1 contains the set 2; 6f g, which 
denotes the locations of SNS. Next, the initial char-
acter NS is removed from SNS and the loc of SNS is 
shifted one position to the right. Consequently, new 
entries HL;HH;HHf g; 3ð Þ and HL; LH;HH; LLf g; 7ð Þ

are obtained. Since both entries share the same 
starting mode (HL), a child node (node 6) is created 
with the set 3; 7f g. Similarly, two new entries 

HH;HHf g; 4ð Þ and LH;HH; LLf g; 8ð Þ are obtained. As 

these two entries have different initial modes, two 

children, namely node 10 with loc of 8 and node 11 

with loc of 4, are generated. 

Algorithm 2 Construct prefix tree(Sm, d)

Input: the collection of initial positions and primary patterns in 
alphabetical order Sm ¼ Sx; locð Þf g; the node to be extended d; 
Output: the prefix tree rooted at d for Sm; 
1: Divide Sm into 5 groups based on the initial mode 
xi 2 NS;HH; LL; LH;HLf g; 
2: Denote the group with the initial mode xi as Si; 
3: for all i=1 to 5 do 
4: if len(Si)>0 then 
5: Ti ¼ ;; 
6: Generate a son di of d; 
7: Let the loc set of di be the loc set of Si; 
8: Assign the edge d; dið Þ with character xi; 
9: for all strings p of Si do 
10: Remove the initial character xi of P and obtain a new string P0 ; 
11: Transform the P; locð Þ into P0; locþ 1ð Þ; 
12: if P0�; then 
13: Ti ¼ Ti [P ; 
14: end if 
15: end for 
16: Run Construct prefix tree Ti; dið Þ; 
17: end if 
18:end for 
19:return.

The prefix tree helps identify the most frequent 
primary patterns, by eliminating infrequent paths. 
A node and its subtrees are pruned if the length 
of its loc set falls below the minimum support 
threshold. Figure 5(b) shows the pruned prefix 
tree, assuming a minimum support threshold of 2.

From Figure 5(b), the extracted frequent primary 
patterns of fHH;NS;HL;HH;HH;NS;HL; LH;HH; LLg
are as follows: NS (frequency of 2), HH (frequency 
of 4), HL (frequency of 2), NS-HL (frequency of 2), 
HH-NS (frequency of 2), HH-NS-HL (frequency of 2).

The computational complexity and all algo-
rithm parameters are summarized in Table 2.

Figure 5. The prefix tree, where edges represent ordered transitions between LISA states, and nodes indicate locations within the 
sequence. (a) The prefix tree of primary patterns. (b) The prefix tree after pruning operations.

Table 1. The table of primary patterns.
X Sx loc

NS {NS, HL, HH, HH} 2
{NS, HL, LH, HH, LL} 6

HH {HH} 4
{HH, NS, HL} 1
{HH, NS, HL, LH} 5
{HH, LL} 9

LL {LL} 10
LH {LH, HH, LL} 8
HL {HL, HH, HH, NS} 3

{HL, LH, HH, LL} 7

GISCIENCE & REMOTE SENSING 7



4. Case study

4.1. Evolving S-T association patterns of human 
activities

Investigating how the S-T autocorrelation structure of 
human activities changes over time enables 
a quantitative comprehension of human mobility 
(Ma et al. 2020). The availability of vast amounts of 
geo-tagged check-in data from social media plat-
forms has provided a new perspective for investigat-
ing individuals’ daily activities (Liu et al. 2022). This 
case study used microblog check-in records to quan-
tify the dynamic S-T association patterns of human 
activities.

4.1.1. Study area and datasets
A dataset of 1,851,602 check-in records from Sina 
microblog within downtown Beijing from 2017/01/ 
01 to 2018/01/06 was used for this investigation. The 
spatial resolution is set to 500 m and the time interval 
is set to 1 week. A 500-meter spatial resolution is 
suitable for capturing neighborhood-level dynamics 
while maintaining computational feasibility. With 
1.8 million check-in records, this resolution ensures 
a sufficient number of data points per grid cell. 
Furthermore, considering the typical 100-meter accu-
racy of social media geotags, aggregating the data 
into 500-meter grids mitigates positional noise while 
retaining significant spatial patterns for analysis. The 
one-week temporal resolution effectively captures 
weekly human activity trends over one year while 
minimizing noise from short-term fluctuations. The 
microblog check-in points were aggregated accord-
ing to the spatio-temporal units to generate a check- 
in data cube of 76 × 77 * 53. Figure 6(b) shows the 

number of check-in points. To further validate the 
effectiveness of the proposed method, the relation-
ship between evolutionary patterns of check-ins and 
urban land use was investigated with the EULUC- 
China dataset, developed by Tsinghua University. 
The dataset assigns five primary function tags and 
twelve subcategories to each parcel. This study 
focused on the five main functional labels from the 
dataset, namely residential area, commercial area, 
industrial area, transportation facility, and public man-
agement and service area.

4.1.2. LISA sequence analysis of human activities
Figure 7(a) displays the S-T LISA cube of the study 
area. The LISA sequences at the marked position in 
Figure 7(a) were selected for visualization, and the 
proportion of the five modes in each sequence was 
counted, as shown in Figure 7(b). Among a total of 
4594 LISA sequences within downtown Beijing, there 
were 1683 simple sequences and 2911 composite 
sequences. Simple sequences comprised 36.6% of 
the total sequences, with the LL mode being the 
dominant type (1392 sequences), followed by the 
HH mode (253 sequences). Meanwhile, composite 
sequences constituted 63.4% of the total sequences, 
with 1025 sequences having dominant types, while 
the remaining 1886 sequences exhibited various pat-
terns without clear dominant types. These findings 
indicate that the study area exhibits dynamic and 
complex S-T autocorrelation patterns, necessitating 
further exploration and analysis.

The distance between S-T LISA sequences was cal-
culated using the enhanced Hamming distance intro-
duced in Section 3.1 of this paper. A greater Hamming 
distance indicates lower similarity between 

Table 2. Computational complexity and parameters of algorithms.
Algorithm Algorithm Complexity Parameter Rationality

Constructing S-T LISA 
Sequences

O(P·|S|·|T|) 
P: permutations, 
S: spatial units, 
T: time steps

Spatial  
Neighborhood 
(Contiguity edges 
corners)

To capture both immediate spatial and temporal 
associations

Temporal 
Neighborhood 
(1 time-step)

Hierarchical Clustering O(N3) 
N: the number of LISA sequences

Linkage Criterion 
(Average linkage)

To reduce outlier influence

Number of Clusters 
(6,5)

Dendrogram Visualization and Elbow Method 
(Figures 8 and 12)

FBPM 
Algorithm

O N� Lþ Fð Þð Þ

L: LISA sequence length, F: total lengths of all the 
frequent patterns

Minimum Support 
(2)

To balance noise reduction and pattern 
discovery

Max Subsequence 
Length 
(1 to 3)

To balance interpretability and computational 
cost
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sequences. Figure 8(a) illustrates the histogram of the 
improved Hamming distance among the sequences, 
revealing a negatively skewed distribution. This skew-
ness indicates substantial variations in the evolution-
ary patterns of different LISA sequences. Based on the 
computed Hamming distance matrix, a hierarchical 
clustering analysis was conducted. According to the 
elbow diagram (Figure 8(b)) and dendrogram visuali-
zation (Figure 8(c)), the optimal number of clusters 
was chosen to be 6.

To evaluate the effectiveness of the proposed 
approach, it is compared with the Local Outlier 
Analysis (LOA) based on the S-T cube model in ArcGIS 
Pro. The LOA method is designed to detect local out-
liers by analyzing the spatial and temporal distribution 
of data. As shown in Figure 9(a), the LOA method 
divides patterns into either a single-mode cluster or 
multiple types. Any patterns exhibiting temporal 
changes are classified as multiple types, regardless of 
the nature of the variation. This results in an over- 

Figure 6. Study area. (a) Map of China highlighted with the study area. (b) Study area of the first case study. (c) Study area of 
the second case study.

Figure 7. Results of S-T LISA cube and typical LISA sequences of check-in records. (a) S-T LISA cube of the study area. (b) Typical LISA 
Sequence.

Figure 8. Hierarchical clustering results of check-in records. (a) Histogram of Hamming distances. (b) Elbow plot for determining the 
optimal number of clusters. (c) Dendrogram of hierarchical clustering with a cut-off point indicated.
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simplification of time-varying patterns, failing to cap-
ture more intricate, gradual, or subtle changes effec-
tively. In contrast, the proposed LISA sequence 
approach enables a more detailed characterization of 
S-T association changes. Figure 9(b-c) illustrates the 
spatial distribution and frequent patterns of clustering 
results based on LISA sequence. Figure 9(c) visualizes 
the sum of the five LISA modes within each cluster over 
time using heat maps, and the top three frequent 
subsequences of length 1 to 3 are shown on the right 
side of each heat map. In the study area, 43.3% of the 

sequences fell into category 5, which exhibited 
a transition from LL in the beginning, to HH in the 
final period, and insignificant in other time periods. 
Additionally, Class 3 (474 sequences) and Class 4 (942 
sequences) were mainly distributed in the northeast 
part of the study area, with the most common 3-tuple 
LH-HH-HH. The proposed method also detected anom-
alous evolutionary patterns of S-T association in cluster 
1 and cluster 6. Cluster 1 contained sequences charac-
terized by alternating LL and HL, with LL-HL as the most 
frequent 2-tuple. Cluster 6 exhibited a prevailing HH- 

Figure 9. Comparison of evolving S-T association patterns of check-in records using LISA sequence and local outlier analysis in ArcGIS 
Pro (a) Result of local outlier analysis. (b) Clustering result based on LISA sequence. (c) Heat map and frequent patterns of each 
category.
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LH alternation, with HH-LH as the most common 
2-tuple. These two clusters had low similarity to all 
other sequences, suggesting the presence of anoma-
lous S-T association patterns.

To further interpret the results, the correlation 
between the evolving S-T association patterns of 
check-in data and urban land use was analyzed. The 
S-T association dynamics of human activities reflect 
how people interact with the different place, which is 
inherently linked to the land use of the place, such as 
residential, commercial or industrial. Figure 10 pre-
sents the percentage of the clustering categories for 
each urban land use type. Industrial and transporta-
tion zones were dominated by category 2, with cate-
gory 2 accounting for 68.1% and 56.9% of all 
categories, respectively. The results indicate that 
these zones were dominated by LL patterns through-
out the time period, indicating low human activity 
levels. Additionally, 50.7% of the residential areas 
were classified as category 5, which was dominated 
by LL from January to February 2017, HH from 
October to December 2017, and was not significant 
in other time periods. This pattern suggests a seasonal 
variation in human activity, potentially influenced by 
factors such as holiday periods or social events. For 
commercial areas, the combined proportion of cate-
gory 3 and 4 was about 45.0%, indicating that the 
most frequent mode was HH. This reflects sustained 
high levels of human activity, aligning with the com-
mercial nature of these zones. The public areas pre-
sented complex patterns, which contained the 
abnormal sequence with alternating HH and LH 

activity levels in category 6. This irregular pattern 
can be attributed to contextual factors, such as tem-
porary activities like concerts, which lead to fluctuat-
ing crowd dynamics. To confirm the statistical 
significance of the observed patterns, we conducted 
a chi-square test (Chi-Square Statistic = 282.23, p < 
0.01, Degrees of Freedom = 20). The results indicate 
that the association between clustering categories 
and land use types is statistically significant, confirm-
ing that these patterns did not arise by chance. The 
evolution patterns of S-T association extracted in this 
paper are consistent with the characteristics of their 
respective land use types.

4.2. Evolving S-T association patterns of carbon 
emission intensity

Global climate change, driven by carbon emissions, 
poses a serious challenge to economic and social 
development (Dong et al. 2018). Understanding the 
dynamic S-T association patterns of carbon emission 
intensity provides a scientific foundation for formulat-
ing effective policies on energy conservation and car-
bon emission reduction in China. This case study 
examines the evolution of carbon emission intensity 
at the urban scale from 2001 to 2020.

4.2.1. Study area and datasets
As shown in Figure 6(a), China is divided into four 
different economic macro-regions: the economically 
well-developed coastal parts in Eastern China, the 
less-developed Central and Northeastern China, and 
the developing region of Western China. Considering 
the availability of data, this study focuses on Eastern, 
Central and Northeastern China as the experimental 
sample area.

Carbon emission intensity, which is a key metric for 
evaluating energy utilization quality and carbon emis-
sion efficiency, defined as the amount of carbon emis-
sions generated per unit of GDP. Carbon emission 
data of prefecture-level cities in China from 2001 to 
2020 was obtained from Carbon Emission Accounts 
and Datasets (CEADs). National GDP data from 2001 
to 2020 was sourced from China City Statistical 
Yearbook. Cities with incomplete data were excluded 
to ensure the accuracy and consistency of our results, 
resulting in a final dataset of 200 cities. Figure 6(c) 
shows the carbon emission intensity of 200 cities 
during 20 years.

Figure 10. Correlation between S-T association of check-ins and 
urban land use.
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4.2.2. LISA sequence analysis of carbon emission 
intensity
Figure 11(a) displays the S-T LISA cube of the study 
area. The LISA sequences at the marked position in 
Figure 11(a) were selected for visualization, and the 
proportion of the five modes in each sequence was 
counted, as shown in Figure 11(b). Among a total of 
200 LISA sequences of cities in the research area, 
there were 58 simple sequences and 142 composite 
sequences. Simple sequences comprised 29% of the 
total sequences, with the LL mode being the domi-
nant type (57 sequences). Meanwhile, composite 
sequences constituted 71% of the total sequences, 
with 19 sequences having dominant types, while the 
remaining 123 sequences exhibited various patterns 
without clear dominant types. These findings demon-
strate that the study area displays dynamic and com-
plex S-T autocorrelation patterns, necessitating 
further exploration and analysis.

The enhanced Hamming distance (Section 3.1) was 
used to measure sequence similarity, where a greater 
distance indicates lower similarity. The histogram dis-
tribution of the Hamming distances is shown in 
Figure 12(a). Based on the distance matrix, sequences 
were clustered hierarchically. Following the elbow 
diagram (Figure 12(b)) and dendrogram visualization 
(Figure 12(c)), the optimal number of clustering cate-
gories was determined as five.

Figure 13(a) compares the Local Outlier Analysis 
(LOA) results, which classify most regions as multiple 
types, failing to capture mode transitions over time. In 
contrast, Figure 13(b-c) visualizes the spatial cluster-
ing results and the frequent LISA subsequences, 

offering a detailed temporal evolution of carbon 
emission intensity. The northeastern cities in 
Heilongjiang Province are classified as the first cate-
gory, which is dominated by the HH pattern all the 
time. The relatively low GDP of these cities has led to 
high carbon emission intensity. Other cities in north-
eastern China are classified as Category 6, which show 
HH initially, followed by insignificant in later years. 
Most cities in eastern and central China are classified 
as Category 2, the most commonly occurring 3-tuple 
of which were NS-LL-LL and HH-NS-NS. The carbon 
emission intensity of these cities realized a transition 
from HH to LL at 2010, reflecting the impact of green 
policies introduced that year. Cluster 4 represents 
cities that experienced a policy-driven reduction in 
emissions from HH to LL after the 2015 Paris 
Agreement, notably in the southern regions of 
China. Three cities in Guangdong Province and two 
cities in Hubei Province are classified as Category 3, 
displaying an anomalous pattern of transitioning from 
HH to HL to LL. This suggests that these cities lagged 
behind surrounding areas in terms of emission cuts. 
The proposed method enables automatic identifica-
tion of dominant evolving S-T association patterns as 
well as irregular outliers.

5. Discussion

S-T LISA Sequence serves as the foundation of this 
paper, which encodes genes related to the dynamics 
of S-T association and resembles the role of DNA 
sequences in geo-related domains. Other data struc-
tures can easily draw inferences from LISA sequences, 
extending the classical LISA to a dynamic context. For 

Figure 11. Results of S-T LISA cube and typical LISA sequences of carbon emission intensity. (a) S-T LISA cube of the study area. (b) 
Typical LISA Sequence.

12 J. YU ET AL.



example, by incorporating a time dimension into the 
Moran scatterplot, a LISA trajectory can be obtained by 
chronologically connecting all Moran points. Trajectory 
mining methods (Zheng 2015) can then be applied to 
analyze S-T LISA trajectories. Furthermore, S-T LISA tra-
jectories can be enriched with type semantics of 
S-T autocorrelation recorded in LISA sequences, lead-
ing to the generation of a LISA semantic trajectory 
(Parent et al. 2013). These data structures and asso-
ciated mining methods open up new possibilities for 
identifying evolutionary patterns in S-T association.

The proposed S-T LISA framework advances tra-
ditional S-T cube methods (Putrenko, Pashynska, 
and Nazarenko 2018) by modeling evolutionary tra-
jectories through LISA sequences and automatically 

uncovering hidden patterns via data-driven cluster-
ing and frequent subsequence mining. While 
S-T pattern mining methods based on the 
S-T cube model rely on fixed classifications, 
S-T LISA employs a data-driven approach to adap-
tively reveal hidden evolutionary patterns, such as 
alternating HH/LL phases or anomalous transitions. 
These innovations enable S-T LISA to outperform 
conventional methods in capturing dynamic, com-
plex, and transient S-T association patterns, as 
demonstrated in applications to carbon emissions 
and human mobility analysis.

The S-T LISA framework, with its core innovations 
in dynamic sequence encoding, semantic similarity 
metrics, and data-driven pattern mining, offers 

Figure 12. Hierarchical clustering results of carbon emission intensity. (a) Histogram of Hamming distances. (b) Elbow plot for 
determining the optimal number of clusters. (c) Dendrogram of hierarchical clustering with a cut-off point indicated.

Figure 13. Comparison of evolving S-T association patterns of carbon emission intensity using LISA sequence and local outlier analysis 
in ArcGIS pro. (a) Result of local outlier analysis. (b) Clustering result based on LISA sequence. (c)Heat map and frequent patterns of 
each category.
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broad applicability across various domains character-
ized by spatial-temporal dependencies. In epidemiol-
ogy and public health (Lin and Wen 2022), the 
method can track the evolution of disease hotspots 
and identify sudden outbreaks, informing policies 
such as vaccination campaigns. Environmental 
science benefits from its ability to detect recurring 
ecological changes, such as deforestation (Griffiths 
et al. 2014) and wildfire spread (Li and Banerjee  
2021). Meanwhile, many 3D datasets such as soil 
data (Lacoste et al. 2014), ocean temperature and 
salinity dataset (Cheng et al. 2021) at different depths 
can be applied to our method framework. The LISA 
sequences are arranged in chronological order for 
S-T datasets, while they are arranged in depth order 
for 3D datasets. The framework’s flexibility allows it to 
be adapted to a wide range of fields, making it 
a powerful tool for spatio-temporal analytics. Future 
developments could formalize these applications into 
a domain-agnostic toolkit, further enhancing its 
potential impact across disciplines.

Several limitations of this work should be noted. 
First, a fixed time step is set in this method, which 
overlooks dynamic changes in S-T association at finer 
temporal granularity. The first case study employed 
a one-week time step to explore the dynamic popula-
tion spatial distribution over a year, omitting variations 
between weekdays and weekends. In the second case 
study, a one-year time step was employed to explore 
the evolving S-T association patterns of carbon emis-
sion intensity over a span of 20 years, disregarding 
seasonal variations. To address this, future work will 
integrate adaptive time-step selection into the 
S-T LISA framework to offer a multi-scale solution by 
dynamically adjusting temporal resolution based on 
the rate of change in spatial associations. Coarser 
time steps are selected during stable periods, while 
finer steps are used during periods of rapid changes. 
This ensures that critical transitions, such as sudden 
hotspot formation or policy-driven shifts, are accurately 
detected. For example, in carbon emission analysis, 
adaptive steps can focus on quarterly intervals during 
policy implementation years while reverting to annual 
steps during stable periods. Second, each cluster of 
S-T association patterns is not merely a statistical 
grouping but represents meaningful socio-economic 
or environmental trends. Although external data (e.g. 
land use maps and policy timelines) have been inte-
grated to enrich the interpretability of these clusters, 

further efforts are needed to link the patterns to spe-
cific causal mechanisms and validate them through 
empirical data. In future studies, methods such as 
regression analysis (Huang, Wu, and Barry 2010) and 
agent-based modeling (Parker et al. 2003) can be used 
to test the relationship between cluster membership 
and factors like economic growth or policy interven-
tions. Another limitation of our proposed method is its 
computational complexity, particularly when handling 
large-scale datasets. As the dataset size increases, scal-
ability becomes a critical concern, necessitating opti-
mization to improve processing efficiency and reduce 
computation time. For instance, when constructing 
S-T LISA Sequences, each permutation is independent 
and could be parallelized across CPUs or GPUs to accel-
erate sequence generation. Additionally, alternative 
clustering algorithms, such as Self-Organizing Maps 
(Vesanto and Alhoniemi 2000), could be explored to 
further optimize performance and enhance scalability.

6. Conclusions

This paper proposes a processing framework for 
S-T LISA sequences to explore temporal shift patterns 
of S-T autocorrelation. Considering the finite, orderly, 
and isometric nature of LISA sequences, an enhanced 
Hamming distance measure is introduced to quantify 
their similarity. Based on this measure, LISA 
sequences with similar characteristics are clustered 
using the agglomerative hierarchical clustering algo-
rithm, and frequent subsequences in each cluster are 
identified using the improved FP-Growth algorithm. 
Two case studies, using grid-scale social media check- 
in records and city-scale carbon emission data, 
demonstrate the method’s effectiveness in automati-
cally identifying dominant evolutionary patterns and 
detecting irregular outliers in S-T associations. To the 
best of our knowledge, this study is the first one to 
define, characterize, and classify S-T LISA sequences 
for mining dynamic patterns of S-T association. 
Integrating sequence pattern mining methods with 
LISA statistics presents a promising method for unco-
vering evolving S-T association patterns.

Future research will focus on enhancing the scalabil-
ity, flexibility, and applicability of the S-T LISA frame-
work. First, multi-scale temporal analysis will be 
developed through adaptive time-step selection algo-
rithms that dynamically adjust granularity based on data 
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volatility. Second, alternative clustering algorithms, such 
as Self-Organizing Maps (SOM), could be explored to 
further optimize performance and enhance scalability, 
enabling more efficient and adaptive pattern detection 
in large datasets. In addition to these methodological 
advancements, the S-T LISA framework holds significant 
potential for cross-domain applications. Expanding its 
use to a broader range of environmental and socio- 
economic variables could provide deeper insights into 
dynamic spatial processes and their underlying drivers.
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