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ABSTRACT
Understanding the multi-dimensional structure and evolution of geospatial phenomena is 
a fundamental challenge in Earth system science. Marine heatwaves (MHWs), as critical 4D 
spatio-temporal events in the ocean, exhibit complex vertical heterogeneity and dynamic 
interactions across latitude, longitude, depth, and time. However, traditional geospatial meth
ods often oversimplify such phenomena into 2D profiles or homogeneous 3D blobs, limiting 
their ability to capture intrinsic 3D structure and evolutionary patterns. To fill this gap, we 
propose a novel data-driven framework for constructing 3D skeleton representations of MHWs, 
enabling fine-grained analysis of their internal structure and spatio-temporal evolution. This 
framework represents MHW skeletons as graph structure, where nodes denote localized 
intensity centers and edges quantify morphological correlations of spatial aggregation 
between subsurface layers. The MHW skeletons are constructed using graph algorithms 
applied to each snapshot and tracked over time through five evolutionary operators. Applied 
to the 2014–2016 Northeast Pacific (NEP) and Tropical Pacific in the epipelagic zone (0–200 m), 
the proposed method reveals distinct vertical structures: ENSO-driven MHW skeletons exhib
ited greater vertical complexity than coastal MHWs, featuring steep longitudinal slopes (up to 
120°). Additionally, two foundational MHW skeleton structures, I-shape and Y-shape, were 
identified. Notably, dynamic merging and splitting process between subsurface MHWs were 
captured, highlighting the framework’s capability to uncover hidden interactions in ocean 
systems. Beyond MHWs, this methodology provides a transferable paradigm for analyzing 
other 3D geospatial phenomena, enhancing our understanding of their structural complexity 
and dynamic evolution.
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1. Introduction

The analysis of four-dimensional (4D) geospatial phe
nomena, characterized by dynamic interactions across 
latitude, longitude, depth, and time dimensions, is 
essential for understanding complex Earth system 
processes (Li et al. 2023; Shu 2016). Among these 
phenomena, marine heatwaves (MHWs) represent 
a critical class of oceanic events with cascading ecolo
gical (Oliver et al. 2024; Smith et al. 2023), climatic 
(Capotondi et al. 2024; Oliver et al. 2018), and socio
economic impacts (Holbrook et al. 2020; Smith et al.  
2021). Defined as anomalous warm water events per
sisting for extended periods (Hobday et al. 2016), 
MHWs are predominantly studied using sea surface 
temperature (SST) data due to the availability of large- 
spatial-coverage measurement from satellites. 
However, subsurface temperature extremes often 
exhibit greater intensity and persistence than their 
surface counterparts, affecting deep-sea ecosystems 
and ocean circulation patterns (Capotondi et al.  

2024; He et al. 2024). Expanding MHW research to 
include subsurface dynamics is crucial for a holistic 
understanding of these phenomena. Exploring the 3D 
structure of MHW is a prerequisite for understanding 
their drivers, impacts, and future projections.

Advances in ocean observation and simulation have 
led to an explosion of high-dimensional ocean tem
perature datasets (Cheng et al. 2021; Zhang et al.  
2020), enabling deeper insights into MHWs from the 
surface to ocean interior. Current research (Elzahaby 
and Schaeffer 2019; Schaeffer, Sen Gupta, and 
Roughan 2023; Xu et al. 2024) categorizes MHWs 
into three types: shallow MHWs, which extend from 
the surface to the upper layer (typically down to 35 m) 
and fade away below this; extended MHWs, which 
span the whole water-column and extend deep; and 
subsurface MHWs, which lack surface expression and 
exhibit temperature extremes only in the subsurface. 
These studies focused on vertical temperature anoma
lies at single locations, but ignored their spatial 
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structure. To address this limitation, a recent study 
extended the MHW definition from the temporal 
domain to the spatial-temporal domain, which 
means that an MHW event should not only have 
start and end time but also be compact in the space 
(Sun, Jing, et al. 2023). Building on this, several studies 
have adopted single-snapshot clustering methods to 
group spatially proximate anomalies at individual time 
steps, and subsequently track their evolution over time 
(Reddy, Perkins-Kirkpatrick, and Sharples 2022; Ren, 
Wang, and Yao 2025; Sun, Jing, et al. 2023; Sun, Li, et 
al. 2023). This approach focuses on analyzing discrete 
temporal snapshots of MHWs, with each time slice 
capturing a transient state within a continuously evol
ving system. Although it does not explicitly model 
dynamic oceanographic processes, it enables the 
extraction of coherent 3D or 4D MHW structures 
and supports further analysis of their morphology, 
displacement, and merging or splitting behavior. 
Based on the detected spatiotemporally continuous 
events, a variety of metrics have been developed to 
describe MHW characteristics, including duration, 
magnitude, spatial extent, displacement, and deforma
tion (Hobday et al. 2016; Sun, Jing, et al. 2023). In 
contrast to mechanism-based models, which simulate 
physical processes based on dynamical equations and 
require complex initial and boundary conditions, this 
data-driven method provides a fast, scalable, and 
interpretable alternative for structural analysis from 
earth observation data, offering valuable insights into 
the spatiotemporal extent and evolution of MHW 
systems.

Despite advances in spatio-temporal clustering 
methods, most existing approaches treat MHWs as 
homogeneous blobs in 3D or 4D space, based primar
ily on spatiotemporal adjacency, without accounting 
for internal structural variability. However, this 

simplification fails to reflect the intrinsic heterogene
ity of MHWs, both horizontally and vertically. In 
reality, as illustrated in Figure 1, MHWs can span 
broad horizontal extents, contain multiple intensity 
centers, and exhibit complex three-dimensional struc
tures, with shifting thermal cores and varying depths 
of peak intensity. Consequently, methods based solely 
on adjacency may misclassify fragmented or structu
rally complex MHWs as a single coherent event, mask
ing important physical distinctions. This structural 
complexity highlights the need for analytical frame
works that move beyond simple adjacency-based 
metrics (e.g. duration, spatial extent, displacement) 
and can effectively represent the fine-scale three- 
dimensional structure of MHWs.

Recent advancements in geospatial information 
science emphasize the need for multi-dimensional 
analytics to resolve such fine-scale spatial variability 
(Ding et al. 2024; Yu, Yang, and Jin 2018; Zhang et al.  
2011). Among various approaches, graph-based skele
tons have notable advantages in representing and ana
lyzing spatial structures in three dimensions 
(Borgefors, Nyström, and Di Baja 1999; Peizhi and 
Lai 2002; Zou et al. 2023). Inspired by these advances, 
we propose a novel data-driven framework for con
structing 3D skeleton representations of MHWs, 
enabling fine-grained analysis of their internal struc
ture and spatio-temporal evolution. By abstracting 
MHWs into graph structures composed of nodes and 
edges, our framework captures spatial organization, 
aggregation characteristics, and the evolving dynamics 
within clustered MHW regions. The main contribu
tions of this paper are as follows:

● Concept of 3D Skeleton for MHWs: We propose 
the concept of MHW skeleton to represent their 
internal structure for the first time. The skeleton 

Figure 1. Schematic diagram for the challenge of identifying the true 3D structure of MHWs. (a) Horizontal and vertical 
heterogeneity of 3D ocean temperature; (b) spatial compact MHWs sliced at three different times.
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is composed of nodes representing the intensity 
centers and edges representing the morphological 
correlations of spatial aggregation, effectively 
quantifying the fine-grained 3D structure of 
MHWs.

● Framework for modeling MHW Skeletons: We 
present a data-driven computational framework 
for constructing, characterizing and tracking 
MHW skeletons. Skeletons are built using graph 
algorithms applied to each snapshot and are 
tracked across time based on five evolutionary 
types: continuation, merging, splitting, genera
tion, and dissipation.

● Application to the historical MHW events: We 
apply this method to the 2014–2016 Northeast 
Pacific (NEP) and Tropical Pacific in the epipe
lagic zone (0-200 m). By analyzing their time- 
evolving skeletons, we reveal unique vertical 
structures and evolutionary trajectories over 
their lifecycles, demonstrating the utility of the 
skeleton approach for improving our under
standing of large-scale ocean heatwave events.

The rest of this paper is organized as follows: Section 2 
outlines the dataset and method, including the defini
tion and properties of MHW skeletons, and the con
struction process involving node extraction and edge 
construction. This section also introduces evolution 
operators for analyzing MHW skeletons. Section 3 
presents the results, covering the accuracy of MHW 
identification and detailed analyses of skeleton char
acteristics. Section 4 discusses the findings and their 
implications, while Section 5 concludes with 
a summary of contributions and future research 
directions.

2. Materials and methods

This section presents a systematic framework for con
structing and analyzing 3D MHW skeletons. We begin 

by introducing the ocean temperature dataset and 
study area (Section 2.1). Next, we give the definition 
and properties of MHW skeletons as graph structures 
that preserve reconstructability and reliability 
(Section 2.2). The skeleton construction workflow is 
then detailed in Section 2.3. Finally, we establish evo
lution operators for tracking temporal transitions 
(Section 2.4).

2.1. Data and study area

The study area spans 120°E–80°W and 30°S–60°N, 
which covers the 2014–2016 El Niño-Southern 
Oscillation (ENSO) in the tropical Pacific and the 
concurrent Northeast Pacific MHW (NEP MHW), as 
shown in Figure 2(a). We focus on the period from 
2014 to 2016, which captures the full lifecycle of these 
well-documented events, including their development, 
peak, and dissipation phases (Tseng, Ding, and Huang  
2017). This timeframe provides an ideal testbed for 
evaluating the proposed skeleton framework due to 
the events’ extraordinary magnitude and widespread 
environmental consequences. Additionally, selecting 
this period facilitates direct comparison with previous 
studies (Sun, Jing, et al. 2023) and highlights the 
methodological advancements of our approach. 
Monthly IAP sea temperature data (IAPv4, http:// 
www.ocean. iap.ac .cn/ftp/cheng/IAPv4_IAP_ 
Temperature_gridded_1month_netcdf/) were used to 
identify MHW events. IAPv4 provides monthly 1º*1º 
grid snapshots from the surface to 6000 m (119 layers) 
covering the period from 1940 to present. The sea 
temperature data were resampled into 1°*1°*10 m 
grids over the upper 200 m covering the epipelagic 
zone, which is ecologically critical and home to 
a vast diversity of marine organisms. (Figure 2(b)). 
While daily sea temperature data is commonly used 
to capture short-term extremes and event duration, 
monthly data is more appropriate for this study, which 
focus on long-lasting, large-scale MHWs and their 

Figure 2. Data and study area. (a) Study area on a global scale. (b) Monthly sea temperature anomalies averaged over 2014–2016 
relative to the 1990–2020 climatology within the research scope.
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structural evolution. The use of monthly data reduces 
high-frequency variability, enhances spatial and verti
cal coherence, and improves computational feasibility 
when handling three-dimensional datasets across 
extended time periods.

2.2. Definition and properties of 3D MHW 
skeletons

2.2.1. Definition
The skeletons of MHW are derived from 3D MHW 
candidate, which are defined as discrete, prolonged, 
and anomalously warm water events with compact 
spatial structures, following the definition proposed 
by (Sun, Jing, et al. 2023). Figure 3(a) illustrates a 3D 
MHW candidate identified through spatial connectiv
ity, characterized by multiple intensity centers at each 
depth layer.

MHW skeletons are conceptualized as undirected 
graphs, which model a set of objects (nodes or ver
tices) and their interactions (edges), expressed as G =  
(V, E). In this framework, each node corresponds to 
a local maximum of MHW intensity at a specific 
depth, and each edge represents the morphological 
correlations between a pair of intensity centers at the 
aggregation scale across adjacent depth layers. As 
shown in Figure 3(b), intensity peaks 
Vd ¼ v1; v2; . . . ; vnf g are defined as the grid points 
whose MHW intensity exceeds that of all surrounding 
values within a moving window at depth d. When 
intensity peaks are separated by distances larger than 
the window size, multiple nodes are identified within 
the same layer. These local maxima capture the ther
modynamically meaningful cores of MHWs and pro
vide a more accurate representation of the physical 
centers of heat anomalies than geometric centroids, 
which only reflect spatial averages and may lie in areas 
of moderate intensity. Serving as physically meaning
ful seeds, these intensity peaks guide a segmentation 
process that partitions the broader MHW into sub- 
regions, referred to as MHW cells, centered around 
each thermal anomaly core. A skeleton node is 

described by its spatial coordinates (latitude, longi
tude, depth) and attributes, including the intensity 
and size of its corresponding MHW cell. MHW cells 
at different depths, when connected based on physi
cally informed criteria (Section 2.3.3), form a fine- 
grained 3D MHW. Figure 3(c) demonstrates that the 
3D MHW candidate is subdivided into two fine- 
grained 3D MHWs, represented by different colors.

2.2.2. Properties
The proposed MHW skeletons serve as an effective 
abstraction of 3D MHW structures. To ensure their 
representational validity, we emphasize two essential 
properties: reconstructability, which refers to the abil
ity to recreate the full 3D geometry of an MHW from 
its nodes and vertical edges; and representativeness 
ensures that all thermo-dynamically significant 
regions are represented by at least one node. These 
properties confirm that the skeleton preserves key 
features of the original intensity field and captures all 
critical regions within the MHW structure. 
Importantly, these properties are not automatically 
satisfied and must be explicitly considered to avoid 
structural omissions or distortions. For instance, 
replacing local-maximum nodes with geometric cen
troids, which average spatial coordinates, may misre
present the heat distribution, thereby compromising 
reconstructability.

2.3. Construction of 3D MHW skeletons

Figure 4 presents the overall workflow of the proposed 
geospatial skeleton framework for identifying, con
structing, and tracking the 3D structure and evolution 
of MHWs. The framework consists of three main 
steps. First, 3D candidate MHW snapshots are 
extracted from sea temperature anomalies using 
widely accepted thresholding and adjacency criteria. 
Then, based on the extracted clustered MHWs, skele
tons are built by identifying intensity-based nodes and 
establishing vertical edges between them to represent 
internal structure. Finally, the temporal evolution of 

Figure 3. Schematic diagram for MHW skeletons. (a) A 3D candidate MHW snapshot based on continuity. (b) Intensity centers and 
segmented MHW cells. (c) Skeletons of fine grained 3D MHW.
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these skeletons is characterized using five defined 
operators.

2.3.1. Identification of MHW candidates
First, we calculated time series of marine temperature 
anomalies relative to the 1990–2020 baseline climatol
ogy at each grid. The 30-year baseline (1990–2020) 
follows the climatological reference standard recom
mended by the World Meteorological Organization 
(WMO), which encourages updating the baseline 
every decade to better reflect ongoing climate change. 
This selection is also consistent with commonly used 
MHW detection methods (Hobday et al. 2016). To 
reduce the influence of interannual variability and 
isolate anomalous warming, a monthly climatology 
approach was applied. For example, January anoma
lies were calculated against the average January tem
peratures from 1990 to 2020. This method effectively 
removes the seasonal cycle and improves the robust
ness of MHW detection. Grids with anomalies above 
a seasonally varying 90th-percentile threshold are 
identified as MHW candidate grids in the temporal 
domain.

To ensure spatial coherence, k-nearest-neighbor 
(KNN) method is used to account for the spatial 
dependence of temperature (Sun, Jing, et al. 2023). 
A grid cell is categorized as MHW only if more than 

half of its K-nearest grid cells are identified as MHW 
on the raw MHW snapshots. Spatially connected grids 
were then grouped to form three-dimensional MHW 
candidates. This procedure can be formally 
expressed as: 

where each Ck denotes a spatially connected MHW 
candidate cell satisfying the KNN-based continuity 
condition. As the KNN smoothing may misrepresent 
small-volume MHW candidates, we discard MHW 
candidates occupying less than K3 grid cells to 
reduce the influence of small, short-lived, or poten
tially noisy features. The performance of KNN is 
sensitive to the choice of the K-parameter. Based 
on sensitivity experiments (see Section 3.4.1), we 
selected K = 5 × 5 × 5 for the 1°×1°×10 m dataset in 
this study, which effectively captured spatially coher
ent MHW structures without distorting the repre
sentation of major events.

2.3.2. Nodes extraction
The skeleton joints, representing the local maximum 
intensity points of each layer, were extracted based on 
the moving window method. For each grid Pid(lat, lon) 
at depth d in the i-th MHW candidate Ci, a moving 
window was centered at Pid. If the intensity of grid Pid 

Figure 4. Flowchart for the MHW skeleton framework.
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(lat, lon) exceeded all other values within the moving 
window W, Pid(lat, lon) was considered as an intensity 
center vid. The watershed algorithm (Meyer 1992) was 
then used to segment the MHW cells associated with 
each intensity center.

The watershed algorithm is a widely adopted image 
segmentation technique used in geospatial analysis. In 
this framework, it treats the intensity field as 
a topographic surface, where higher intensity values 
represent peaks and lower values represent valleys. 
Figure 5(a) shows a horizontal slice of a 3D MHW 
candidate. Local maxima are selected as seed points 
(Figure 5(b)), from which virtual water is simulated to 
flow outward along intensity gradients (Figure 5(c)). 
When water from different peaks meets, watershed 
boundaries (labeled as W) are formed to separate 
thermally distinct regions (Figure 5(d)). The inputs 
of the watershed segmentation algorithm were each 
horizontal slice of i-th MHW candidates at depth d, 
denoted as Cid and intensity center set 
Vid ¼ v1; v2; . . . ; vnf g as seeds. The outputs were 
MHW cells, with a pixel value of −1 at watershed W, 
and values of each MHW cell were assigned corre
sponding labels of seed set Vid (Equation (2)). The 
saliency was defined to be the areal extent of the 
basin referring to Lakshmanan, Hondl, and Rabin 
(2009).

For each i in range (k), for each d in range (depth), 

where k is the total number of MHW candidates, and 
depth is the number of vertical layers of MHWs.

2.3.3. Edge establishment
Then, the edge connection criteria between a pair of 
MHW cells were based on the assumption that a 3D 
MHW snapshot should change gradually rather than 
abruptly with depth. A small depth step was expected to 
result in minimal deformation and displacement. 
Consequently, MHW cells on adjacent layers were con
nected if they significantly overlapped and exhibited 
similar shapes. It is important to emphasize that these 
edges are not intended to represent physical coupling or 
oceanic mixing processes. Instead, they provide a data- 
driven abstraction of the internal structural organiza
tion within the previously identified MHW volume. 
The establishment of edges involves three key steps.

First, for any pair of MHW cells on adjacent layers, 
the overlapping area ratio (OAR) is calculated as the ratio 
of the overlapping area to the area of the smaller cell. If 
the OAR exceeds 50%, a preliminary edge is established 
between the two cells. However, these preliminary con
nections may contain weak edges, which can erroneously 
link MHW cells into a single oversize MHW (see 
Figure 6(a), e.g. edge ⑤). To address this issue, we 
introduce the concept of communities within the 
MHW skeleton graph.

A community is defined as a group of MHW cells 
(nodes) that are tightly connected through strong spatial 
association across adjacent layers. In the graph-theoretic 
sense, it corresponds to a subgraph where nodes are 
more densely connected to each other than to nodes in 
other parts of the graph. In this context, weak connec
tions refer to edges between nodes that belong to differ
ent communities. These edges typically indicate poor 
spatial correlation and should be pruned to avoid erro
neous merging of distinct MHW components.

Figure 5. Schematic diagram for watershed algorithm. (a) Slice of the i-th MHW candidate at depth d; (b)–(c) the process of virtual 
water flowing outward from seeds; (d) watershed segmentation results.
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To detect and remove such weak connections, we 
apply a modified Louvain algorithm (Que et al. 2015) 
that maximizes modularity under a layered-graph 
constraint. In our formulation, each node represents 
an MHW cell, and edges are only allowed between 
nodes in adjacent depth layers. We define a modified 
Modularity Q, which includes two terms. The first 
item represents the sum of the weights of intra- 
community edges (favoring strong internal connectiv
ity). The second item represents a penalty for how far 
each community deviates from being fully connected 
(discouraging sparse groupings). 

where δðVi;VjÞ determine whether node i and node 
j belong to the same community. If so, the value is 1; 
otherwise, it is 0.WA

dþ1;j
d;i and WB

dþ1;j
d;i represents the 

weight between nodes i and j, WA depends on the 
overlap area of 2D MWH units and the Euclidean 
distance between nodes, WB are all 1 when the OAR 
is greater than the threshold.

As shown in Figure 6, five possible community 
combinations are illustrated to demonstrate the 
impact of different grouping strategies. The 

calculation process of Q is shown in Table 1. When 
all MHW cells are merged into one community 
(Figure 6(a)), the first term in Q is maximized, but 
the second term also incurs a high penalty due to 
sparse connectivity. When each cell is treated as 
a separate community (Figure 6(b)), both terms 
equal zero. The optimal configuration is illustrated in 
Figure 6(e), where three compact communities are 
identified. Although its first term is not the highest, 
its second term is minimized (zero), resulting in the 
maximum overall Q value.

Finally, a shape similarity check is conducted to 
refine the skeletons further. After eliminating weak 
connections, two MHWs are merged if the similarity 
of the combined 2D MHW cells across adjacent 
depths increases post-merging. Shape similarity is 
quantified using Hu Moments (Žunić, Hirota, and 
Rosin 2010), implemented via the matchShapes func
tion from the OpenCV Python library.

2.4. 4D evolution of MHW skeletons

Five evolution operators, including continuation, mer
ging, splitting, creation and dissipation (Table 2), were 
used to track the MHW events temporal transition. The 
evolution operator was determined based on the over
lapping volume ratio (OVR) between 3D fine-grained 
MHWs identified in the previous step at two consecutive 
time steps. The OVR between consecutive time steps is 
calculated as the ratio of overlapping MHW volume to 
the smaller of the two volumes. For each MHWt,i, its 
successor MHWt+1,j is identified as the one whose 

Figure 6. Five different community combinations. The thickness of the edge indicates the high or low OAR value.

Table 1. The calculation process for Modularity Q.
First item Second item Q

community 1 9.67 20–8 = 12 −2.33
community 2 0.00 0–0=0 0.00
community 3 9.67–0.33 = 9.34 (2–2)+(9–5) = 4 5.34
community 4 9.67–0.00 = 9.67 (9–5)+(2–2) = 4 5.67
community 5 (best) 9.67–0.33–0.00 = 9.34 (2–2)+(2–2)+(2–2) = 0 9.34

GEO-SPATIAL INFORMATION SCIENCE 7



OVRtþ1;j
t;i exceeds a prescribed threshold α. Referring to 

previous research, the alpha value in this article is 0.5 
(Sun, Jing, et al. 2023; Sun, Li, et al. 2023).

3. Results

3.1. Accuracy of MHW identification

To assess the effectiveness of the proposed method, we 
conducted comparative experiments against the 
Tracking Strategy outlined by Sun, Jing, et al. (2023); 
Sun, Li, et al. (2023). This benchmark approach tracks 
MHW events based on spatial overlap and centroid 
distance, assigning merged regions according to proxi
mity and overlap with prior events. Our comparison 
reveals that, in general, the structural patterns identi
fied by our skeleton-based method are broadly con
sistent with those reported in Sun, Jing, et al. (2023); 
Sun, Li, et al. (2023), particularly in terms of spatio
temporal extent and overall event boundaries. 
However, our method offers enhanced resolution in 
capturing finer structural details, especially in complex 
events characterized by multiple intensity peaks. 
Specifically, our method accounts for the continuity 
of MHWs across both horizontal and vertical dimen
sions, producing MHW structures that are spatially 
continuous in 3D (Figure 7(f-h)). In contrast, the 
Tracking Strategy enforces continuity in only one 
dimension, often resulting in fragmented MHWs 
along the horizontal plane (Figure 7(c-e)). 
Furthermore, our method integrates the distribution 
of temperature anomalies, under the assumption that 

each MHW cell at a given depth contains a single 
intensity center. This ensures a closer alignment with 
the actual contour distribution of MHWs. For 
instance, in Figure 7(j) , the intensity of the equatorial 
Pacific MHW at 100 m depth decreases radially from 
the center and features two intensity centers. The 
surrounding MHW intensity varies according to the 
central regions, making the Tracking Strategy’s iden
tification of separate MHWs for strong central regions 
and weaker peripheries inaccurate (Figure 7(d)). Our 
method addresses this limitation by accurately deli
neating regions belonging to each intensity center, as 
illustrated in Figure 7(g).

3.2. Structure of MHW skeletons

The fine-grained extraction results of three represen
tative MHWs at critical time points are shown in 
Figure 8, and their skeletons for April 2015 are 
shown in Figure 9. The “ARC”-like pattern (Di 
Lorenzo and Mantua 2016) in Figure 8(b) is consti
tuted with three main MHWs: the MHW located at 
the Gulf of Alaska (hereinafter referred to as GOA 
MHW), the MHW along part of the Pacific North 
American coastline from California and Mexico (here
inafter referred to as Cali-Mex MHW), and the MHW 
in the tropical Pacific (hereinafter referred to as ENSO 
MHW). ARC refers to the arcuate (curved) spatial 
pattern of the MHW, resembling the structure com
monly associated with the Pacific Decadal Oscillation.

The MHW skeletons in Figure 9 reveal distinct 
vertical structures among the three MHWs in both 

Table 2. Temporal transition for MHW skeletons.
Temporal 
transition Diagram Description Formulae

Continuation The MHWi at time t and the MHWj at time t+1 only overlap each other with 
OVR exceeding the threshold.

9i 2 Mt; 9j 2 Mtþ1;

OVRtþ1;j
t;i > α:

Merging The MHWj at time t+1 overlaps with multiple MHWs at time t with OVR 
exceeding the threshold.

9i1; i2 2 Mt; i1�i2;
OVRtþ1;j

t;i1 > α;
OVRtþ1;j

t;i2 > α:

Splitting The MHWi at time t overlaps with multiple MHWs at time t+1 with OVR 
exceeding the threshold.

9j1; j2 2 Mtþ1; j1�j2;

OVRtþ1;j1
t;i > α;

OVRtþ1;j2
t;i > α:

Creation The MHWj at time t+1 does not overlap with any MHW at time t. "i 2 Mt;OVR
tþ1;j
t;i < α:

Dissipation The MHWi at time t does not overlap with any MHW at time t+1. "j 2 Mtþ1;OVR
tþ1;j
t;i < α:

8 J. YU ET AL.



intensity and distribution. The GOA MHW exhibited 
peak intensity within the 0 m–70 m depth range. In 
contrast, the Cali-Mex MHW was characterized by 
high intensity not only at the surface but also extend
ing to depths of 70 m–120 m. Meanwhile, the ENSO 
MHW exhibited elevated intensity predominantly 
between 60 m–130 m. The skeleton of GOA MHW 
displayed the smallest degree of curvature, while the 
other two exhibited greater curvature, indicating 
stronger vertical heterogeneity of intensity 
distribution.

From the latitude-depth profile (Figure 9(g-i)), the 
latitude of these three MHWs’ skeletons changed little 
with depth, located at 45°N, 15°N, and 0°, respectively. 
In contrast, the longitude-depth profile (Figure 9(d– 
f)) varied among MHWs. The skeleton of the Cali- 
Mex MHW exhibited a longitudinal shift with depth, 
appearing farther east at 200 m compared to the sea 
surface. The skeleton of the ENSO MHW exhibited 
a Y-shape in the longitude-depth profile and an 
inverted Y-shape in the latitude-depth profile. This 
finding indicates that two intensity centers at long
itude 180° and 120°W between 0–120 m transformed 
into one center at 120 m–200 m, while the intensity 
center at latitude 0° between 0–50 m split into two 
intensity centers at 5°S and 5°N between 50 m–180  
m. From the surface to 200 m, the nodes of the ENSO 
MHW skeleton shifted from east to west. The depth- 
varying intensity profiles (Figure 9(j–l)) are consistent 
with the vertical structure classifications proposed by 
Zhang et al. (2023). Specifically, the GOA MHW exhi
bits characteristics of the Deep MHW type, marked by 

surface warming that gradually diminishes with depth 
yet penetrates several hundred meters, typically asso
ciated with subduction and heat transport by western 
boundary currents or eddies. In contrast, the Cali-Mex 
and ENSO MHWs correspond to the Subsurface- 
intensified type, with peak warming at approximately 
70 m and 120 m, respectively, often resulting from 
subsurface heat accumulation driven by advection 
and modulated by large-scale climate variability.

3.3. Evolution of MHW skeletons

As shown in Figure 10(a), from January 2014 to 
January 2016, the skeletons of GOA, Cali-Mex and 
ENSO MHW evolved independently. From February 
to December 2016, the evolution process became more 
complex. During 2016, GOA and Cali-Mex MHW 
merged first, and then ENSO MHW split into two 
parts, one of which merged with the GOA and Cali- 
Mex MHW. The animations of the skeletons of these 
MHWs can be further viewed through https://doi.org/ 
10.6084/m9.figshare.29322473.

As illustrated in Figure 10(b), the GOA MHW 
evolved from three MHWs, similar to the findings 
of Sun, Jing, et al. (2023). When the GOA MHW 
entered a period of decline, the intensity and area 
of MHW cells at sea surface decreased before those 
of the interior of the ocean, corroborating the 
long-term memory of ocean proposed by Scannell 
et al. (2020). Additionally, Figure 10(c) indicated 
that the Cali-Mex MHW evolved from the surface 
to the interior of the ocean, reaching its maximum 

Figure 7. Comparison between 3D MHWs at May 2015 extracted based on (a) tracking strategy and (b) our method. (c) – (e) and (f) 
– (h) are slices of (a) and (b) at surface, 100m, and 200m depths respectively. (i) – (k) are contours of temperature anomaly at 
surface, 100m, and 200m depths. White lines in figure 7(f-h) denote watershed boundaries that separate MHW cells, highlighting 
internal substructures centered on distinct intensity maxima. Cells connected by skeleton lines and sharing the same color belong 
to the same 3D MHW.
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volume in September 2015. Referring again to 
Figure 9(a-b), the Cali-Mex MHW originated 
from a coastal MHW at 15°–30° latitude, rather 
than extending from the GOA MHW. In 
September 2015, Cali-Mex MHW exhibited two 
intensity centers between 0 m–70 m. As one of 
the nodes gradually decreased in size, its skeleton 
transformed from a Y-shape to I-shape. As 
depicted in Figure 10(d), the ENSO MHW formed 
through the merger of two sub-MHWs, one at the 
sea surface and another below 100 m. Compared to 
the other two MHWs, the skeleton of ENSO MHW 
displayed the steepest slope. Although the ENSO- 
related MHW exhibited significantly higher 

intensity than the other two events during its 
peak period, its intensity declined more rapidly 
after October 2016 (Figure 10(e)).

Both the temporal transitions and structural char
acteristics of MHW skeletons exhibit notable spatio- 
temporal variability. Regionally, events such as 
ENSO-related MHWs display frequent merging 
and splitting behaviors, reflecting complex interac
tions and broad spatial influence, while coastal 
MHWs (e.g. GOA) show greater temporal continu
ity with a predominance of continuation transitions. 
Temporally, merging events are more common dur
ing phases of intensification, whereas splitting tran
sitions increase during decay periods. In terms of 

Figure 8. SSTA contours (0.5°C intervals) amd fine-grained MHWs at (a) June 2014, (b) April 2015, (c) February 2016 and (d) 
October 2016.
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structural evolution, the GOA MHW maintained 
a relatively stable vertical extent (~200 m) through
out its development, whereas the Cali-Mex and 
ENSO MHWs exhibited significant deepening over 
time. I-shaped skeletons tend to characterize stable, 
long-lived events, while Y-shaped skeletons are more 
typical of transitional phases involving structural 
reorganization.

3.4. Parameter sensitivity analysis

To ensure the robustness and reliability of the pro
posed 3D MHW skeleton construction method, we 
conducted a sensitivity analysis on key parameters 
involved in the preprocessing and segmentation 
stages. Specifically, we tested the sensitivity of (1) the 
neighborhood size used in KNN smoothing 
(Section 3.4.1) and (2) the moving window size for 
identifying local maximum intensity peaks as skeleton 
nodes (Section 3.4.2). These experiments aim to justify 
the chosen parameter settings and provide guidance 
for potential adaptation in future studies.

3.4.1. K-parameter of KNN smoothing
The KNN smoothing algorithm is designed to enhance 
the spatial coherence of the binary MHW field by 
suppressing isolated grid anomalies. We evaluated 
K values corresponding to 3 × 3 × 3, 5 × 5 × 5, and 

9 × 9 × 9 neighborhoods. As shown in Figure 11, a K 
value of 5 × 5 × 5 was found to strike the optimal 
balance, which effectively filters out small, noisy fea
tures while preserving the spatial integrity of major 
MHW events. In contrast, the smaller window (3 ×  
3 × 3) allowed excessive noise, while the larger one 
(9 × 9 × 9) overly smoothed the field and distorted 
important substructures. The selected configuration 
(5 × 5 × 5) ensures the resulting MHW candidates 
remain physically interpretable and spatially 
consistent.

3.4.2. Moving-window size for intensity peaks 
extraction
To extract local thermal centers as skeleton nodes, we 
tested three moving window sizes: 2 × 5, 3 × 10, and 
5 × 15 (latitude × longitude). As shown in Figure 12, 
a window of 3 × 10 provided the most satisfactory 
results. This setting minimizes over-fragmentation 
while still capturing the major intensity peaks within 
an MHW candidate. A smaller window (2 × 5) 
resulted in excessive seed points and fragmented ske
letons, whereas a larger window (5 × 15) missed mean
ingful substructures by merging distinct centers. Our 
analysis indicates that the 3 × 10 configuration closely 
aligns with the spatial characteristics of STA contours. 
Importantly, the level of granularity in the skeleton 
representation is sensitive to this parameter, 

Figure 9. (a)–(c) three-dimensional, (d)–(f) longitude-depth profile, (g)–(i) latitude-depth profile and (j)–(l) vertical intensity 
profiles of the skeletons of the GOA MHW, cali-mex MHW and ENSO MHW at April 2015. The color of the node represents MHW 
intensity, and the size of the node represents MHW size.
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suggesting potential for future work in scale-adaptive 
skeleton construction to analyze the multi-scale verti
cal structural characteristics of MHWs.

4. Discussion

The proposed skeleton method, characterized by its recon
structability and reliability, serves as an effective tool for 

capturing the internal structure of 3D MHWs. By simpli
fying the complex 3D MHW into a graph structure, the 
skeleton retains critical attributes such as intensity distri
bution, vertical stratification, and spatial extent. This 
method can be easily extended to other 3D geographical 
phenomena such as dust storms and their 4D evolution 
(Yue et al. 2017; Yu, Yang, and Jin 2018). Unlike tradi
tional methods, such as centroids (Leborgne et al. 2018), 

Figure 10. Evolution of MHW skeletons. (a) the evolution diagram, each node represents a 3D MHW snapshot at a certain time 
slice, and the color of the node represents the volume of the MHW. Skeletons of (b) GOA MHW, (c) Cali-Mex MHW, (d) ENSO MHW 
and (e) merged complex MHW.
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that fail to represent 3D geographic events with significant 
heterogeneity and complex dimensional features, the ske
leton offers a more robust and accurate alternative.

The skeleton-based analysis revealed key structural 
commonalities across the studied MHWs. All three 
MHWs exhibited foundational I-shaped and 
Y-shaped skeleton forms, reflecting their fundamental 
and multi-centered configurations. The branching 
structure of Y-shape is attributed to variations in 
heat distribution and ocean dynamics across depths, 
consistent with previous studies that highlight the 
influence of upper-ocean stratification and subsurface 
heat transport on MHW morphology (Capotondi et al.  
2024). In addition to these commonalities, distinct 
individual evolutionary patterns and structure charac
teristics were observed among the MHWs. Cali-Mex 
MHW originated as a coastal MHW at 15°–30° lati
tude and evolved vertically from the surface to the 
ocean’s interior. In contrast, the GOA MHW emerged 
from the merger of three smaller MHWs, while the 
ENSO-driven MHW formed through the combination 
of two sub-MHWs-one at the surface and another 
below 100 m. Notably, ENSO-driven MHW exhibited 
the steepest skeleton slope (up to 120 degrees) in the 
longitude-depth profile, reflecting a significant east-to 
-west shift of its intensity centers from surface to 
subsurface layers, which is consistent with the distri
bution of the shallow eastern and deep western ther
mocline in the tropical Pacific Ocean (An and Jin  
2001). These findings support the physical plausibility 

of the identified skeleton structures and highlight the 
value of incorporating 3D structural analysis to better 
capture the complexity and variability of MHW 
development.

While the skeleton framework offers a novel 
approach to representing the internal 3D structure of 
MHWs from a data-driven perspective, several limita
tions remain. First, the current algorithm is statistical 
in nature and does not directly incorporate oceano
graphic processes such as stratification and vertical 
advection. Consequently, aggregating events using 
purely spatial-temporal criteria may conflate distinct 
phenomena driven by separate physical mechanisms. 
The current reliance on statistical metrics for skeleton 
edge construction, such as overlapping area ratios and 
geometric similarity, also simplifies vertical heat trans
port processes, omitting regional variations in vertical 
mixing, stratification, and lagged responses. Future 
enhancements should incorporate reanalysis-derived 
vertical velocities to enhance physical consistency. 
Second, the present analysis is constrained to specific 
oceanic regions and relied on available temperature 
datasets, which may not fully capture the coupled 
physical, biological, and chemical processes interact
ing with MHWs. Expanding the framework to incor
porate additional datasets (e.g. ORAS5, GLORYS, 
SODA) and broader spatio-temporal domains would 
enhance its applicability to global ocean extremes. 
Third, the monthly resolution precludes precise dura
tion estimates for short-lived MHWs. While our 

Figure 11. Sensitivity analysis results on the K-parameter in the KNN. (a) Raw MHW candidates on March, 2014 and (b-d) the post- 
processed snapshots by the KNN using different values for the K parameter.
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framework is adaptable to daily SST data, future 
implementation at higher temporal resolution is 
necessary to resolve short-term dynamics. Finally, 
the current framework focuses on structural extrac
tion from discrete time slices without accounting for 
temporal continuity in clustering, which may limit its 
ability to capture the full evolution of MHWs. Future 
developments can extend the skeleton-based model by 
integrating temporal consistency using consensus 
graphs (Lancichinetti and Fortunato 2012). Such an 
extension would facilitate the identification of tempo
rally stable, physically coherent MHW systems.

5. Conclusions

This study introduces a geospatial skeleton framework 
to represent and analyze the 3D structure and evolu
tion of MHWs from a data-driven perspective. The 

proposed method transforms complex thermal 
anomalies into interpretable graph structures, 
enabling structured analysis of their spatial organiza
tion and temporal progression. Applied to three repre
sentative MHW events, the framework reveals distinct 
vertical architectures and highlights dynamic pro
cesses such as merging and splitting among subsurface 
MHWs.

Overall, this framework provides a novel and 
robust approach for resolving the 3D structure 
and dynamics of MHWs. Future developments 
may involve integrating the framework with physi
cal ocean models and extending its application to 
broader spatio-temporal scales. Furthermore, 
enhancing the framework into a four-dimensional 
(4D) clustering approach that explicitly incorpo
rates time as a dimension would enable continuous 
tracking of MHW evolution across both space and 

Figure 12. Sensitivity analysis results on the moving window size used for identifying local maximum intensity points at 
August 2015. MHW recognition results using a moving-window size of (a–c) 2 x 5, (d–f) 3 x 10 and (g–i) 5 x 15 at depth of 
20 m, 110 m and 200 m; (j–l) SSTA contours at the same depths for comparison; (m–o) multi-scale MHW skeletons constructed 
across these configurations.
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time. Beyond MHWs, this method also offers 
a transferable modeling strategy for other environ
mental extremes and contributes to the develop
ment of advanced methods for analyzing multi- 
dimensional geophysical processes.
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