Taylor & Francis
Taylor & Francis Group
International Journal of

TRl R nternational Journal of Digital Earth

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjde20

Human mobility data in the COVID-19 pandemic:
characteristics, applications, and challenges

Tao Hu, Sigin Wang, Bing She, Mengxi Zhang, Xiao Huang, Yunhe Cui, Jacob
Khuri, Yaxin Hu, Xiaokang Fu, Xiaoyue Wang, Peixiao Wang, Xinyan Zhu,
Shuming Bao, Wendy Guan & Zhenlong Li

To cite this article: Tao Hu, Sigin Wang, Bing She, Mengxi Zhang, Xiao Huang, Yunhe Cui, Jacob
Khuri, Yaxin Hu, Xiaokang Fu, Xiaoyue Wang, Peixiao Wang, Xinyan Zhu, Shuming Bao, Wendy
Guan & Zhenlong Li (2021) Human mobility data in the COVID-19 pandemic: characteristics,
applications, and challenges, International Journal of Digital Earth, 14:9, 1126-1147, DOI:
10.1080/17538947.2021.1952324

To link to this article: https://doi.org/10.1080/17538947.2021.1952324

@ Published online: 14 Jul 2021.

\]
C»/ Submit your article to this journal &

||I| Article views: 326

A
& View related articles &'

PN
@ View Crossmark data &'
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tjde20


https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/loi/tjde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2021.1952324
https://doi.org/10.1080/17538947.2021.1952324
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2021.1952324
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2021.1952324
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2021.1952324&domain=pdf&date_stamp=2021-07-14
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2021.1952324&domain=pdf&date_stamp=2021-07-14

INTERNATIONAL JOURNAL OF DIGITAL EARTH
2021, VOL. 14, NO. 9, 1126-1147 (ISDE /\ e Taylor & Francis
https:/doi.org/10.1080/17538947.2021.1952324 AIR Teylor & francis Group

W) Check for updates

Human mobility data in the COVID-19 pandemic: characteristics,
applications, and challenges

Tao Hu*®, Sigin Wang ¢, Bing Shed, Mengxi Zhang®, Xiao Huang f Yunhe Cui®,
Jacob Khuri®, Yaxin Hu @', Xiaokang Fu, Xiaoyue Wang’, Peixiao Wang’, Xinyan Zhu/,
Shuming Bao®, Wendy Guan® and Zhenlong Li

?Department of Geography, Oklahoma State University, Stillwater, OK, USA; bCenter for Geographic Analysis,
Harvard University, Cambridge, MA, USA; “School of Earth and Environmental Sciences, The University of
Queensland, St Lucia, Australia; “Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; ®School
of Health, Ball State University, Muncie, IN, USA; fDepartment of Geosciences, University of Arkansas, Fayetteville,
AR, USA; Department of Geography, University of Connecticut, Storrs, CT, USA; PLake Erie College of Osteopathic
Medicine, Seton Hill University, Greensburg, PA, USA; 'School of Resource and Environmental Sciences, Wuhan
University, Wuhan, People’s Republic of China; 'State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan University, Wuhan, People’s Republic of China; “China Data Institute, Ann
Arbor, MI, USA; 'Geoinformation and Big Data Research Laboratory, Department of Geography, University of South
Carolina, Columbia, SC, USA

ABSTRACT ARTICLE HISTORY
The COVID-19 pandemic poses unprecedented challenges around the Received 21 February 2021
world. Many studies have applied mobility data to explore Accepted 2 July 2021
spatiotemporal trends over time, investigate associations with other

variables, aqd predict or simu!ate the s.pread of COVID—19._ Qur objective COVID-19; public health:
was to. provide a comprehensive overview of human mqblllty open Qata human mobility: open data;
to guide researchers and policymakers in conducting data-driven mobile phone; mobility
evaluations and decision-making for the COVID-19 pandemic and other index

infectious disease outbreaks. We summarized the mobility data usage in

COVID-19 studies by reviewing recent publications on COVID-19 and

human mobility from a data-oriented perspective. We identified three

major sources of mobility data: public transit systems, mobile operators,

and mobile phone applications. Four approaches have been commonly

used to estimate human mobility: public transit-based flow, social

activity patterns, index-based mobility data, and social media-derived

mobility data. We compared mobility datasets’ characteristics by

assessing data privacy, quality, space-time coverage, high-performance

data storage and processing, and accessibility. We also present

challenges and future directions of using mobility data. This review

makes a pivotal contribution to understanding the use of and access to

human mobility data in the COVID-19 pandemic and future disease

outbreaks.

KEYWORDS

1. Introduction

Human mobility pertains to how people move across space and plays a crucial role in the spatio-
temporal transmission dynamics of infectious diseases, including the coronavirus disease 2019
(COVID-19). The nature of person-to-person virus transmission of COVID-19 and the unprece-
dented global scale has led to the urgency of restricting human movement behaviors within and
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across national borders. Human mobility datasets characterize the pattern and trajectory of human
activities, including, but not limited to, walking around local neighborhoods, driving to workplaces,
or utilizing public transportation. Understanding human mobility with appropriate mobility data is
crucial to urban planning, traffic forecasting (Pan et al. 2020), network applications, and epidemic
control (Yang et al. 2020; Niand Weng 2009; Belik, Geisel, and Brockmann 2011; Meloni et al. 2011;
Changruenngam, Bicout, and Modchang 2020; Yue and Hu 2021). As human mobility has a severe
impact on epidemic spreading and the speed of disease spreading, measuring and examining
human mobility have become increasingly important since the outbreak of COVID-19. Many
COVID-19 studies have been published with common conclusions revealing that restricting
human mobility (e.g. international travel bans, national border closures, lockdown orders, and lim-
ited gatherings) is the primary and effective strategy to reduce infections and curb the transmission
of COVID-19 (Yang et al. 2020; Gatto et al. 2020; Kraemer et al. 2020; Liu et al. 2020a; Yabe et al.
2020). Now more than ever, the use of and access to human mobility data are imperative to con-
trolling the spread of communicable and infectious disease outbreaks.

Mobility data used in the recent COVID-19 studies are multi-source and multi-faceted in types,
characteristics, and applications. Apart from the traditional sources (e.g. survey and public transit
system), the growth of telecommunication devices and mobile applications has significantly chan-
ged the way of data production and processing. Mobile phones utilize cell tower information and
the Global Positioning System (GPS) for fine-grained location tracking. Billions of mobile users
provide a large amount of spatiotemporal data that can be used to extract the trajectory of
human movement activities. A growing volume of mobility data is collected and processed to gen-
erate new types of datasets via advanced algorithms. Data providers made such mobility data pub-
licly available to facilitate COVID-19 research studies. There is a pressing need to review the human
mobility data used in these studies to help researchers understand the spatiotemporal dynamics of
the pandemic and to propose a future research agenda that will aid the prevention and control of
disease outbreaks. To the best of our knowledge, there is no current review summarizing the human
mobility data usage in recent COVID-19 studies.

To bridge this gap, we had a narrative review on recent publications of COVID-19 and human
mobility from a data-oriented perspective. The objectives of our review are threefold: (1) to classify
and describe the mobility data used in COVID-19 studies in terms of data sources, measures, and
characteristics; (2) to summarize how different types of mobility data have been used in COVID-19
studies; and (3) to highlight the challenges, recommendations, and future directions toward which
we can orientate our collective efforts in utilizing mobility data in current COVID-19 and future
infectious disease studies. To achieve the three objectives, we searched related literature by querying
mobility dataset names in Google Scholar, including peer-reviewed journal articles, high-quality
preprints, and working papers. Since the search terms may appear in either the title, abstract, or
content, we conducted a manual selection of papers that applied human mobility data in their
COVID-19 studies. We excluded papers that only described human mobility data without any
application analysis. We summarized the mobility data from sources, categories, measures, and
characteristics to estimations, applications, challenges, and future data usage of COVID-19 and
other infectious disease modeling research. Our review makes a pivotal contribution to the current
scholarship in public health and human mobility by presenting a primary summary of human
mobility data highly pertinent to the current COVID-19 pandemic and future epidemic control.

2. Sources of mobility data

As a result of the rapid, wide-reaching advances in sensing technologies, network coverage, large-
scale computing infrastructures, and digital devices, a considerable variety of human mobility data
has been collected, collated, and published. The multi-source human mobility data contain rich,
multi-faceted spatiotemporal information on human mobility patterns. We identified three primary
sources of human mobility datasets used in the recent COVID-19 studies and summarized the
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publicly available datasets categorized within these three primary sources: (1) public transit systems;
(2) mobile network operators; and (3) mobile phone applications.

2.1. Public transit systems

Mobility datasets retrieved from public transit systems, such as bus, train, ferry, metro, and air
flight, represent the aggregated human mobility. There are two types of public transit data: the
scheduled timetable and the actual travel records of passengers. The scheduled timetable data
reflect the service capability and time, which can be potentially used to estimate the ridership
and avenue if it is assumed to achieve the maximum service capability fully or proportionally
(e.g. Watts et al. 2020; Zhuang et al. 2020). Most scheduled timetable data are publicly available
on the website of transport authorities, governments, or private transport companies. In contrast,
the actual travel records of passengers are usually retrieved from smart transit systems through the
tapping of transit smart cards by passengers (Liu, Wang, and Xie 2019). As an example, the train
dataset usually comprises the following information: trip/journey identification, smart card identifi-
cation, timestamp, and alighting and boarding locations (longitude and latitude). Accordingly, an
individual train passenger’s mobility pattern can be reflected as the network distance between the
boarding station being the origin and the alighting station being the destination with the recorded
travel time (Carteni, Di Francesco, and Martino 2020; Hu et al. 2020a). Such smart-card data at the
individual level can be provided by the transport and governmental authorities.

At the global level, air travel is the primary choice of public transit, and air flight data serve as the
indicator of the mobility flow across countries and regions (e.g. Iacus et al. 2020; Haider et al. 2020).
Air flight data include airport and airline data, online booking and trip information, and aircraft
tracking data. Most of the data services provide either Application Programming Interface (API)
or direct download links, and the historical travel data are usually accessible.

Train and bus data are usually available at the state or city level, whereas metro/subway data may
be available at more locally precise scales (e.g. across and within a fare zone). However, the histori-
cal travel data for these public transit modes are typically not provided. Researchers often create
crawlers to collect these data. At the city level, there are more diverse travel options by which people
may choose to travel from one place to the next, including metro and bus. Most of the public trans-
portation data from these transportation systems are provided by data service companies, but there
is no standard data format. Metro and bus data are available at the station level (e.g. the total num-
ber of people tapping their travel smart cards at a specific station) rather than individual passenger
level, mainly due to data privacy concerns. Aggregated datasets of train and bus travel information
are available in some countries, such as the U.S. and China.

2.2. Mobile network operators

Mobile network operators can track people’s locations in the Call Detailed Records (CDRs) that
contain information about the time of the call and the cell tower to which mobile phones are con-
nected when the call took place (Oliver et al. 2020). These human mobility data contain an abun-
dant amount of information about mobile phone call locations; therefore, these data can help
address many challenges, such as traffic congestion, public security, urban planning, and the control
of pandemics (Zhao et al. 2016). However, due to data privacy issues, it is difficult to collect such
data on a large scale, and these data are less likely to be publicly available. Thus, such data are
usually aggregated to coarse geographic scales (e.g. county and state) for public release or further
calculated as index-based data to indicate human mobility at the population level (Warren and
Skillman 2020). In the meantime, many privacy-enhancing technologies have been proposed to
ensure individual mobility data are anonymous and unidentifiable.
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2.3. Global Positioning System (GPS)

The prevalence of telecommunication devices, particularly smartphones, enables the collection of
individual mobility data through the GPS position of each mobile phone user. GPS-based telecom-
munication data can reveal an individual’s daily mobility behavior, such as where and how long
they remain in a particular location (Zhao et al. 2016). There are numerous installed mobile
phone apps that record GPS locations once users enable the function of positioning. For example,
navigation apps (e.g. Google Maps and Apple Maps) record real-time GPS locations when starting
navigations. This information can help measure the access frequency to the points of interest (POI),
such as residential areas, shopping centers, hospitals, and recreational and public facilities.

Another source to collect location data is the social media mobile apps (e.g. Facebook and Twit-
ter). These data can only be collected if users enable the positioning function or if users input geo-
graphic information when they post content. Such social media data, usually termed as geotagged
data, have become an emerging source of users’ spatiotemporal information that can be further
used to indicate users’ mobility behavior. To minimize the spread of infectious disease as mobility
restrictions are lifted, some contact-tracing applications have been developed and applied, such as
C.A. Notify (https://canotify.ca.gov/) and Corona 100 m (Dudden and Marks 2020).

3. Mobility estimations

Datasets collected from the three identified major sources have been processed and evaluated to
indicate the pattern and magnitude of human mobility at the individual and aggregated levels.
With a comprehensive consideration of the processing methods used to generate mobility data
and the purpose of data usage, we classified the mobility measures utilized in the current
COVID-19 studies into four different categories: (1) public transit data; (2) social activity data;
(3) index-based mobility data; and (4) social media-derived mobility data. Table 1 lists and com-
pares each group of mobility datasets in terms of provider, region, and scale, available time, ori-
gin-destination (OD) flow, availability, strengths, weaknesses, and related references. The OD
flow indicates if the mobility value/index provides inter/intra-region movement information.
The availability column shows how users can access each data set: private, public, or application
submission. Some selected references which applied the mobility data sets for COVID-19 studies
are listed as well. This section describes some typical mobility datasets within each category and
the methods used to generate such mobility datasets.

3.1. Public transit-based mobility data

Public transit data comprise metro, train, and air flight datasets. The air flight data are useful in
estimating the population flow both between and within countries and regions. There are many
ways to aggregate the data at multiple spatiotemporal scales based on the flights’ origins and des-
tinations. For example, OpenSky Network collected crowdsourced air traffic control data broadcast
by airplanes and shared a dataset of global flight movements, which include aircraft identification
number, model type, origin, destination, first-seen and last-seen timestamps, latitudes, and longi-
tudes, etc. Researchers have aggregated the data to estimate the changes in air flight activities due to
demand decline and travel restrictions (Iacus et al. 2020).

The data for other modes of public transit have a greater variation in terms of coverage and qual-
ity depending on the region. For the train data, the ctrip (https://www.ctrip.com/) and 12306 (www.
12306.cn) are two major data sources (available only in China) that provide the scheduled timetable
data. The passenger-level train data, however, are generally not available due to privacy and regu-
lations, while aggregated datasets are available in some countries. As an example, the National
Transit Database (https://www.transit.dot.gov/ntd) is a repository that stores financial and operat-
ing information of transit systems in the U.S. Some agencies, such as the Metropolitan
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Table 1. Summary of human mobility datasets in recent COVID-19 studies.

WLANHL (=) ogLL

First
release
after
Name and Available ob COVID-

Data Category Provider Region and scale Time Flow Availability 19 Strengths Weaknesses Selected References
Public Transit  Air flight OpenSky- Worldwide, 01/01/2019  Yes Public Yes Detailed tracking API limitations Zhuang et al. (2020);
System Network mostly for ~ present information lacus et al. (2020)

Europe and
North America
Train Transit system /  China, USA, ltaly Different for  Yes Public No Available in countries  Real-time data but  Zhang et al. (2014);
dataset in (by state, city, different where there is a without history Carteni, Di
different district) regions booking website data or Francesco, and
countries (e.g. sometimes web Martino (2021); Hu
China, US., crawling needed et al. (2020¢)
Italy)
Metro Transport u.s. Different for No Public No Detailed ridership Non-trackable; no  Zheng et al. (2020);
authority (e.g. different data, at the station route record Ahangari et al.
MATSIm-NYC) regions level (2020)
Social Activity Apple Mobility ~ Worldwide/city, 04/14/2020 No Public Yes global wide; one data source Huang et al. (2020b);
Trends Report county, state ~ present single file; data method Kurita et al. (2021);
divided by country/ (requests for Hadjidemetriou
region, sub-region, directions in et al. (2020)
city Apple Maps)
Google Mobility  Worldwide/city, 2/15/2020 No Public Yes global wide; one not comparable Pepe et al. (2020);
Reports county, state ~ present single file among countries Delen, Eryarsoy, and
Davazdahemami
(2020); Rutz et al.
(2020)
Foursquare U.S./county, state  02/19/202 No Submit Application  Yes Available in 25 types  Only available in Gao et al. (2020a);
Mobility ~present. of POl and by age us. Fathi-Kazerooni
Reports group et al. (2020)
SafeGraph U.S./census tract,  01/01/2019  Yes Submit Application No Varieties of data Data are only Li et al. (2020b); Kang
Mobility county, and ~ present categories available on et al. (2020)
Reports state Amazon S3
Index-based Mobility Cuebiq Mobility  U.S. at multiple 01/01/2020  No Submit Application  Yes Available in DMA Only available in Fraiberger et al.
Data Index geographic level; index allows us. (2020); Pepe et al.
levels counties to be (2020)

compared to one
another



Social Media-Derived
Mobility Data

Baidu Mobility
Index

Descartes Lab
Mobility
Index

Unacast Social
Distancing
Index

University of
Maryland
Mobility
Metrics and
Social
Distancing
Index

Camber
Systems
Social
Distancing
Reporter

Geotagged
Tweets

Facebook
Movement
Range Maps

China/city and
province

U.S./county and
state

us.

U.S./county and
state

U.S./county

Worldwide/any
spatiotemporal
scale

Worldwide

1/1/2020 ~
5/7/2020
& 9/3/
2020 ~
present

03/01/2020
- present

02/24/2020
~ present

01/01/2020
~ present

08/01/2020
~ present

01/01/2018
~ present

01/03/2020
~ present

Yes

No

No

No

No

Yes

No

Public

Submit Application

Submit Application

Submit Application

Submit Application

Public

Submit Application

No

Yes

Yes

Yes

Yes

No

Yes

inter/intro-city
mobility index

accurate positioning
data (m50 score
based on
normalization
methods)

Granular data,
available down to
specific data points;
bias correction
based on
classifications of
businesses

Integrated and
cleaned location
data from multiple
sources; be highly
representative

Integrating multiple
data sources; less
biased and more
representative; easy
to interpret

Worldwide coverage,
real-time,
aggregation-flexible

Machine-readable
format that is global
and free of charge

Not publicly
accessible after 7
May 2020, only
available for
Mainland China

Inter-city index not
covered; only
freely available
in a certain
period of time
and scale

Since data is
coming from
third party
sources, people
may have to
agree to consent
on those sources

Only available in
the U.S.

subject to
calibration; only
available in U.S.
county level; no
data before
August 2020

Bias in population,
low penetration

Only provided by
mobile phone
users who have
enabled location
history

Ze-Liang et al. (2020);
Liu et al. (2020a); Xu
et al. (2020)

Warren and Skillman
(2020); Gao et al.
(2020b); Chen et al.
(2020)

Brodeur, Cook, and
Wright (2021)

Zhang et al. (2014);
Ghader et al. (2020);
Ghader et al. (2020)

Jeffrey et al. (2020)

Huang et al. (2020a);
Li et al. (2021b); Su
et al. (2020a)

Lau et al. (2020);
Kuchler, Russel, and
Stroebel (2020);
Beria and Lunkar
(2021)
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Transportation Authority in the U.S., release daily turnstile data and aggregated ridership data
(http://web.mta.info/developers/turnstile.html), both of which can be used to estimate travel
volume.

3.2. Social activity data

Social activity data is another stream of mobility data that has been commonly utilized to reflect
human social activity behavior with access to different places of interest, such as workplaces, resi-
dential areas, public transit, health care facilities, schools, shopping centers, and recreational and
sports facilities. Most of such social activity data are GPS-derived metrics of foot traffic or POI
access frequency sourced from large information technology (IT) companies with mapping services
(e.g. Google and Apple). These data have been regularly updated and released to the public for the
purpose of supporting public health authorities and the research community in response to
COVID-19.

One of the mobility datasets most commonly used is Google Mobility Reports that provides the
percentage change of place visit frequencies in six types of locations (workplaces, residential, parks,
grocery and pharmacy, retail and recreation, and transit stations) compared to a pre-pandemic
baseline value of mobility from 3 January to 6 February 2020 (Google LLC 2020). Similarly, Four-
square Community Mobility Reports provides location data derived from U.S. foot traffic data, indi-
cating the POI access frequency of people in different age groups through 32 categories of
destinations (e.g. beach, bus station, hotel, etc.) (Foursquare Labs Inc. 2020). In contrast to Google
and Foursquare data categorized by POI access, Apple Mobility Trends Report provides transport-
based metrics that are generated by counting users’ requests for directions in the Apple Maps app
based on three types of transport modes (public transit, driving, and walking) compared to a pre-
pandemic baseline value of mobility on 13 January 2020 (Apple Inc. 2020). Moreover, SafeGraph
Foot Traffic data is an alternative mobility data with social distancing metrics determined by the
night-time location of each mobile device. The POI access in SafeGraph data is categorized by
industry and business (e.g. grocery stores, restaurants, bars, hotels); brand (e.g. Costco, Starbucks,
Walmart); regions (e.g. metropolitan areas); and restaurant type (e.g. Chinese, Italian, Korean food)
(SafeGraph 2020).

3.3. Index-based mobility data

Unlike the social activity data, which is directly generated by POI access frequency or foot traffic,
index-based mobility data are calculated as index metrics by data collected from the multiple
sources described in Section 2. There are six types of index-based mobility data commonly used
in the current literature, and these are Cuebiq Mobility Index; Baidu Mobility Index; Descartes
Lab Mobility Index; University of Maryland Mobility Metrics and Social Distancing Index
(UMMI); Camber Systems Social Distancing Reporter (CSSDR) (Camber Systems 2020); and,
Unacast Social Distancing Index. These are usually processed through different methods and aggre-
gated at a particular spatial scale (e.g. state/province, county/city, and census tract) for public
release.

Index-based mobility data usually employs advanced algorithms in the processing of data optim-
ization to ensure data quality and reliability. Baidu Mobility Index (BMI) is the most widely used
mobility data in COVID-19 related studies in China, and these data are provided by Baidu, which is
aleading IT company in China. BMI is measured through gathering travel data based on more than
120 billion daily location requests from the Baidu Map app and other mobile phone apps that use
Baidu’s location services. BMI also provides a series of indices at different spatial scales, including
within-city mobility intensity, population inflow and outflow ratio, intensity inter/intra-provinces,
and top 100 cities (Baidu Inc. 2020). Cuebiq Mobility Index, which is also derived from mobile
location data, quantifies how far mobile devices move each day by using a derivative factor
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indicating the distance between opposite corners of a box drawn around the observed locations
(Cuebiq Inc. 2020). Descartes Lab Mobility Index (Descartes Lab 2020) is calculated as the median
of maximum distance mobility across all position reports within the threshold of 50 meters. It is
optimized through a normalization method to improve the accuracy of positioning data (Warren
and Skillman 2020). Similarly, Camber Systems Social Distancing Reporter (CSSDR) uses a locally
estimated scatterplot smoothing regression to calculate two indices (e.g. the radius of gyration and
median Shannon entropy index) that indicate how people are engaging in social distancing over
time (Camber Systems 2020). Unacast Social Distancing Index is calculated as the percent change
of mobility in average distances traveled, the percent change in non-essential visitation, and the
decrease in human encounters compared to the national baseline (Unacast 2020). Lastly, the Uni-
versity of Maryland Mobility Metrics and Social Distancing Index (UMMI) contains six mobility
metrics: the percentage of staying home; the percentage of reduction of all trips; work trips;
non-work trips; travel distance; and out-of-county trips compared to the pre-pandemic benchmark
through a multi-level weighting procedure (University of Maryland 2020).

Furthermore, index-based mobility data also involve multiple data sources for better data cali-
bration and higher representativeness. For instance, CSSDR data stored in Camber Systems’ data-
base merge various data sources to reduce errors and represent the larger population. Unacast
Social Distancing Index is created and collated from third-party sources, such as Unacast’s partners
and the software development kit. UMMI, developed by the project team at the Maryland Trans-
portation Institute at the University of Maryland, is based on integrated and cleaned mobile phone
location data from multiple sources that represent person and vehicle movements (University of
Maryland 2020). In summary, compared to social activity data, index-based mobility data serve
as an alternative to indicate human mobility as standardized and comparable indices available at
multiple spatial scales and in different geographic contexts.

Although many human mobility indexes have been generated and applied in the U.S. studies, a
few of these indexes estimate inter-regional population flow at different spatial scales. SafeGraph
Foot Traffic data initially record POI access information in the census tract level as mentioned
in section 3.2. This high-resolution human activity data provide the potential to derive a fine-
scale inter-regions mobility index. Kang et al. (2020) estimated the daily and weekly dynamic
OD population flows at three geographic scales: census tract, county, and state. The dataset is pub-
lished in GitHub and is free to use. Such a high spatiotemporal resolution in a human mobility flow
dataset may help monitor epidemic spreading dynamics, inform public health policy, and deepen
our understanding of the change of human movement behavior within the current public health
crisis. To promote the value of data, Li et al. (2020a) developed a geospatial web portal, named Ori-
gin-Destination-Time (ODT) Flow Explorer, by extracting and aggregating the U.S. population
flows from SafeGraph mobility data. The online tool helps extract and query, download mobility
data, and visualize the population flows interactively.

3.4. Social media-derived mobility data

Commonly used social media platforms for gathering human mobility patterns include, but are not
limited to: Twitter, Facebook, Instagram, WeChat (China), and Weibo (China). Compared with
already summarized activity metrics at specific geographical scales (Section 3.2) and aggregated,
constructed mobility index (Section 3.3), the raw social media records retrieved online are charac-
terized by their aggregation-flexibility and scale-free nature. As a result, researchers are offered
more freedom to construct desirable mobility indices at various spatiotemporal scales. This valuable
(often extensive) user-generated information obtained from social media platforms and their
derived mobility indices greatly facilitate (near) real-time human mobility monitoring during the
COVID-19 pandemic in an active, less privacy-concerning manner (compared to the mobility
records collected from phone records and smart cards).
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Twitter has become the largest source of social media research data due to its policy of free access
to about 1% of its total content (Martin et al. 2020). Many attempts have been made to utilize the
derived geospatial contexts from social media posts, with the goal of assisting the monitoring of
human mobility (Huang et al. 2020a, 2020b; Li et al. 2020a; Li et al. 2021a, 2021b; Bisanzio et al.
2020; Peng et al. 2020; Zeng et al. 2021). Huang et al. (2020a) conceptualized a mobility-based
responsive index by integrating single-day distance and cross-day distance derived from massive
Twitter posts worldwide, aiming to understand the dynamics of human mobility under
implemented policies during the COVID-19 pandemic. To measure places connectivity, Li et al.
(2020b) proposed a global multi-scale place connectivity index (PCI) based on spatial interactions
among places revealed by geotagged tweets. A PCI is defined as the normalized number of shared
persons between two places during a specific time period. In response to the soaring needs of
human mobility data, especially for the COVID-19 pandemic, Li’s team developed origin-destina-
tion-time (ODT) flow platform which extracts, analyzes, and shares multi-scale human mobility
index estimated by the PCI and population flows described above.

Facebook Movement Range Maps provide similar datasets with two different metrics, Change in
Movement and Stay Put, both of which are generated from the mobility data of 27 million Facebook
mobile app users with location history turned on. The Change in Movement metric looks at how
many people are moving around and compares this number to a baseline period that predates most
social distancing measures. The Stay Put metric looks at a fraction of the population that appears to
stay within a small area surrounding their home for an entire day. Mobility records from social
media only reflect the travel behaviors that users are willing to share and are dependent on the
demographics of the local users in relation to the demographics of the local population. More
data limitations regarding social media-derived mobility are discussed in Section 6.2.

4, Mobility data characteristics

We summarized the characteristics of the mobility datasets in terms of data privacy, quality, spatio-
temporal coverage, storage, processing, availability, and accessibility. This summary of evidence
aims to help researchers familiarize themselves with these mobility datasets and select the appro-
priate data for their studies.

4.1. Data privacy

The privacy of human mobility measures varies across different types of datasets. Within public
transit datasets, the scheduled timetable data often face fewer concerns about privacy issues. In con-
trast, the data with the actual trajectories of travelers pose greater risks to individual privacy. As a
result, transport authorities and governments have put increasing efforts into privacy protection;
the largely anonymous individual-level transit data is only issued to organizations or institutes
for specific purposes (e.g. education or policy-making) through careful approval and confidential
agreement. Social activity and index-based mobility data created by telecommunication signals,
POI access, or mobile apps are subject to more data privacy challenges. They are more likely to
be released as aggregated-level metrics based on a large volume of anonymous location data.
Such aggregated data indicate the overall patterns or changes of human mobility in a particular
spatial unit with less concern about identifiable user-based information. Governments, professional
associations and organizations, data providers, and researchers have made joint efforts to improve
the stringency and implementation of regulations in addition to ensuring the ethics clearance in the
process of data sharing and manipulation. For example, data used for individuals’ trajectories and
identifications in COVID-19 related studies, such as contact-tracing data, are required to be re-
coded. Additionally, a small volume of individual mobility data in less populated areas requires
the addition of random spatiotemporal points to make such data unidentifiable (Zang and Bolot
2011; De Montjoye et al. 2013; Xu et al. 2017).
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4.2. Data quality

The quality of mobility data depends on data types, and this makes it challenging to assess data
quality without careful comparison studies. For example, the OpenSky-Network provides freely
accessible airline flight data since 2019; however, it does not provide every global flight movement
but only those ADS-B-equipped aircraft seen within the coverage (The OpenSky Network 2020).
Additionally, the monitored ADS-B-equipped aircraft data are mostly concentrated only in
North America and Europe (Iacus et al. 2020). The smart-card-based public transit data usually
contain a certain amount of missing data due to human errors made by smart card users (e.g. for-
getting to tap in/out) or due to the malfunction of collection devices (e.g. tapping machines not
working) (Liu, Wang, and Xie 2019). Furthermore, the producers of social activity data and
index-based mobility data (e.g. telecommunication and IT companies, research institutes, and uni-
versities) consider that their data quality is reasonably controlled through data validation and cali-
bration. However, most of these mobility data suffer from representativeness issues as the data are
limited to only mobile phone users or app users whose locational function is turned on. For
example, geotagged tweets only account for a small portion of the entire tweets (Jurdak et al.
2015; Martin et al. 2020). The accuracy of the geographic locations in geotagged tweets also varies
as users may only geotag their posts at the city or state level rather than specific GPS coordinates.
Therefore, more efforts are needed to refine, clean, anonymize, combine, and compare multiple
mobility data types to ensure data quality and reliability.

4.3. Space-time coverage

Human mobility data used in COVID-19 research vary greatly in spatial and temporal data cover-
age. For public transit data, air flight datasets are available at the global scale, while train data (e.g. in
China, the U.S., and Italy) are available at the state, city, or district level. Metro and bus data are
usually available at a finer scale (e.g. across fare zones or stations). For social activity data, Apple
and Google mobility data are available globally at the state or city level in some countries. Apple
data cover 63 countries with a timeline starting from 13 January 2020 (except for 11-12 May
2020), and Google data cover 131 countries with varying timelines based on the country. Four-
square Mobility Reports cover only the U.S. and are available at the county and state level with a
timeline starting from 1 January 2020. Unlike the aforementioned datasets, Safegraph initially pro-
vides social activity data at the census tract level, and the data can be easily aggregated to the county
and state level.

For index-based mobility data, Baidu Mobility Index only cover Mainland China from 1
January 2020 to 7 May 2020, and from 22 September 2020 to the present. Cuebiq Mobility
Dashboard data only cover the U.S. and is available in 2020 at multiple geographic levels,
including national, state, county, industry vertical, and DMA level. Descartes Lab Aggregated
Mobility Index is available at the state level in the U.S. from 16 February 2020 to the present.
Unacast Social Distancing Index is only available in the U.S. by state and county since 24 Feb-
ruary 2020. The Mobility Metrics and Social Distancing Index and Camber Systems Social Dis-
tancing Reporter are both available in the U.S. at the county and state level covering the entire
year of 2020.

In the COVID-19 pandemic, understanding human mobility spatial interaction patterns at
different geographic scale has been critical for assessing the impact of non-pharmaceutical interven-
tions. Public transit system provides an easy way to extract origins and destinations from timetables
of airflight, train, metro, and bus. However, it only estimates OD flows of the transits, presenting a
very small group of population. In contrast, Baidu Mobility Index offers inter-city and inter-pro-
vinces population flows index with comprehensive big data sources. However, it is only available
in China. In the US, researchers estimated and shared the estimated daily dynamic OD population
flows from SafeGraph at three geographic scales: census tract, county, and state (Kang et al. 2020;
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Huang et al. 2020a) and from Geotagged Tweets support the at county, state, and country level (Li
et al. 2020a).

4.4. High-performance data storage and processing

Human mobility data, generated passively or actively from the movement of billions of people
around the world, are intrinsic Big Data that are characterized with the typical five challenging
Vs (volume, velocity, variety, veracity, and value) (Zikopoulos and Eaton 2011; Gudivada, Baeza-
Yates, and Raghavan 2015; Li 2020). The value of human mobility data relies on the capability of
extracting population movement patterns at various spatiotemporal scales and resolutions (local
to global, real-time VS historical) from multi-source and multi-scale datasets in a space and time
framework. The report-based mobility datasets from Google, Apple, Foursquare, and Facebook
are highly processed with population movement information aggregated to a specific spatiotem-
poral scale (mostly showing the daily movement at the county or equivalent levels). While such
datasets are often small in size and easy to handle, they offer limited flexibility for studies on differ-
ent spatiotemporal scales and limited transparency in how these mobility data are generated. Other
mobility data sources, such as geotagged social media data and cell phone data, may overcome such
limitations by capturing individual human movements in much finer spatiotemporal resolutions.
As these data are available in relatively raw formats with massive volumes, high-performance
data storage and processing are needed to efficiently extract useful mobility information. For
example, utilizing a Hadoop-based high-performance computing cluster coupled with a cube-
based data storage model, Li et al. (2020a) extracted 591 million individual-level daily OD flows
from 2.1 billion geotagged tweets worldwide and derived 9.7 billion daily OD flows at the U.S.
block group level from SafeGraph data. With the increasing availability of and soaring demands
for fine-scale human mobility data, more studies are needed to develop novel parallel and scalable
computing algorithms and data models to manage, process, and analyze big mobility data in a high-
performance computing environment. Furthermore, more studies are needed to develop interactive
geospatial web portals to allow researchers to query, extract, visualize, and share the derived human
mobility data.

4.5. Data accessibility

Conventional data sources, such as public transit system, have started to provide rich population
flows data before the COVID-19 pandemic (see Table 1). To help researchers and governments
worldwide with the response to COVID-19, technology companies and research institutions
have made human mobility datasets publicly available after pandemic. There are several primary
ways to publish or share these datasets: (1) online data dashboards via the official websites of
data providers; (2) GitHub (https://github.com/); (3) Harvard Dataverse (https://dataverse.
harvard.edu/); (4) user applications. Regarding online dashboards, technology companies, such
as Google, Apple, and Facebook, build websites to present mobility data and provide direct data
download links. Similarly, Cuebiq Mobility Index, Unacast Social Distancing, UMMI, and
CSSDR can be freely accessed through browsing the dashboards in their official websites. GitHub
is the largest and most advanced development platform that provides automatic data staging and
publication regions. Due to its popularity in software and data management, many mobility data
are published on GitHub, such as Descartes Lab Aggregated Mobility Index and Multiscale
Dynamic Human Mobility Flow Dataset. The Harvard Dataverse is an online data repository in
which research data is shared, preserved, retrieved, explored, and analyzed. The published data
have Digital Object Identifier (DOI) and are open to all communities. The BMI data collected by
the China Data Lab are shared on Harvard Dataverse (Hu et al. 2020b). The BMI is originally to
explore inter-cities and inter-provinces population flows during the Spring Festival of China, so
it has been published years ago before the COVID-19 pandemic. The fourth way of publishing
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and sharing mobility datasets is through user applications. Some data providers require users to
submit an application indicating the purpose of data usage if users want to access the whole dataset.
For example, SafeGraph provides free access to various COVID-19 relevant datasets after complet-
ing a specific form and signing a non-commercial agreement. In the same way, CSSDR can be
accessed through a submitted application, but only users located within the U.S. can apply for
data access.

5. Mobility data applications

In this section, we summarized the three major applications of human mobility data in COVID-19
studies: (1) revealing spatiotemporal trends and patterns; (2) examining the association of human
mobility with COVID-19; and (3) integrating the simulation and predictions of COVID-19
transmission.

5.1. Spatiotemporal trends

Exploring and examining the changing trends and patterns of human mobility in both spatial and
temporal dimensions are the fundamental analyses in providing an overall picture of mobility
changes across space and time. Mobility data are usually aggregated in a certain geographic unit
and can be used to indicate the spatial differences of mobility, such as across states, counties, pro-
vinces, and cities. For that reason, a large amount of current COVID-19 studies used social activity
data and index-based mobility data to conduct descriptive or exploratory analyses that reveal mobi-
lity patterns. BMI has been mainly used to reveal human mobility patterns in China during the
period of intensive lockdown from the middle of January to April (Bao and Zhang 2020; Liu
et al. 2020a). Mobility pattern changes in the U.S. have been analyzed using different types of
index-based mobility data, including Cuebiq Mobility Index (Fraiberger et al. 2020; Pepe et al.
2020; Aleta et al. 2020), UMMI (Zhang et al. 2014; Lee et al. 2020; Ghader et al. 2020; Xiong
et al. 2020; Pan et al. 2020), Descartes Lab Mobility Index (Warren and Skillman 2020), and indices
from SafeGraph (Huang et al. 2020c; Lamb, Kandula, and Shaman 2020; Levin et al. 2020). Social
media-derived data have been used as well, such as geotagged tweets (Huang et al. 2020a; Li et al.
2020b). Beyond the U.S., social activity data available at a global scale have been used to reveal
mobility patterns in European countries (Voké and Pitter 2020), Australia (Wang, Liu, and Hu
2020), Japan (Fraser and Aldrich 2021), or in comparative studies across countries (Bryant and
Elofsson 2020).

The above mobility-based studies reveal some common findings contributing to the COVID-19
control and intervention as below. First, policy interventions including lockdown, travel restric-
tions, social distancing, and border control have effectively reduced the transmission of COVID-
19 in different geographic contexts (e.g. China, US, and European countries by Djurovi¢ 2020;
Jiang and Luo 2020; Kraemer et al. 2020; Dickson et al. 2020; Tobias 2020). Second, the relationship
between human mobility and the virus spread is temporal and spatial heterogeneity. Policy inter-
ventions, despite being globally effective in reducing both the spread of infection and its self-sus-
taining dynamics, have had heterogeneous impacts locally (O’Sullivan et al. 2020). Policy
measures need to be adjusted across the different phases of the pandemic. The reduction of infec-
tion caused by mobility control is observed to be relatively weaker in places where the outbreak
occurred later (Zhang et al. 2014). Third, mobility control is observed to have a time-lag effect
on the virus transmission and such effect varies across the geographic contexts and the timeline
of the pandemic. Studies across various countries reported that the efficacy of lockdown continues
to hold over two weeks or even up to 20 days after a lockdown was implemented (Alfano and Erco-
lano 2020). The timing, effectiveness, and stringency of policy implementation are crucial for the
success of COVID-19 control efforts in different countries. The early implementation of social
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and mobility restrictions is especially effective in lowering the peak value of new infections and
reducing the infection scale (Kaur et al. 2021).

5.2. Association analysis

In addition to exploring the spatial and temporal pattern of mobility changes, researchers have also
enriched their analyses by examining the relationship between human mobility and other variables
in specific dimensions. Some of these variables are the number of confirmed cases or deaths, repro-
ductive rate, transmission rate, and doubling time within the pandemic context. Such a relationship
has been mainly examined through correlation and regression analyses with the consideration of
the different time-lag effects of human mobility on COVID-19 transmission (Wang, Liu, and Hu
2020). Mobility data used in such analyses are subject to different geographic contexts and spatial
scales. For public transit data, air flight datasets have been utilized to estimate inter-country mobi-
lity, which has been one of the key drivers in disease transmission, especially at the early stages of
the COVID-19 pandemic (Bogoch et al. 2020). Metro data have been used to estimate mobility and
examine the relationship between human mobility and ridership. In the case study of New York
City (NYC), researchers used the transit network & schedule from General Transit Feed Specifica-
tion (GFTS) data, NYC Bridge Traffic Volumes data, and MTA Subway Turnstile Data (Gao et al.
2020b; Fathi-Kazerooni et al. 2020). Train data retrieved from China State Railway Group, National
Transit Database, and Trenitalia have been used to investigate the incidence of transport accessibil-
ity during the spread of COVID-19 in China (Hu et al. 2020a; Zhang et al. 2014), U.S., and Italy
(Carteni, Di Francesco, and Martino 2021), respectively. Furthermore, all types of social activity
data have been widely used to examine the relationship between human mobility and COVID-
19 transmission, possibly due to their large spatial coverage and public availability at different
spatial levels. For index-based mobility data, BMI has been extensively used in Chinese studies
to examine how the virus spread was affected by the mobility from or to Wuhan and Hubei Pro-
vince, where the first wave of COVID-19 appeared (Chen et al. 2020; Liu et al. 2020a; Xu et al.
2020; Shen 2020; Zhuang et al. 2020; Fang, Wang, and Yang 2020). In the U.S. studies, Cuebiq
Mobility Index and UMMI have been utilized to explore the relationship between mobility and
virus spread; however, other types of index-based mobility data were relatively less used (Zhang
et al. 2014; Lee et al. 2020; Ghader et al. 2020; Aleta et al. 2020). Finally, Twitter data have been
more commonly used in emotional analyses based on the text and keywords from the content of
tweets but relatively less used to examine the relationship between human mobility and COVID-
19 transmission (Porcher and Renault 2020; Xu et al. 2020; Li et al. 2020b; Wang, Liu, and Hu
2020; Hu et al. 2020c). Although, a few efforts have been made to link Twitter-derived human mobi-
lity with COVID-19 cases. For instance, Zeng et al. (2021) examined the spatiotemporal relation-
ship by associating Twitter-derived mobility and COVID-19 cases in the State of South Carolina.
Li et al. (2021b) explored the correlation between COVID-19 cases and the place connectivity
index summarized from Twitter in Westchester County, New York, which was one of the early
COVID-19 hotspots in the U.S.

5.3. Prediction and simulation

Another dominant application of mobility data is modeling COVID-19 transmission by simulating
and predicting the virus spread over a certain period of time. Mobility data have been integrated
with epidemiological models or spatiotemporal models (e.g. a susceptible-infected-recovered
(SIR) model or SIR-derived models), and these data have been controlled as parameters to simulate
the COVID-19 cases based on different policy scenarios and to predict future trends of virus spread
based on policy implications. For example, Zhou et al. (2020) built up a spatiotemporal epidemio-
logical prediction model integrating the cellular automata model in the spatial dimension with the
SIR model in the temporal dimension to inform county-level COVID-19 risk in the US. They
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utilized mobility measures and air distances between counties as the model parameters to indicate
the spatial heterogeneity of COVID-19 transmission. Such an integration of accurate mobility
measures with epidemiological modeling has been approved to improve and optimize model per-
formance (see the additional citation added below). Public transit data (e.g. MTA ridership report;
NYC subway turnstile) have been used to forecast the influence of COVID-19 on NYC’s economy
(Fathi-Kazerooni et al. 2020; Gharehgozli et al. 2020). Some studies utilized historical air flight pas-
senger data and flight tracking data retrieved from VariFlight, SABRE, and OpenSky Network to
predict COVID-19 cases and to estimate airplane passengers’ number loss via different simulation
scenarios (Zhuang et al. 2020; Iacus et al. 2020). Other studies utilized airplane passenger itinerary
data from JATA and Cirium to simulate the potential risk and geographic range of COVID-19
spread within and beyond China and to predict the number of international COVID-19 cases arriv-
ing in China. For index-based mobility data, BMI has been largely applied in disease modeling in
Chinese studies (e.g. Liu et al. 2020a). For studies in the U.S., Cuebiq Mobility Index has been used
to predict the COVID-19 trends in Boston (Aleta et al. 2020), and the UMMI has been applied to
model the impact of stay-at-home orders on human mobility (Xiong et al. 2020). Other types of
index-based data and social media-derived mobility data have been relatively less prevalent in mod-
eling work, possibly due to the difficulties in data retrieval and processing (Li et al. 2020b).

6. Challenges and future directions
6.1. How to balance data privacy and data sharing?

Mobility data consists of location stamps about individuals. While it can help reveal the underlying
patterns of human movement behaviors, it also poses a challenge to privacy protection as human
movements are highly unique and predictable (Song et al. 2010; De Montjoye et al. 2013). The risk
is even higher when different mobility datasets are merged, even with every dataset being anonymized
(Kondor et al. 2020). Therefore, it is crucial to establish standards in the deposit, storage, processing,
and distribution of mobility data. Researchers need to ensure that any identifiers from the datasets are
removed before depositing the data. The storage of mobility data must be secure and must disallow
any unauthenticated and unauthorized access. Data security in transit is also critical as this ensures
that data is protected while being transferred in-between networks, such as during the upload, down-
load, and data transmission steps of processing and backup. Due to the complexity of technologies
involved that ensure data security and long-term preservation, it is often not practical for researchers
to host the data on their own. After the data are processed, researchers may choose a trusted data
repository in which their datasets could be deposited (Corrado 2019).

To balance the needs of data sharing and privacy protection, researchers may process the data in
a way that is suitable for multiple levels of access. Sensitive datasets should be held in a secure
environment that allows other researchers to access the data through a remote desktop in a private
network and with pre-installed analysis software. The output from the analysis needs to be vetted
before releasing to researchers. After aggregation, the datasets may become less sensitive and more
prone to distribution through the internet. Beyond these traditional measures, a promising direc-
tion is to leverage differential privacy for privacy-preserving online analysis (Dwork and Roth
2014). Although it is not yet common, providing differential privacy as a service is expected
from more vendors soon. This will enable researchers to collaborate more efficiently without sacrifi-
cing data privacy.

6.2. How multi-source mobility data are different in nature?

Human mobility is characterized by its multi-faceted nature, which has been evidenced by many
studies (Gonzalez, Hidalgo, and Barabasi 2008; Cui, Xie, and Liu 2018). For the COVID-19 pan-
demic, Huang et al. (2020b) cross-compared four mobility sources: Apple mobility trend reports,
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Google community mobility reports, mobility data from Descartes Lab, and Twitter-derived mobi-
lity data. Even though the similarity of reduced mobility trend has been observed after the declara-
tion of COVID-19 as a pandemic, multi-source mobility datasets present unique and even
contrasting characteristics. The findings of Huang’s work coincide with the argument by many
scholars that heterogeneous mobility data sources consist of different characteristics that reflect
human spatial interactions and dynamics from different yet valuable perspectives (Huang et al.
2020b; Lau et al. 2019).

Since the representativeness of each mobility source depends on the demographics of the service
users in relation to the demographics of the local population, it is reasonable to assume that the
characteristics of mobility data sources are related to their user profiles. Thus, the similarity/dis-
parity of multi-source mobility data can be explained by the spectrum of the population being cap-
tured. For example, mobility data retrieved from public transit systems are mode-specific and lack
the holistic views of overall human spatial interactions. In addition, transit-based mobility records
usually fail to assist human mobility monitoring when strong policy interventions are issued (e.g.
the cancelation of public transit). Mobility data collected via a passive manner (mobile phones and
wireless networks) tend to have high representativeness because of their high penetration ratios.
Despite the broad spectrum of people that can be captured in these sources, the privacy and confi-
dentiality concerns prevent the data from being released without a certain level of aggregation and
anonymization (usually, proper authorization is also required). Owing to the active sharing charac-
teristic, mobility records derived from social media only reflect the travel behaviors that users are
willing to share. This can potentially add bias towards occasions that are regarded as ‘post-worthy’
to users, such as visiting tourist attractions and attending memorable gatherings.

Despite the notable heterogeneity presented by the aforementioned sources, studies have shown
that the fusion of multi-source mobility datasets can mitigate, to a large extent, the intrinsic bias
within each mobility source and can provide a holistic view of mobility dynamics by capturing a
broad spectrum of the population (Montero et al. 2019; Huang, Wang, and Li 2018; Lau et al.
2019). A few data fusion efforts have been made as scholars have started to realize the fusion
value of multi-source mobility datasets. For example, Zhang et al. (2014) integrated transit records
and cellphone-derived positions to mitigate biased sampling via a systematic framework. Montero
et al. (2019) proved that the integration of mobility sources leads to robust urban transportation
models. Similarly, Huang, Wang, and Li (2018) combined mobility records from urban transpor-
tation and mobile phone signals to achieve comprehensiveness via a high data penetration ratio.
Despite these efforts, mobility data fusion is still rare in public health studies. The COVID-19 pan-
demic specifically demands rapid and comprehensive monitoring of multi-faceted mobility
dynamics.

6.3. How to choose the appropriate mobility data in mobility applications?

Choosing appropriate mobility data is the fundamental and primary step in addressing human
mobility-related questions during a pandemic such as COVID-19. The categorization of mobility
data in our review can be used for human mobility studies at individual and aggregated levels as
well as across various spatial and temporal scales. At the individual level, mobile phone positioning
data or social media big data can be used to track individuals’ trajectories, daily activities, exercise
routines, and travel behaviors. Thus, this type of data is suitable for studies on contact tracing that
aim to prevent the virus spread or to seek the origin and primary source of virus transmission in the
context of COVID-19 and other disease outbreaks (Park et al. 2020; Salathé et al. 2020). Mobility
studies at the aggregated level have more options in data sources, and an appropriate selection
of aggregated data types is subject to the spatiotemporal scale. For example, global-scale or
cross-country studies can utilize Facebook, geotagged tweets, Apple, and Google mobility data;
however, these may not be suitable for studies in China where services provided by these companies
are not available. While most other data sources cover various countries, the BMI only covers
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Mainland China. If studies aim to include the full timeline of the COVID-19 pandemic, Cuebiq
Mobility Index, Descartes Lab Aggregated Mobility Index, and Unacast Social Distancing Index
may be good options to include the entire year of 2020, whereas Google mobility data, Apple mobi-
lity data, and BMI would not be appropriate due to their limited coverage of time periods.

Public transit data are relatively useful when lockdown policies are not fully implemented.
Although they only reflect the scheduled transit and not the actual usage of transit, they can be
used as supplements to other types of mobility data. Such data can indicate connection and inter-
action across places under the restricted travel ban, and this information cannot be revealed by
social activity mobility data. For example, the connection of air flights from China to other
countries can serve as an essential indicator to show how the virus may have spread outside of
China (Lau et al. 2020). Another example is using high-speed train data to simulate how the
virus was transmitted from Wuhan to other regions in China during the early stages of the
COVID-19 pandemic (Zhang et al. 2014).

Finally, social activity data are appropriate for studies on the different types of human mobility to
various places and by various trip modes. Each of these datasets consists of different variables and
indices to distinguish people’s movement activities as a response to social restriction policies. For
example, the Google mobility trends report provides data on mobility to parks, workplaces, and
pharmacies, while the Apple mobility trends report reflects the mobility changes of walking, driv-
ing, biking, and public transit usage, all of which cannot be revealed by other types of mobility data.

6.4. How to integrate other data sources to enhance mobility applications?

With the rapid development of information techniques, a large amount of data can be created in an
instant, and different data sources are widely applied from a variety of perspectives. How research-
ers can integrate different data sources to enhance human mobility applications in the COVID-19
pandemic and any future pandemics is a critical topic. Human mobility is strongly associated with
regional socioeconomic indicators, such as income and poverty rate, and the relationship between
mobility and socioeconomic status could vary among cities. Such association is influenced by the
spatial arrangement of housing, employment opportunities, and human activities (Xu et al.
2018). Since the start of the COVID-19 pandemic, human movement behaviors have been comple-
tely disrupted, and these movement behaviors show very different patterns than ones before the
pandemic. To keep essential services online, governments still require a considerable number of
essential workers to physically travel to work, as opposed to most other types of employees who
can work from home. Therefore, it is of vital importance to build a new model that could integrate
human mobility and socioeconomic data across regions to re-evaluate the association between
human movement behaviors and socioeconomic characteristics of the underlying population
during the COVID-19 pandemic and any other disease outbreaks.

Apart from socioeconomic data, some big data sources have been widely applied in COVID-19
studies as well. For example, remote sensing data have helped detect air quality, traffic, and human
activity changes with a large spatial coverage during different phases of the pandemic (Liu et al.
2020b; Fan et al. 2020; Chen et al. 2020). With remote sensing data, many classification systems
are developed to detect different land use and land cover. Land use data shows how people use
the landscape, and it can be grouped into five main classes: residential, agricultural, recreation,
transportation, and commercial. The integration of high-resolution human mobility data derived
from geotagged social media will help understand human movement patterns across different
land use types. Compared with other mobility reports, this provides more types of places in
more extensive spatial coverage within the U.S. as well as in some European and Asian countries.
Such data integration may assist in the understanding of human activity trends within areas that
lack comprehensive human movement tracking information.

Due to the varying levels of accuracy and different spatial and temporal resolution of mobility
datasets and other spatial data, integrating multiple data sources is a complex issue (Torre-Bastida
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et al. 2018). One of the major challenges is to identify the items of incompliancy in a standard way.
Researchers have proposed many methods and developed tools to integrate various spatial data. For
example, Mohammadi, Rajabifard, and Williamson (2010) proposed a tool that facilitates data har-
monization through the assessment of multi-source spatial datasets against many measures. Wie-
mann and Bernard applied Open Geospatial Consortium (OGC) and Semantic Web standards
and used Linked data to build service-oriented spatial data fusion strategies. Multi-source data inte-
gration not only requires technical tools and considerations, such as the match of datasets geome-
trically, topologically, and with correspondence of attribute (Usery et al. 2005), but it also requires
non-technical issues (e.g. institutional, policy, legal, and social mechanism) to facilitate the inte-
gration (Mohammadi, Rajabifard, and Williamson 2010; Torre-Bastida et al. 2018). Nevertheless,
the effective integration of multi-source datasets has not been fully achieved. It is crucial to building
a standardized framework to help researchers avoid the time-consuming and costly process of data
integration and provide timely and high-quality data support for the COVID-19 studies.

7. Conclusion

The growing volume of human mobility data being collected and made available opens up new
opportunities and challenges for analyzing, modeling, and predicting the spread of infectious dis-
eases. By investigating recent COVID-19 studies from a data-oriented view, our review contributes
a comprehensive summary of human mobility open data condensed into data sources, index
measures, characteristics, applications, challenges, and future research directions. We propose
four avenues for future studies along which the current discussions can be extended: data privacy
and sharing, data similarity and replacement, the appropriation of data usage, and the integration of
mobility data with other data sources to enhance their applications in the pandemic.

Despite that these open-sourced human mobility datasets (usually ‘big’ in nature) have estab-
lished a venue where rapid monitoring/supervision of human movement with high spatiotemporal
scales can be achieved, essential contextual information on these monitored travels is often missing,
as such information is unlikely to be released due to privacy concerns. Surveys are typical sources of
human mobility data. Although they are not, in most cases, open-source data (thus, they are not in
the scope of this study), they provide essential contextual information (e.g. purposes of travels,
detailed location of destinations, demographic profiles, socioeconomic status, etc.) that contributes
to a comprehensive story behind these movements. Numerous efforts have been made to take
advantage of survey data to assist a better usage of mobility records collected from other means
(Chen et al. 2021; Chen et al. 2016, Huff and McCallum). In the future, we will conduct a broader
human mobility data review, combining both conventional small data and new big data. We encou-
rage researchers and stakeholders to apply comprehensive human mobility data to further monitor,
prevent, and control current and future public health emergencies.
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