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ABSTRACT  
The urban traffic signal-controlled intersections are of great significance for 
solving the problem of urban road congestion. Previous research on 
congestion prediction mainly aggregated data at the level of road 
segments or traffic flow at a coarse regulated time interval. Fine-grained 
prediction of congestion events at the lane-level and cycle-level enables 
detailed a understanding of spatio-temporal dependencies, leading to 
congestion reduction, improved efficiency. This paper presents a Spatio- 
Temporal Neural Point Process (STNPP) model that combines Graph Neural 
Networks and Neural Temporal Point Process to predict congestion events 
at urban intersections. The proposed model allows for complete prediction 
of congestion events, including their occurrence, development, dissipation. 
In the process of spatial correlation modeling, graph neural networks are 
used to model the spatial relationships between both region and 
intersections. The current intersection and its upstream/downstream areas 
are modeled separately. To model the temporal correlations at individual 
intersections, we focus on a specific lane and capture the evolution of 
congestion events using the Neural Point Process Gated Recurrent Unit 
(NPPGRU), which captures the temporal granularity changes of signal- 
controlled cycles in congestion events. Using actual traffic speed and 
signal-controlled data from Hangzhou city, we validate that the proposed 
method achieves stable predictive performance.
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1. Introduction

According to the ‘World Migration Report 2022’ by the United Nations Migration Agency, approxi-
mately 55% of the world’s population currently lives in urban areas. It is estimated that by 2050, the 
global urbanization rate will reach 70%, with the global population expected to increase from 7.7 billion 
to 9.7 billion. The rapid urbanization and increased vehicle ownership have created challenges in urban 
mobility and traffic management. Limited road resources and growing traffic demand have resulted in 
widespread urban traffic congestion, hindering the sustainable development of cities.
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Urban signal-controlled intersections, as fundamental units constituting urban road networks, 
have always been focal points for congestion occurrences, making congestion prediction a hot 
topic in the field of intelligent transportation systems (ITS) (Jin, Liang, et al., 2023; Jin, Liu, et al., 
2023; Li and Shahabi 2018; Wang 2023; Yu, Yin, and Zhu 2017). In recent years, research on the pre-
diction of future traffic states has proliferated due to the powerful capabilities of modern machine 
learning methods in capturing complex spatio-temporal traffic dynamics and dependencies (Duan 
et al. 2023; Gong et al. 2024). Most of these studies aim to predict specific traffic parameters, such 
as traffic flow, speed, or travel time. Since variations in traffic parameters tend to exhibit regular spatial 
and temporal patterns, the evolution of congestion on signalized urban road networks is highly vola-
tile, making congestion prediction a challenging task. Unlike the short-term regression-based con-
tinuous numerical prediction of traditional traffic parameters, predicting the development and 
changes of congestion, as a complete non-rigid spatio-temporal event (Kharaghani, Etemadfard, 
and Golmohammadi 2023), while predicting continuous traffic parameters is more regular and easily 
discoverable for data-driven models in terms of spatio-temporal dependencies in continuous time 
domains, modeling and predicting discrete-distributed congestion events are more relevant for the 
majority of the people in practical applications, and the accuracy of predicting traffic parameters 
under free-flow or uncongested conditions is less critical. An important characteristic of modeling 
congestion events is the ability to capture triggering effects (Zhang et al. 2024; Zhu et al. 2021). 
The content of congestion event prediction can be more comprehensive than predicting traffic par-
ameters, including the occurrence and ending times of congestion events, congestion indices (e.g. 
congestion levels), propagation effects, subsequent congestion propagation areas, and starting points, 
among others.

Figure 1 provides a comparison between the temporal dual granularity distributions of conges-
tion events and traditional traffic flow. The red bars represent the irregular temporal granularity of 
congestion events, with their heights indicating the congestion index. The blue bars represent the 
continuous regular temporal granularity of traffic flow, with numerical values indicating traffic flow 
parameters. Congestion events can be seen as ‘disturbances’ within continuous traffic flow, leading 
to the existence of two different temporal granularities within continuous and regular traffic flow.

This study investigates the problem of short-term traffic congestion event prediction for signa-
lized road networks. Although some attempts have been made, significant challenges still remain: 

(1) The traffic environment of signalized road networks is highly stochastic, where traffic conges-
tion can be caused by a variety of complex factors such as spatio-temporal variation of traffic 
demand, road capacity, signal control effects, weather changes, accidents, and road mainten-
ance. Explicitly accounting for these factors and their interactions can be challenging, making 
it difficult to build a comprehensive prediction model.

(2) Traffic congestion event is a complex spatio-temporal process characterized by constantly 
changing spatial coverage and temporal extent. Even at the same location, congestion events 

Figure 1. Continuous traffic flow and congestion events.
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occurring at different times may exhibit distinct evolutionary patterns and durations, often 
influenced by spillover effects. Predicting the precise spatio-temporal extent of congestion 
events over their duration remains a challenging task.

(3) Fine-grained prediction of congestion events at the lane-level and signal light cycle-level in 
urban traffic signal-controlled intersections presents a profoundly challenging task. Congestion 
events in urban traffic are dynamic and non-linear. They can be influenced by factors such as 
traffic volume, road conditions, weather, and driver behavior. Modeling and predicting conges-
tion accurately at the lane-level and signal light cycle-level requires accounting for these com-
plex interactions and capturing the temporal dynamics.

In light of the above issues, we propose a STNPP model for predicting fine-grained congestion 
events at the lane-level and signal light cycle-level in urban traffic signal-controlled intersections. 
Traffic congestion is considered as a non-rigorous spatio-temporal extreme event and an event- 
oriented modeling method is developed. The proposed approach extends the point process 
model with the ability to emulate the evolution of congestion using a congestion embedding net-
work that learns expressive spatio-temporal embeddings of historical congestion events with 
specially designed spatial and temporal graph convolutions, respectively. These embeddings encode 
the spatial and temporal evolutionary patterns of congestion, which are then integrated with the 
conditional intensity function of marked spatio-temporal processes to predict congestion events 
severities. The highlights of this work can be summarized as follows： 

(1) A STNPP model is developed for fine-grained congestion event prediction, being capable of 
predicting each congestion event severity at the lane-level and signal light cycle-level within 
signal-controlled intersections with end-to-end deep learning framework;

(2) A dual temporal granularity pattern-aware NPPGRU is developed to generate temporal 
embeddings of historical congestion events based on traffic congestion graphs at a individual 
signal-controlled intersection;

(3) Extensive experiments have been conducted on real-world datasets from intelligent traffic sig-
nal-controlled intersections in Hangzhou, China. The experiments predict the complete cycle 
of congestion events, including their occurrence, development, and dissipation at a fine- 
grained spatio-temporal scale.

2. Related work

Deep Learning Congestion Prediction Model, Temporal Point Process Model, and Integration of 
Physical Models with Deep Learning Models.

2.1. Deep learning congestion prediction model

In the past few years, with the development of big data technology, many scholars have applied the-
ories and methods related to big data in congestion prediction (Chahal et al. 2023; Sharma 2023; 
Tseng et al. 2018) and continuously improved and innovated to improve prediction accuracy. 
Graph Convolutional Neural Networks (GCNs) have been widely used to model urban traffic con-
gestion prediction problems (Jin et al. 2022; Xiao et al. 2017). Currently, there are two main streams 
of GCNs, mainly based on spatial domain methods and spectral domain methods. Spatial domain 
methods attempt to perform convolutional filtering on graph nodes and their neighbors. Defferrard 
(2016) introduced a spectral domain method based on the graph Laplacian operator, considering 
spatial location on graph vertices and significantly reducing computational complexity. Further-
more, in modeling temporal correlations for congestion, Recurrent Neural Networks (RNNs) 
(Abdullah et al. 2023) and their variants (Huang, Wang, and Chao 2020) have been widely used 
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to model time series patterns in traffic congestion data. Moreover, many neural network models 
have been proposed for predicting congestion based on graph convolutional neural networks 
and recurrent neural network architectures, addressing traffic status parameters such as traffic 
flow, speed, density, estimated time of arrival (ETA), and more (Chen, Yu, and Liu 2018; Zafar 
and Ul Haq 2020). However, most models have not directly modeled congestion events themselves. 
Given that the spatio-temporal patterns of congestion events are different from traffic flow, the lack 
of congestion propagation patterns to guide model learning and training limits the model’s gener-
alization ability.

2.2. Temporal point process model

The spatio-temporal dynamics of urban congestion exhibit strong randomness and are influenced 
by both other spatial locations and their own historical records, making it suitable for event-based 
descriptions. In previous research, Temporal Point Process (TPP) models (Daley and Vere-Jones 
2008) have been widely used to predict the occurrence times of discrete events. Typically, traditional 
TPP models are based on a set of observed historical time-series events, modeling historical tem-
poral information of event point processes by conditional intensity functions to obtain probability 
distributions on variable-length sequences within a time interval [0, T]. Du further introduced a 
general mathematical framework for Marked Temporal Point Processes (MTPPs) (Du et al. 
2016), which can predict simultaneously event times and value information simultaneously, allow-
ing the modeling of time-series event data with covariates. For example, in seismology, MTPPs were 
initially widely used to simulate earthquakes and aftershocks (Du et al., 2021). MTPPs can be rep-
resented as an event sequence E = {(t1, m1), (t2, m2), · · · , (tn, mn)}, where N represents the ran-
dom variable for event occurrence counts, and 0 , t1 , t2 , · · · , tn represents the event 
occurrence times, with mi [M representing event values. Typically, M uses categorical values, 
such as M= {1, 2, · · ·K}, but other continuous value spaces (Chauhan et al. 2021)M [ RD 

can also be selected. In this context, the congestion index is used as the event value and defined 
in the continuous value space domain M. However, parameter-based temporal point processes 
often pre-specify the occurrence of congestion events to follow a certain prior distribution. Relative 
to the underlying dynamics, the stochastic variability of real congestion can lead to underfitting.

2.3. Integrating physical models with deep learning models

Recently, some research efforts have begun to integrate statistical learning models or physical mech-
anism models with deep learning models, using statistical priors to guide deep learning models and 
improve their generalization to congestion (De Bézenac, Pajot, and Gallinari 2019; Saha, Dash, and 
Mukhopadhyay 2021; Willard et al. 2020). Given the strong randomness in the occurrence and spa-
tio-temporal propagation of urban congestion, congestion can be seen as a stochastic event. Recent 
work has used temporal point process models to model congestion events, leading to the develop-
ment of various efficient architectures and applications of Neural Temporal Point Processes 
(NTPPs) (Du et al. 2021; Jin, Liang et al. 2023; Jin, Liu, et al. 2023; Wu et al. 2020; Zhu et al. 
2021). In comparison, NTPPs models can learn more complex dependencies and are often compu-
tationally more efficient than similar classical models. However, it is a challenge to effectively inte-
grate physical models with deep learning models. Suitable structures and algorithms need to be 
designed to ensure that the two models work together effectively and to avoid information loss 
during the integration process.

In conclusion, inspired by the integration of deep learning with traditional temporal point pro-
cess models (Du et al. 2016; Omi and Aihara 2019; Zhang et al. 2024), this paper proposes a neural 
temporal point process model for predicting congestion events at the lane level and signal cycle 
scale in urban intersections.
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3. Spatio-temporal point process neural network for urban road intersection 
congestion prediction

3.1. Formal definition of urban road intersection congestion prediction

Definition 1. Regional Road Network Graph Structure. The regional road network graph struc-
ture, denoted as Gg = (Vg , Eg , Ag), represents the global road network configuration. In this rep-
resentation, Vg signifies the set of road intersections intersections during the t-th signal cycle, and 
xg = (Xg

1, · · · , Xg
P)T [ RN×P×Fg encapsulates all historical features for N intersections over the past 

P signal cycles.

Definition 2. Intersection Graph Structure. The intersection graph structure, denoted as 
Gl = (Vl, El, Al), represents the specific intersection’s graph configuration. In this representation, 
Vl denotes all entry and exit lanes of the particular intersection (|Vl| = M),El represents the con-
nections between lanes, and Al [ RM×M signifies the adjacency matrix of the graph Gl. For the j-th 
lane of the i-th intersection during the t-th signal cycle, xl

i,j,t [ RFl represents the traffic state feature 
vector, where Fl represents the number of features characterizing the intersection-level traffic state. 
Similarly, Xl

t = (xl
i,1,t, . . . , xl

i,M,t)
T [ RM×Fl includes all features for all lanes during the t-th signal 

cycle, and xl = (Xl
1, · · · , Xl

P)T [ RM×P×Fl covers all historical features for M lanes over the past P 
signal cycles.

Definition 3. Urban Intersection-Level Congestion Events. Urban intersection-level congestion 
events refer to a collection of specific intersection’s congestion occurrence times and associated 
marked values. Based on the city’s specified speed limit regulations for particular road intersections, 
any traffic state at a given moment with a speed lower than the standard speed is defined as a con-
gestion event. The essential information for each event includes its occurrence timestamp (time) 
and speed (value). For instance, the congestion event set for the j-th lane of the i-th intersection 
is {tc, etc

i,j}
mj
c=1. When there is no congestion event at a particular moment, it is represented as 

{0, 0}. Here, tc [ (0, P] denotes the timestamp of the c-th congestion event occurrence. Therefore, 
the historical time features input consists of a continuous time sequence formed by P event time-
stamps tc, where tc/0.

Distinct from historical input timestamps, the future occurrence times of congestion predicted in 
this study are represented discretely as {0, 1}, where 0 and 1 indicates the absence and presence of 
congestion at the current moment. etc

i,j represents the value information of this congestion event (e.g. 
congestion level, speed, and other traffic state features; in this paper, speed is referred to). When 
there is no congestion at a particular moment, the value is filled with 
0. mj [ [1, 2, · · · , K], K [ Z+, represents the cumulative count of congestion events occurring 
within the historical time interval (0, P]. Consequently, within the historical interval (0, P], for 
all congestion event sets across the M lanes of a fixed i-th intersection: E0→P = <M

j=1{tc, etc
i,j}

mj
c=1, 

with tc [ (0, P]. To formulate the traffic forecasting problem, the main notations are summarized 
in Table 1.

This paper considers both the topological structures of the regional road network graph and 
intersection graph in congestion prediction. Given that traffic congestion patterns exhibit spatial 
heterogeneity across different intersections, the urban road network congestion prediction problem 
can be decomposed into subproblems for individual intersections. Since this study aims to simul-
taneously predict the occurrence times and values of congestion events, based on the symbols men-
tioned above, the congestion event prediction for the i-th intersection is defined as a multi-task 
learning problem, as shown in Equation (1):

EP→P+TP = f (Gg , Gl, xg , xl, E0→P, TP) (1) 

TP signifies the number of signal light cycles that are to be predicted. This parameter is used to 
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determine the prediction horizon for forecasting traffic conditions and congestion events at a traffic 
signal intersection or network. TP represents the future time span over which predictions regarding 
signal timing and traffic behavior are sought.

3.2. Urban intersection fine-Grained congestion prediction model

In this section, we introduce the STNPP model, which aims to provide fine-grained predictions of 
the occurrence times and values of traffic congestion events (e.g. speed or congestion index) at the 
signal cycle and lane levels of traffic signal-controlled intersections. Figure 2 illustrates the basic 
structure of the model, where Fg and Fl represent the number of traffic state features at the regional 
and intersection levels, respectively. T denotes the number of signal cycles, while N and M represent 
the counts of regional intersections and intersection lanes, respectively. The model takes into con-
sideration both external and internal factors. External factors refer to the spatial influences of the 
regional road network and the temporal variations caused by signal cycle changes. Internal factors 
encompass the characteristics of congestion events between intersection lanes and across signal 
cycles, as well as the dynamics of traffic flow.

The model consists of two main components: the Spatial Correlation Module and the Dual- 
Granularity Temporal Correlation Module. Firstly, it uses the original spatial–temporal traffic 
data input, derived from the regional road network and local intersection graph structure, to 
learn the complex spatial dynamics among intersections through spatial correlation modeling. 
Then, the output of the spatial module is fed into the sequence-to-sequence module of the dual- 
granularity temporal correlation.

Inspired by the integration of deep learning and traditional temporal point process models, the 
model is extendedto include a NPPGRU. The NPPGRU is designed to fuse features from both the 
‘continuous’ traffic flow sequence with regular temporalgranularity and the ‘discrete’ irregularly 
temporalcongestion event intervals. It models the discrete congestion event time correlations 
using traditional intensity functions while stacking NPPGRU units to model continuous traffic 
flow parameter sequences. The integrated NPPGRU not only harnesses the nonlinear modeling 
capabilities of the original GRU units but also improves the prediction capabilities of traditional 
temporal point process models for congestion events. This allowsthe prediction model to be 
more sensitive to ‘macro’ trends in event time granularity and ‘micro’ variations in traffic flow 
time granularity. The final encoding output from the last layer is used as input to the decoder 

Table 1. Math symbols and descriptions.

Symbol Domain Description

Gg/Gl RN×N/RM×M The global/local road network/ intersection graph structure
Vg/Vl N/M The number of intersections /lanes
Eg/El N/M The collection of road segments
Ag/Al RN×N/RM×M The adjacency matrix of the graph
xg

i,t/x l
i,j,t RFg/RFl The traffic state feature vector

Xg
t /X l

t RN×Fg/RM×Fl Features for all intersections/lanes
xg/xl RN×P×Fg/RM×P×Fl Historical features for N intersections/ M lanes over the past P signal cycles
tc (0, P] The timestamp of the c-th congestion event occurrence
etc

i,j R The marked value information of this congestion event
mj [1, 2, · · · , K] The cumulative count of congestion events occurring within the historical time interval 

(0, P]
Xg

l /Xg
t RN×Fg . Input features

Lg RN×N Diagonal matrix of the regional road network graph
A/As RM×M/RM×M×P The strength of correlations between lanes within each time slice of a signal cycle
Wl

t,f/Wl
f/bl RP×(Fl+2)/RFl+2/RM×M Network learning parameters

Mtc/Dtc /Ntc R A masking / time interval of adjacent consecutive events/ cumulative vector
[⊙ ] / Element-wise multiplication
[∗] / Matrix multiplication
["|"] / The concatenation symbol
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structure, allowing the model to predict the occurrence times and values of traffic congestion events 
for multiple future signal cycles.

3.3. Modeling spatial correlations of urban intersection-related factors

As shown in Figure 2, during the spatial correlation modeling phase, intersection congestion pro-
blems are influenced by both internal and external factors. Internal factors include the combined 
effects of congestion event features represented by the set E0→P and traffic flow characteristics 
denoted as xg . External factors primarily encompass the dynamic variations in signal light strategies 
and the impact of congestion patterns within the regional road network on local intersections. 

(1) Modeling global spatial correlations of regional lever factors

In the context of regional spatial dependencies, the congestion patterns at local intersections are 
influenced by the overall traffic patterns at the regional level. This results in intricate spatial and 
dynamic correlations in traffic congestion. Therefore, a regional road network graph structure, 
denoted as Gg = (Vg , Eg , Ag), is established with intersections as nodes, focusing on the target 
intersection as the central node. We aggregate the congestion patterns from multiple adjacent 
spatial intersections upstream and downstream of a target intersection, in order to consider the 
impact of regional congestion on that particular intersection.

Taking advantage of graph convolutional networks (Defferrard, Bresson, and Vandergheynst 
2016), for each signal cycle, the intersection serves as the basic unit of the regional road network 
graph structure. Graph convolutional networks are employed to model the spatial dependencies 
betweenN intersections in the regional road network, using the input features represented by 
Xg

l = Xg
t [ RN×Fg . The objective is to capture the global spatial correlations among the regional 

intersections,, taking into account the influence of external factors.

Xg
l+1 = ReLU(Ugg(Lg)(Ug)TXg

l ) (2) 

Figure 2. The framework for urban signal-controlled intersections congestion event prediction.
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In equation (2), Xg
l+1, Xg

l [ RN×Fg , represent the input data blocks of the l-th and (l+ 1)-th layers of 
the regional road network graph convolution. Ug is an orthogonal matrix, while g( · ) denotes a 
polynomial kernel function applied to the diagonal matrix Lg [ RN×N . For the regional road net-
work graph Gg , its Laplacian matrix L can be decomposed as Ugg(Lg)(Ug)T .

By applying the convolution equation (2), spatial structural information is obtained among the 
embedded regional intersections. This information is then used to calculate the historical data over 
P signal cycles for the entire regional road network, resulting in Xg [ RP×N×Fg . Then, through an 
index query, the index of the target congestion intersectionnis selected from theNintersections, and 
its corresponding features are represented as Xg(n) [ RP×Fg , further yielding the regional road net-
work impact features over P signal cycles for all lanes of the target congestion intersection, denoted 
as Zg [ RP×M×Fg . These features serve as the spatio-temporal input for the local intersection, aiding 
in modeling the internal factors influencing congestion. 

(2) Modeling the local impact of external signal-control strategies factors at local intersection

To account for external factors affecting congestion, we integrated the environmental context of 
signal-controlled intersections with the modeling of variations in lane-level external signal- 
controlled strategies in the spatial domain. Research has shown that modeling external factors 
as an adaptive matrix can significantly capture hidden dynamic spatial dependencies in specific 
traffic scenarios (Diao et al. 2019; Hu et al. 2019). Therefore, for a given intersection in a traffic 
network comprising M lanes, by considering the dynamic changes in signal-controlled strat-
egies, we constructed an external signal-controlled perceptual transition matrix, denoted as 
A [ RM×M, representing the strength of correlations between lanes within each time slice of 
a signal cycle. Furthermore, the obtained traffic history over a period of P time intervals is accu-
mulated to form As [ RM×M×P. This matrix quantifies the lane-to-lane dependencies in differ-
ent time slices based on the different sizes of signal cycles between upstream and downstream 
lanes.

However, due to the inherent sparsity of congestion events themselves, relying solely on external 
event features to model spatial dependencies cannot fully reflect the true dynamics of congestion, 
and is insufficient in capturing genuine inter-lane dependencies. Therefore, it is necessary to con-
sider modeling the internal factors that play a critical role in traffic congestion. 

(3) Modeling local lane-level spatial correlations at local intersections

When dealing with local intersections, establishing an explicit model to represent the influence of 
internal factors on lane-level spatial modeling is a complex task. Therefore, we employed attention 
mechanism to jointly consider the congestion-related internal event features set, denoted as E0→P, 
and the traffic flow feature xi. This enables the calculation of lane assignment weights that reflect 
the combined impact of internal factors on the current congested lanes. Within the intersection, an 
adaptive spatial attention mechanism (Fang et al. 2021) is used to dynamically learn the internal 
spatial associations of congestion events.

Taking a specific intersection in a regional road network as an example, suppose we have 
observed traffic congestion data for P historical signal cycles. The traffic flow xl for M lanes at 
the intersection and the events E0→P are provided as inputs to neural network layers. Within 
each signal cycle, we compute the weighted matrix for the inputs:

Al = s[((xl|E0→P)Wl
t)Wl

t,f (Wl
f (xl|E0→P))T

+ bl] (3) 

Where s represents the activation function, ‘|’ denotes concatenation, Wl
t [ RP, Wl

t,f [ RP×(Fl+2), 
Wl

f [ RFl+2, and bl [ RM×M are the network learning parameters. The input features for conges-
tion events consist of event time and a label value.

8 J. WANG ET AL.



For the i-th congested lane, its spatial correlation ai,j with adjacent and upstream/downstream 
lanes can be calculated based on Al as described in equation (4):

ai,j =
exp((Al)i,j)

􏽐M
k=1 exp((Al)i,k)

(4) 

Where j is the index of the lane associated with the i-th lane, and ai,j represents the spatial corre-
lation strength between j-lane and i-lane within the intersection.

At local signal-controlled intersections, there are geometric topological associations between 
lanes, and this spatial and physical correlation is crucial for the transmission of congestion infor-
mation across fine-grained lanes. Similar to the structure of regional road networks, a graph con-
volutional network (GCN) is used to model the structure of local intersections. Traditional graph 
convolutional networks are combined with the aforementioned attention mechanism and signal 
control perception transition matrix to adaptively capture dynamic spatial dependencies between 
lanes at the current intersection and lanes at upstream and downstream intersections. Within 
each signal cycle slice, a graph convolutional operator is used to capture spatial correlations 
between intersection lanes. The equation (5) describes this operation:

Xl+1 = ReLU(Ug(L)UTXl) (5) 

Where, Xl+1 and Xl represent the l-th and (l+ 1)-th layers of input data blocks for the graph con-
volutional network. Xl = (Xl

t|Z
g
t ) [ RM×(Fl+Fg ) (Note: historical event data is used as spatial atten-

tion input for calculating lane-to-lane spatial influences, but it is not used as an input layer for 
spatial convolution). Zg

t [ RM×Fg represents the influence of the global regional road network at 
time t. U is an orthogonal matrix. g( · )is a polynomial kernel function applied to the diagonal 
matrix L [ RM×M . For local intersection-level graph structures, the graph Laplacian matrix L 
can be decomposed into ULUT . The ReLU activation function introduces non-linearity. To facili-
tate computation for large-scale graphs, Chebyshev polynomials are used to approximate graph 
operations (Simonovsky and Komodakis 2017).

To capture dynamic lane-level spatial correlations between adjacent intersections, the 
spatial attention weights calculated in equation (4) and the signal-controlled perceptual transition 
matrix A [ RM×M are integrated into the graph convolutional network as described in 
equation (6):

Xl+1 = ReLU
􏽘K− 1

k=1
[bk(Ck(L̃)]]⊙ (Al|A))

􏼐 􏼑
Xl

􏽮 􏽯
(6) 

Where bk is a vector of polynomial coefficients. K is the truncation order. Ck is Chebyshev poly-

nomial functions recursively computed on L̃, L̃ =
2

lmax
L − IM (where lmax is the maximum 

eigenvalue of L, and IM is an identity matrix). ⊙ represents the Hadamard product operator, 
i.e. element-wise multiplication.

This integrated design has two main advantages: (1) it enhances the sensitivity of the graph con-
volutional network to spatial correlations between upstream and downstream lanes by explicitly 
considering the impact of external signal control strategies on the spatial modeling; (2) it allows 
the model to measure the interactive influence between lanes at intersections, improving the 
model’s interpretability.

3.4. Modeling traffic congestion at urban intersections with pattern-aware neural point 
process gated recurrent unit

After capturing dynamic lane-level correlations between adjacent intersections in spatial model-
ing, our focus shifts to temporal modeling. Specifically, we investigated the time-related 
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correlations of congestion for a specific lane between the current observation and its neighboring 
signal cycles. Considering that traffic congestion is influenced by multiple temporal granularities, 
we divide the traffic time series into dual temporal granularity: an ‘irregular’ time granularity 
based on congestion event intervals and a ‘continuous’ regular time granularity based on 
signal cycles.

Since congestion events occur at different timestamps, the time gap between the durations 
of two congestion events is not fixed. Therefore, it is crucial to effectively utilize irregular delays 
between congestion event timestamps. Past some studies have begun integrating deep 
learning with traditional temporal point process models (Du et al. 2016; Shchur et al. 2021; 
Zhang et al. 2024).

A dual temporal granularity pattern-aware NPPGRU is developed to generate temporal embed-
dings of historical congestion events, which modeled discrete congestion events temporal corre-
lation using traditional intensity functions and stacked GRU units to model continuous traffic 
flow parameter sequences. Figure 3 illustrates the differences between NPPGRU and traditional 
GRU units. The integrated NPPGRU units not only harness the nonlinear time modeling capabili-
ties of the original GRU units but also enhance the predictive power of traditional point process 
models. This allows the model to handle not only the global trends of congestion events at the 
macro-event time granularity but also to capture finer details and variations of congestion at the 
micro-traffic flow time granularity.

For a specific lane m at intersection n, given a collection of discrete event lists {tc, etc
n,m}mj

c=1 occur-
ring within a historical time window P, as shown in Table 2: Let tc [ (0, P] represent the timestamp 
when the c-th congestion event occurred, assuming the first observation occurred at timestamp 
0. We introduce a masking vector Mtc to indicate whether a congestion event occurred at time 

Figure 3. Comparison between the proposed Neural Point Processed Gated Recurrent Unit and the traditional Gated Recurrent 
Unit.

Table 2. Vector case X of congestion events (where ‘/’ represents not occurring, and C represents occurring) Time stamp tc of 
congestion events, mask vector Mtc , time interval Dtc of adjacent consecutive congestion events, cumulative vector Ntc of 
congestion events.

X / C C / / / C / C

Mtc 0 1 1 0 0 0 1 0 1
tc 0 1 5 9 12 15 18 25 36
Dtc 0 1 4 4 7 10 13 7 18
Ntc 0 1 2 2 2 2 3 3 4
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tc, with values being 1/0, respectively. Specifically:

Mtc =
1, Congestion occur

0, Congestion does not occur

􏼚

(7) 

Dtc =

tc − tc− 1 + Dtc− 1 , tc . 1, M(tc− 1) = 0
tc − tc− 1 , tc . 1, M(tc− 1) = 1

0, tc = 1

⎧
⎨

⎩
(8) 

Inspired by the intensity function modeling of event history influenced by Poisson processes, in 
order to capture time-related patterns of congestion events under dual temporal granularity, this 
study introduces an adaptively learnable prior intensity function model (Equation 9). This model 
is then integrated into the traditional gated recurrent neural network:

l(tc) = exp{− max (0, Wtc [Dtc |Ntc ]+ btc )} (9) 

Where ["|"] represents the concatenation symbol, and Wtc and btc are model learning parameters. 
The selection of the external function l( · ) needs to consider two key criteria: (1) the intensity 
function should be positive, and (2) as mentioned earlier, the intensity function should vary with 
the time intervals between congestion events and the cumulative count of events.

After obtaining the result from Equation (9), to model the temporal correlations of historical 
congestion events and the cumulative congestion count, the original features of time [Xtc |htc − 1] 
are updated by element-wise multiplication with l(tc). This updated information is then combined 
with the GRU  model, resulting in the NPPGRU.

The primary idea behind the NPPGRU is to introduce a time point process model tailored for 
congestion events. This allows for the dynamic extraction of event-related temporal patterns from 
traffic event data, rather than relying solely on data-driven modeling. Additionally, the masking 
vector Mtc , based on congestion events, is directly input into the model to assist in modeling the 
temporal correlations of events. Below is the update mechanism for NPPGRU:

[X
′

tc
; h
′

tc − 1] = l(tc)⊙ [Xtc |htc− 1] (10) 

r = s(Wr[X
′

tc
|h
′

tc− 1]+ UrMtc + br) (11) 

u = s(Wu[X
′

tc
|h
′

tc − 1]+ UuMtc + bu) (12) 

h̃tc = tanh (Wh̃tc
∗[r∗htc − 1|Xtc ]+ UMtc + bh̃c

) (13) 

htc = (1 − u)⊙ h
′

c− 1 + u⊙ h̃c (14) 

Where u represents the update gate, r denotes the reset gate, h̃tc signifies the candidate hidden 
variable. s is the activation function (sigmoid). Wr , Wu, Ur , Uu, U and Wh̃c 

are the learned weight 
parameters. br , bu and bh̃t 

represent bias terms. [⊙ ] represents element-wise multiplication. [∗] 
denotes matrix multiplication.

The time correlation module is built upon a sequence-to-sequence framework structure. It learns 
the encoded representation of historical congestion events through recursive computations and 
generates future multi-step congestion event outputs by selecting the optimal parameters θ 
(Equation 15), based on conditional probabilities. As depicted in Figure 4, the input consists of a 
collection of discrete event timestamps {(t1, y1), (t2, y2), · · · , (tp, yp)}, along with a continuous 
regular traffic flow parameter sequence[X1, X2, · · · , Xp]. After encoding with stacked NPPGRU 
units, a hidden representation C capturing the historical sequence is obtained. Subsequently, 
through the decoding process, future multi-step event predictions for values and timestamps are 
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generated as [Y1, Y2, … Ym], where Yi = (ti, yi). This process computes whether congestion occurs 
and the congestion values at future time steps.

Algorithm 1. Training STNPP Model

Input: Intersection Graph Structure. Gl [ RM×M; Regional Road Network Graph Structure. Gg [ RN×N ; Training traffic flow 
parameter feature set. {xg , xl} and collection of traffic congestion events. {E0→P , EP→P+TP } , batchsize b，Number of 
iterations K，number of historical and predicted signal cycles input P, TP.

Output: Parameters of STNPP model u.
// Forward propagation calculation

1: Randomly initialize u
For n = 1 ⋯ K do:

2: Training sample input: Input b traffic flow spatio-temporal features {(Gg , xg), (Gl , xl )} and collection of congestion events 
each time {E0→P , EP→P+TP }

3: Model spatial relation with single-layer GCN for event spatial correlation based on equation (6): 
{(Gg , xg), (Gl , xl , E0→P)}→ Xl+1 [ RM×Pl×F1

4: Model temporal relation of events using equations (10) – (14): Xl+1 → htc [ RM×F2

5: Model output: Predict if congestion events will occur in multiple time steps and the associated values: htp → {EP→P+TP }
6: Calculate loss of congestion event time and associated values using equation (15):û  

= arcmin1/b
u

􏽐n

q=1
(log P(etq

i,j |[xg, xl], E0→P ; u)+ log f (kc|[xg , xl], E0→P ; u))

// Backward propagation calculation
7: Update gradient ∇û with Adam backpropagation
8: Update model weight parameter with gradient: û← û+∇û
9: Stop iteration.

3.5. Loss function and model training

Given a collection of irregular temporal traffic state data containing historical, regional-level, and 
intersection-level variables xg , and xl , as well as a discrete list of historical and future irregular con-
gestion events denoted as E0→P =

􏽓M
j=1 {tc, etc

i,j}
mj
c=1, where tc [ (0, P] and EP→P+TP . Here, kc = 1 

indicates the occurrence of congestion at the current moment, otherwise, it is 0. Model parameters 
are updated by maximizing the joint log-likelihood of EP→P+TP .

l(u) = min
u

􏽘TP

q=P
log P(etq

i,j|[xg , xl], E0→P; u) + log f (kc|[xg , xl], E0→P; u) (15) 

For the training phase of the model, as Algorithm 1, input data includes traffic data collected from 
the regional road network and local intersections. For the regional road network graph 
Gg = (Vg , Eg , Ag), traffic features for all approach segments of each intersection are aggregated 

Figure 4. Dual time granularity neural point process gated recurrent Unit neural network structure.
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every 10 min, resulting in xg [ RN×P×Fg , where P represents data collection signal cycles, and Fg 

stands for the aggregated traffic features. Fg = [vavg,, vmin, vmax] for whether it is during peak 
hours (0/1), where vavg,, vmin, vmax represent average, minimum, and maximum speeds.

At the intersection level, a specific intersection graph Gl = (Vl, El, Al) is defined to capture the 
local topological relationships among lanes within that intersection. Each node in the graph corre-
sponds to a lane. The lane-level local temporal traffic state data is represented as xl [ RM×P×Fl , 
where Fl = [vi,avg,, vi,min, vi,max, TP]. Here, vi,avg , vi,min, vi,max represent the average, minimum, 
and maximum speeds at the i-th intersection over P cycles, respectively. TP refers to other relevant 
traffic parameters at the lane level.

4. Experimental evaluation and analysis

The proposed congestion prediction method was evaluated using actual traffic speed data from 
Hangzhou city and signal timing data from intersections. This study compared the proposed 
method with several common traffic congestion prediction methods and conducted ablation studies 
to demonstrate the effectiveness of each component in the prediction method. All experiments were 
conducted on a desktop server equipped with a 3.7 GHz Intel Core i7-8700 K processor, GeForce 
RTX®2080 Ti graphics card, and 32GB of memory.

4.1. Experimental data

The experimental data used in this study consisted of traffic speed data, which involved averaging 
the instantaneous speeds of vehicles at the lane level within each signal cycle. Similar to the 
definition of congestion events in (Zhu et al. 2021), this study determined the occurrence of 
traffic congestion events based on the latest industry standard in China, ‘Road Traffic Congestion 
Evaluation Methods’ (GAT 115-2020) issued by the Traffic Management Science Research Institute 
of the Ministry of Public Security in 2020.

According to this standard, the congestion status of a road is determined by comparing the 
speed limits and free-flow speeds at intersections. When the average speed of a lane at a given 
time falls within the congestion range, it is considered a congestion event; otherwise, it is 
classified as a non-congestion (free-flow) event. From the traffic dataset of Hangzhou city, 
111,897 traffic congestion events were extracted for a 30-day period from December 1, 2018, 
to December 31, 2018. The maximum number of events in a single day was 4,235, while the 
minimum was 2,354. Additionally, geometric data describing lane counts, lane geometries, 
topological connections between lanes, and turning restrictions at each intersection were 
collected for the road network under investigation. Signal timing data for all intersections in 
the study area, including cycle lengths and effective green times, were also gathered. The 
road network studied consisted of 18 intersections and 154 interconnected lanes, as depicted 
in Figure 5.

4.2. Method comparison

This paper compared the proposed model with both deep learning spatio-temporal prediction 
methods and traditional methods to further validate the predictive capabilities. The compared 
models included:

4.2.1. Support vector regression (SVR)
SVR is known for its stable predictive ability on nonlinear time series data. SVR transforms input 
features into a high-dimensional feature space using a nonlinear function and then finds a linear 
function that accurately represents the relationship between input and output data.
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4.2.2. Graph convolutional networks + attention (GCN + ATT)
The GCN model used in this test adopts a similar architecture for spatial correlation modeling as 
STNPP but does not consider temporal correlations within GCN. To ensure a fair comparison, the 
spatial attention mechanism from this paper was incorporated into the GCN structure.

4.2.3. Attention-Based spatial-temporal graph convolutional networks (Astgcn)
This model combines attention mechanisms with spatial–temporal graph convolution to model the 
spatio-temporal features among congestion events.

Additionally, two variant models of the proposed method were evaluated to assess the contri-
butions of different designs (NPPGRU and spatial correlation modeling):

4.2.4. Variant 1 (S2S-GRU)
This variant is based on a Seq2Seq framework but does not consider spatial correlations. It retains 
the same architecture as the proposed method for time correlation modeling, validating the impact 
of remote spatial intersections.

4.2.5. Variant 2 (NP-STNPP)
This variant retains the spatial and temporal correlation modeling parts of STNPP but replaces the 
prior design of the time point process model (NPPGRU) with a conventional GRU.

Figure 5. Road network structure in the experiment (Red stars represent the six multi-lane intersection locations to be 
evaluated).
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4.2.6. Variant 3 (NR-STNPP)
This variant retains the local intersection spatial gragh and temporal correlation modeling com-
ponents of STNPP, but removes regional spatial map structure and validates regional spatial depen-
dencies, congestion patterns at local intersections are influenced by the regional traffic pattern.

4.3. Evaluation metric

Three performance metrics were used for evaluating the proposed congestion prediction approach: 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage 
Error (MAPE):

MAEi(M, TP) =
􏽐M

m=1
􏽐TP

t=1 Imt|ymt − y′mt|
􏽐M

m=1
􏽐TP

t=1 Imt
(16) 

RMSEi(M, TP) =

������������������������������􏽐M
m=1

􏽐TP
t=1 Imt(ymt − y′mt)

2

􏽐M
m=1

􏽐TP
t=1 Imt

􏽳

(17) 

MAPEi(M, TP) = 100×

􏽐M
m=1

􏽐TP
t=1 Imt

|ymt − y′mt|

ymt
􏽐M

m=1
􏽐TP

t=1 Imt
(18) 

where i indicates the examined ith intersection, which consists of M lanes. The congestion predic-
tion was performed over TP signal cycles. ymt is the ground truth congestion event value for lane i at 
signal cycle t, y′mt is the congestion prediction value for ymt. Imt is an indicator function that returns 
‘1’ when ymt occurs congestion event and ‘0’ otherwise. The test results of these metrics were aver-
aged over the selected six intersections.

4.4. Model details

The STNPP model is developed using the Apache Mxnet framework and is implemented in 
Python. The data is split into training, validation, and test datasets. In terms of time, 7 days of 
data are used for training, days 8 to 11 are used for validation, and the data for the last 21 
days is used for testing. This means that one week of data is used for training, days 8 to 11 are 
used for validation, and the last three weeks of data are for testing. Optimal network parameters, 
including the number of network layers and hidden units, are determined based on the validation 
dataset. The spatial modeling employs a two-layer GCN structure. The number of hidden units in 
both GCN and NPPGRU is set to 64. The ADAM optimizer is used to train the network with a 
learning rate of 0.001. Training is performed for 100 epochs using mini-batches of size 64 and 
backpropagation of the loss function. Batch normalization is used to speed up the convergence 
of GCN and NPPGRU. All input data are normalized with a mean of 0 and a variance of 
1. The Chebyshev polynomial truncation order (K) in Equation 6 is set to 3. The historical length 
(P) of the training input in terms of the number of signal cycles is set to 20. The model predicts the 
next 5 signal cycles because empirically, it empirically performs the best, indicating that NPPGRU 
captures the temporal correlations of traffic congestion events over 20 signal cycles. Once the total 
loss converges, the STNPP model is used to predict whether congestion will occur in future time 
steps and the congestion values.

4.5. Analysis and evaluation of experimental results

(1) Single Lane Congestion Prediction Accuracy Comparison
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In the first set of experiments, the performance of STNPP is evaluated for predicting congestion in 
two single-lane scenarios. The prediction is made for future s signal cycles of 1/3/5, and the results 
are reported in Tables 3 and 4. It’s observed that as the prediction horizon increases, the perform-
ance of all models decreases. The STNPP model has the lowest error in most cases and the predic-
tion performance is more stable, NR-STNPP as a suboptimal model, performs closely to the 
proposed other variant model, but in some cases, (the third Prediction step size of southbound driv-
ing lane), ASTGCN gets better results. for single-lane congestion prediction. For predicting conges-
tion in the southbound lane for the next 5 cycles, the MAE/RMSE/MAPE are reported as 2.60/3.51/ 
8.44, and for the northbound lane: 2.29/2.97/6.51. This demonstrates that the design of the STNPP 
algorithm for modeling spatio-temporal correlations is better suited to the actual distribution pat-
tern of congestion than other models.

Furthermore, deep learning-based spatio-temporal prediction models (GCN + ATT, ASTGCN, 
S2S-GRU, NP-STNPP, STNPP) generally outperform the machine learning SVR model, demon-
strating that deep learning models have a stronger ability to capture spatio-temporal features. How-
ever, in Table 4, the prediction performance of GCN + ATT for the northbound lane is not as good 
as SVR. This is mainly due to the presence of strong temporal dependencies in congestion events. 
Ignoring temporal features and focusing solely on spatial modeling may not fit congestion distri-
bution well. GCN + ATT, S2S-GRU, and NP-STNPP achieve the worst prediction results, mainly 
because they do not simultaneously model both time and spatial correlations and do not consider 
the influence of multiple temporal granularities in congestion events. 

(2) Performance Comparison for Peak Hours

The study further evaluates the model’s congestion prediction performance during peak hours. The 
same two single-lane scenarios from (1) are used, and the models that did not perform well in (1) 
are excluded. The MAPE (%) results for predicting the next 1/3/5 cycles are shown in Figure 6. 
STNPP, along with its two variants, achieves the best prediction accuracy among all deep learning 
models. This is mainly because the model in this study fully considers the local, specific intersec-
tion-level spatial lane-level and upstream-downstream correlations and considers the congestion 

Table 3. Performance comparison of southbound driving models.

Prediction step size evaluating indicator SVR GCN + ATT ASTGCN S2S-GRU NP-STNPP NR-STNPP STNPP

1 MAE 4.02 2.88 1.55 2.30 1.60 1.50 1.30
RMSE 4.29 3.67 2.10 3.12 2.21 2.02 1.71
MAPE(%) 12.40 9.58 5.02 7.52 5.16 4.52 4.27

3 MAE 4.36 3.40 2.55 4.57 3.40 2.32 2.09
RMSE 4.37 4.36 3.32 5.77 4.05 3.15 2.73
MAPE(%) 14.70 11.39 8.31 14.95 10.55 7.86 6.72

5 MAE 5.25 4.61 3.05 5.13 4.07 2.82 2.60
RMSE 5.59 5.60 4.01 6.46 4.58 3.71 3.51
MAPE(%) 16.85 15.34 10.06 16.75 12.53 9.30 8.44

Table 4. Performance comparison of northbound income models.

Prediction step size evaluating indicator SVR GCN + ATT ASTGCN S2S-GRU NP-STNPP NR-STNPP STNPP

1 MAE 2.24 3.05 1.36 1.85 1.18 1.20 1.17
RMSE 2.25 4.00 1.90 2.79 1.66 1.69 1.59
MAPE(%) 6.61 8.28 3.82 5.22 3.41 3.48 3.37

3 MAE 2.78 3.06 1.93 3.42 4.45 2.58 2.15
RMSE 2.91 3.97 2.67 5.02 5.01 3.28 2.79
MAPE(%) 7.69 8.24 5.56 10.08 12.07 6.79 6.12

5 MAE 3.97 3.30 2.36 3.94 4.48 2.34 2.29
RMSE 4.19 3.89 3.26 5.79 5.08 3.16 2.97
MAPE(%) 10.73 8.11 6.86 11.49 12.16 6.72 6.51
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distribution patterns at two temporal granularities, effectively capturing the multi-step congestion 
change patterns during peak hours.

The model performs well in both (1) and (2), demonstrating the stability of the proposed STNPP 
model’s predictive capabilities across different time periods. Based on the model results and analy-
sis, the effectiveness of the STNPP model’s design for congestion prediction is confirmed.

Additionally, the two variant models, NP-STNPP and S2S-GRU, which only consider time or do 
not account for congestion time granularity, perform poorly. This further confirms the effectiveness 
of the design in spatio-temporal correlation modeling. On the other hand, considering both spatial 
and temporal correlations in congestion problems generally leads to higher accuracy in most cases. 
Among them, the model proposed in this section achieves the best prediction performance. 
ASTGCN achieves suboptimal prediction accuracy for peak-hour congestion, possibly because 
the model incorporates an attention mechanism in convolutional neural networks, which allows 
it to capture spatiotemporal features over a wider time range. Next is the GCN + ATT model, 
which also performs well in multi-stsge prediction, possibly because the specific intersection lane 
has closer spatial correlations with upstream and downstream during each signal cycle, and the 
spatial distribution has a greater impact on prediction results. 

Figure 6. Congestion performance Evaluation during peak hours (MAPE index).
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(3) Comparison of congestion life cycle prediction during peak hours

To assess the overall congestion prediction performance of the model at specific intersections, we 
conducted a comprehensive evaluation of the refined congestion prediction over its entire life cycle. 
The life cycle of congestion was first divided into distinct phases: occurrence, development, and dis-
sipation. Using the true scalar values (speed) of the test set, these stages were defined based on the 
temporal progression of congestion events. Specifically, congestion occurrence was identified by 
instances where the speed remained consistently below the standard speed per hour for multiple 
consecutive signal cycles at fixed intersections. Conversely, congestion dissipation was determined 
by sustained speeds above the standard, with the moment of departure from the standard speed 
regarded as the critical dissipation point. The period leading up to this point was defined as the con-
gestion dissipation time period. The time interval between congestion occurrence and dissipation 
was designated as the congestion development stage. Subsequently, corresponding predicted scalar 
values were extracted, and an evaluation of the extracted true and predicted values of congestion 
events was conducted.

The daily peak congestion period was identified as occurring between 6:00 am to 9:00 am and 
5:00 pm to 8:00 pm. Figures 7 (a) and (b) present a comparison of the predicted scalar accuracy 
during peak hours at intersection #767 at differentstages of the congestion life cycle. The results 
show that STNPP had the minimum RMSE and MAPE, consistently outperforming variants I 
and II in most cases. Although ASTGCN excelled in predicting congestion occurrence stages, its 
performance lagged behind in the development and dissipation stages. It is noteworthy that all 
models exhibited the least accurate predictions during the development stage, followed by the 

Figure 7. # 767 Intersection Congestion Life Cycle Assessment.
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dissipation stage, while achieving the highest accuracy for predicting congestion occurrence. The 
challenge in predicting development was attributed to the broader spatio-temporal spread of con-
gestion diffusion at intersections, introducing additional complexity. Moreover, congestion event 
marked values during the development stage displayed more pronounced and unpredictable fluctu-
ations compared to general traffic flow parameters, further complicating the prediction process.

The prediction performance of STNPP surpassed that of both S2S-GRU and NP-STNPP, 
demonstrating the effectiveness of the model design. By incorporating intersection signal-cycle 
information into spatial considerations, STNPP outperformed the spatio-temporal prediction 
model ASTGCN, demonstrating the impact of signal cycle changes on spatial congestion distri-
bution. Comparing STNPP with S2S-GRU and NP-STNPP, the model showed significant advan-
tages in the occurrence, development, and dissipation stages. Although its predictive ability 
approached that of variants during the development stage, the model consistently exhibited absol-
ute advantages in most cases, underscoring the pivotal role of spatial design and dual temporal 
granularity modeling.

4.6. Presentation of experimental results

(1) Visualization Results of Lane-Level Congestion Marked value Prediction

In this section, the results of fine-grained lane-level marked congestion value prediction are pre-
sented for the two methods that performed well. The results are shown in Figure 8. It can be 
observed that:

According to the city’s traffic speed standards, some lanes at the current intersection are in slow- 
moving or severely congested states.

Even in cases where traffic speeds undergo significant changes, our model still achieves predic-
tions that closely approximate the real values, with the smallest residuals. This is primarily due to 
the pattern-aware NPPGRU units capturing the historical impact and cumulative triggers of con-
gestion over dual temporal granularity. As a result, more attention is given to locations with dra-
matic changes, allowing for a flexible response to real traffic fluctuations and avoiding overly 
smooth predictions.

STNPP leverages both spatial factors, considering the influence of traffic signals between lanes, 
and temporal factors, modeling the effects of continuous traffic flow and ‘jump’ events at dual tem-
poral granularities. This approach results in smaller residuals (the difference between predicted and 
actual values) compared to other baseline models. The residuals for STNPP exhibit a clear distri-
bution pattern centered around zero, without significant skewness. 

(2) Visualization of the Entire Life cycle of Congestion Events

To qualitatively illustrate the predictive performance of STNPP for congestion, this section selects a 
full-life-cycle visualization of a congestion event at intersection #767 during the morning peak 
hours. By choosing a congestion event that occurred on Monday, December 10, 2018, during the 
morning rush hour, the event’s life cycle is visualized in three stages: congestion initiation (8:15), 
development (8:45), and dissipation (9:30), as shown in Figure 9.

During the initial stages of the congestion event at 8:15 at the intersection, certain lanes, such as 
5, 10, and 11, experienced slow-moving traffic (as depicted in Figure 9(a)). This period corresponds 
to the time when ‘commuters’ leave their homes to go to work, considering that most workplaces 
start at 9 in the morning.

As the morning rush hour progressed, the number of vehicles and pedestrians on the road con-
tinued to increase, and congestion began to spread spatially. By 8:45, lanes 0, 4, 5, 9, 10, and 11 
experienced slow-moving and congested conditions, as severe congestion became apparent (as 
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Figure 8. Comparison of congestion prediction results of northbound lane at Intersection #767.
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shown in (b)). Comparing it with (e), it becomes evident that the STNPP model can accurately pre-
dict the distribution of congestion events. This highlights the model’s advantage in predicting the 
development stage of congestion events, reaffirming the effectiveness of the model in modeling spa-
tio-temporal correlations.

Finally, at 9:30, as most people had already arrived at their workplaces, the morning rush hour 
ended, and traffic congestion began to dissipate. The lanes at the intersection returned to a smooth- 
flowing state (as depicted in (c)). Comparing (c) with (f), the model’s predictions for the dissipation 
stage align well with the actual values. While there are some overestimations in certain lanes, such as 
predicting smooth traffic as slow-moving, the overall prediction errors are minimal and meet the 
basic requirements for congestion prediction at the intersection.

In conclusion, through the visualization and analysis of the geometric morphology of congestion 
events at intersections over their entire life cycle, it is demonstrated that the proposed STNPP can 
accurately predict the entire process of congestion, from its initiation, development, to dissipation. 
From a qualitative perspective, this further illustrates the significance of our model in spatio- 

Figuer 9. illustrates the complete life cycle prediction results of congestion at intersection #767 in the road network. The hori-
zontal axis represents signal light cycles, while the vertical axis represents lane numbers at the intersection. This section presents 
the predictive performance of congestion threshold values for 20 signal cycles and 12 lanes at the intersection. In this context, (a), 
(b), and (c) represent the ground truth for congestion initiation, development, and dissipation, while (d), (e), and (f) represent the 
predictions from our model in this study.
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temporal modeling design, taking into account the influence of both internal and external spatial 
factors and incorporating dual-granularity temporal modeling.

4.7. Parameters study

Since certain parameters can have a significant impact on the learning ability, we conducted a para-
metric study to further explore the effectiveness of the model. We chose the number of GCN layers 
and the Chebyshev polynomial truncation order (K). The experimental results are shown in 
Figure 10. We can see that the optimal number of GCN layers is 2, and as the number of layers 
increases, the MAPE becomes larger and larger. The reason may be that the overfitting problem 
of GCN limits its improvement. For the Chebyshev polynomial truncation order (K), the optimal 
value is 3. As K increases, the results become worse. This is because a larger K enhances the repre-
sentativeness of the model while incurring an increase in computational complexity, a decrease in 
numerical stability, and increasing the risk of overfitting.

5. Conclusion

This paper addresses the issue of fine-grained traffic congestion prediction at urban signal-con-
trolled intersections by proposing STNPP intersection congestion event prediction model based 
on combined graph neural networks and neural temporal point process.

In the spatial domain, the model focuses on intersection environments and constructs a fine- 
grained graph structure network model at the lane-level and cycle-level. It considers both global 
and local topological correlations while considering the influence of external signal control 
strategies.

In the temporal domain, the model addresses the dual-granularity temporal effects observed in 
congestion problems. It combines traditional point process models with gated recurrent neural net-
work units, resulting in a novel NPPGRU.

The proposed congestion prediction method was validated using actual traffic data from Hang-
zhou City. Experimental scenarios included single-lane congestion prediction at intersections and 
performance evaluation during peak hours. The results showed that the proposed model outper-
formed the compared models in terms of MAE/RMSE, and MAPE metrics.

Future research will include analyzing congestion propagation processes at the urban road net-
work level to extract congestion patterns, accurately define spatio-temporal congestion events, dis-
tinguish between sporadic and recurrent congestion mechanisms, and investigate the causes of 
congestion due to external factors such as weather changes and unexpected traffic accidents.
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