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ABSTRACT ARTICLE HISTORY
Lightweight and high-precision prediction models for urban states are Received 28 October 2024
anticipated to run efficiently on resource-limited devices, serving as key  Accepted 7 February 2025
technologies for realizing smart city management. However, many existing
models, despite achieving high prediction precision, suffer from overly U A

X X R . rban states; spatio-
complex designs, leading to low computational efficiency, a large number temporal prediction; dilated
of learnable parameters, and difficulty in hyper-parameter calibration. operation; parameter
In this study, we present a lightweight parameter-shared dilated sharing; hyper-parameter
convolutional network (PSDCN) to address these challenges. Specifically, dependence
we define parameter-shared temporal/graph dilated convolution operators
to efficiently and accurately capture spatio-temporal correlations without
significantly increasing model’s computation time and scale of learnable
parameters. Furthermore, we establish mathematical relationships between
hyperparameters, significantly reducing their number and simplifying the
calibration process. The PSDCN model was validated using PM,, traffic,
and temperature datasets. The results demonstrated that the PSDCN
model simplifies hyperparameter calibration. It also either outperforms or
matches the prediction accuracy of nine baselines, while achieving better
time efficiency and requiring fewer learnable parameters.

KEYWORDS

1. Introduction

The rapid development of the Internet of Things (IoT) has enabled real-time monitoring of urban
systems, providing an essential data source for predicting urban states (Zhou et al. 2022; W. Zhang
et al. 2025). Currently, prediction technologies are increasingly used to support urban traffic man-
agement and public health protection (Karl et al. 2024; Wang et al. 2024). For instance, accurately
predicting future traffic states can balance network traffic flow, alleviating urban congestion (Guan-
gyue Li et al. 2024; Y. Xu et al. 2023). Similarly, accurately predicting future air quality can protect
humans from exposure to heavily polluted environments by issuing early warning signals (L. Meng-
fan et al. 2022; Zhang et al. 2021).
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Prediction technologies for urban states are a type of spatio-temporal prediction models, typically
classified into three main categories: statistical learning, machine learning, and deep learning mod-
els(Cheng et al. 2024; Xie et al. 2020). Among these, deep learning models are the dominant predic-
tion technologies due to their ability to capture complex dependencies and patterns (H. Wang et al.
2023; Y. Zhang et al. 2023; Q. Zheng et al. 2023). At present, related scholars developed a variety of
deep learning models aimed at enhancing prediction precision (T. Zhang, Liu, and Wang 2022;
T. Zhang, Liu, et al. 2024; T. Zhang, Wang, et al. 2024). From the early recurrent neural networks
(Chung et al. 2014) to the latest spatio-temporal graph neural networks (Y. Liu et al. 2024), the pre-
diction precision of these models has steadily advanced. However, as prediction precision improves,
the increasing complexity of current models presents challenges for their practical application in real-
world scenarios (Do et al. 2019; Guanyao Li et al. 2023). First, overly complex models may be com-
putationally inefficient, limiting their deployment on real-time applications (P. Wang, Zhang, Cheng,
et al. 2024), such as scenarios requiring rapid prediction of traffic flow or air quality. Second, these
models may have a large number of learnable parameters, restricting their deployment on
resource-limited devices, such as mobile or edge computing devices. Finally, these models may con-
tain a large number of hyper-parameters, making convergence more challenging (Yang and Shami
2020). Even if the model does converge, it may only reach a local optimum rather than a global one.

In real-world scenarios, it is essential to develop lightweight and highly precision prediction
models. However, many existing models still face challenges in balancing prediction precision
with ease of use. Therefore, we present a new Parameter-Shared Dilated Convolutional Network
(PSDCN) to address these challenges, with key contributions including:

(1) Inspired by parameter sharing and dilation computation, we define the lightweight Parameter-
Shared Temporal Dilated Convolution (PSTDC) operator and Parameter-Shared Graph
Dilated Convolution (PSGDC) operator. The PSTDC and PSGDC operators can efficiently
capture spatio-temporal correlations without significantly increasing the computation time
and the scale of learnable parameters.

(2) We establish logical relationships among hyperparameters to simplify both the number and
complexity of hyperparameter tuning, thereby reducing the time and resources required for
trial-and-error during model calibration.

(3) Three datasets (PM, s, traffic, and temperature datasets) were utilized to assess model predic-
tion performance, including prediction precision, computational efficiency, and scale of learn-
able parameters. The results demonstrate that the proposed PSDCN model is well suited to be
deployed on resource-limited devices for real-time demanding prediction tasks, such as rapid
urban air quality prediction on mobile phones.

2. Related works

Given the advantages of deep learning models in prediction tasks, we primarily focus on deep learn-
ing-based spatio-temporal prediction models. In this subsection, we first examine the base oper-
ators that constitute spatio-temporal prediction models, followed by a review of more complex
models built upon these operators. Additionally, we review existing lightweight spatio-temporal
prediction models relevant to this study.

2.1. Basic neural network operators

Currently, most spatio-temporal prediction models are hybrid deep learning models (G. Zheng
et al. 2023). In this study, we define the smallest unit that constitutes a hybrid deep learning
model as the basic neural network operator. These basic neural network operators can be broadly
categorized into two main groups: those that capture temporal dependencies and those that capture
spatial dependencies (Wang et al. 2023; Xie et al. 2020). Common neural network operators for
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capturing temporal dependencies include recurrent neural network (RNN) operator (Chung et al.
2014), one-dimensional convolutional (1D-CNN) operator (Yu, Yin, and Zhu 2018), temporal
attention (TAtten) operator (Tan et al. 2023), and neural ordinary differential equation (NODE)
operator (R. T. Q. Chen et al. 2018). Common neural network operators for capturing spatial
dependencies include two-dimensional convolutional (2D-CNN) operator (Q. Li, Wang, and Li
2021), graph convolutional operator (GCN) (Kipf and Welling 2017), and spatial attention (SAtten)
operator (M. Xu et al. 2021). Basic operators form the foundation for developing complex spatio-
temporal prediction models. By combining or improving these operators, spatio-temporal predic-
tion models can be customized to address the specific needs of various scenarios (Wang et al. 2023).

2.2, Spatio-temporal prediction models based on hybrid deep learning

Complex spatio-temporal prediction models improve prediction precision by fusing basic neural
network operators, can be categorized into grid-based prediction models, graph-based prediction
models and transformer-based prediction models.

Grid-based prediction models are an early class of prediction models, typically combining 2D-
CNN operators with RNN or 1D-CNN operators, such as the ConvGRU model (Shi et al. 2017) and
ST-ResNet model (Jia and Yan 2021). While these models are computationally efficient, they are
limited by their insufficient prediction precision.

Graph-based prediction models have emerged as a high-precision prediction approach in recent
years, typically combining GCN operators with RNN, 1D-CNN, or NODE operators. Notable
examples include the T-GCN model (Zhao et al. 2020), the ASTGCN model (Guo et al. 2019),
the DSTAGNN model (Lan et al. 2022), the BiSTGN model (Wang et al. 2022), the GDGCN
model (Y. Xu et al. 2023), the STGODE model (Fang et al. 2021), and the STA-ODE model (.
Wang, Zhang, Zhang, et al. 2024). Additionally, some scholars have integrated weather factor
and Points-of-Interest factor to enhance model prediction precision, such as STECA-GCN
model (S. Liu et al. 2023) and the MB-TGCN model (Guan et al. 2024). At present, existing
graph-based prediction models have achieved notable improvements in prediction precision. How-
ever, as prediction precision improves, the design of graph-based models becomes increasingly
complex, limiting their application in real-world scenarios (Do et al. 2019; Guanyao Li et al. 2023).

Transformer-based prediction models are also a high-precision approach, typically combining
SAtten and TAtten operators, such as the STTNs model (M. Xu et al. 2021), the AirFormer
model (Liang et al. 2023), and the TAU model (Tan et al. 2023). Similar to graph-based prediction
models, transformer-based prediction models also suffer from the issue of overly complex design.
This issue arises from the fact that, from a mathematical standpoint, transformer-based and graph-
based prediction models can be unified and share comparable levels of complexity.

2.3. Lightweight spatio-temporal prediction models

Lightweight models achieve satisfactory prediction precision without significantly increasing model
complexity, especially for graph-based and transformer-based prediction models (Wang et al.
2025). In recent years, some scholars have explored model lightweighting and developed several
lightweight spatio-temporal prediction models. For example, Chien and Huang (2021) proposed
a lightweight LSTCNN model to reduce the model’s complexity through compression techniques
such as pruning, quantization, co-training, and feature extraction. Li et al. (2023) proposed a light-
weight ST-TIS model to decrease the model computational complexity from O(n?) to O(n/n) using
region connectivity graphs. Wang et al. (2024) proposed a lightweight ST-GDN model to improve
the model’s computational efliciency by reducing the depth of neural networks. Compared
to models without lightweight design, existing lightweight models are still relatively limited.
Additionally, these models still face challenges such as the large scale of learnable parameters
and the complexity of hyper-parameter tuning (Cheng, Peng, and Lu 2020; Guanyao Li et al. 2023).
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2.4. Challenges and strategies

In general, most existing prediction models focus on improving prediction precision while neglect-
ing the importance of model lightweighting for ease of use. Although a few lightweight models have
been proposed, they mainly focus on improving computational efficiency, neglecting issues related
to the scale of learnable parameters and the complexity of hyperparameter tuning.

To address the above challenges, we present a new lightweight PSDCN model for spatio-tem-
poral prediction. First, while ensuring prediction precision, the parameter sharing mechanism is
employed to reduce the scale of learnable parameters, and the dilated operation is utilized to
enhance the model’s computational efficiency. Second, the mathematical relationships among
hyper-parameters are established to reduce the difficulty of hyper-parameter tuning.

3. Preliminaries

In this study, the proposed PSDCN model is a graph-based prediction model. Before delving into its
details, we first provide the relevant definitions. In the graph G = (V, A), each sensor can be rep-
resented as a node v; € V, and the relationship between sensors v; and v; can be abstracted as an
edge A; € A. The spatio-temporal data collected by sensor v; in tth time window can be rep-
resented as x!. Generally, the spatio-temporal data collected by all sensors across all time windows
form a matrix X € R™*T, where n denotes the total count of sensors and T denotes the total count
of time windows.

The aim of this study is to establish a lightweight model, as explicitly formulated in Equation (1).

&, & AT = Mpspen < (6T, &8 L 2T G, W) (D

where Mpspcn denotes the PSDCN model; x7 74! = {xiT—Pﬂ}?:l € R™! denotes the historical
spatio-temporal data, with p being the historical dependency horizon; 27+1 = {&iT +q}:’=1 € R™!
denotes the predicted spatio-temporal data, with q being the prediction horizon; W denotes the

learnable parameters in the PSDCN model.

4. Proposed approach

The structure of the PSDCN model is depicted in Figure 1: the PSDCN model is composed of mul-
tiple parameter-shared modules, each incorporating L spatio-temporal blocks and a hyper-par-
ameter dependency component. During model forward propagation, L spatio-temporal blocks
share the same set of convolutional kernels and efficiently capture complex nonlinear dependencies
in spatio-temporal data. Specifically, the PSGDC operator within the spatio-temporal block is uti-
lized to efficiently capture spatial dependencies, while the PSTDC operator within the spatio-tem-
poral block is utilized to efficiently capture temporal dependencies. Additionally, the hyper-
parameter dependency component automatically determines the optimal number of spatio-temporal

Parameter-Shared Dilated Convolutional Network

Parameter-Shared Shared Graph L blocks share Shared Temporal — Dependencies between
Module Convolution Kernel | same set of kernels | Convolution Kernel i Hyper-parameters
T 5 S+l
______________ dilated factor i determine X
e —— e = T E—— N y number of blocks 4
e N\ D |,
o e
X Ist 2nd
Spatio-Temporal Block Spatio-Temporal Block | | |b—m»@—T | 777 Spatio-Temporal Block
'
> Param-Shared
Temporal Dilated Conv

Figure 1. Structure of the PSDCN model.
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blocks and the optimal size of the dilated factor via the calibrated kernel size and calibrated historical
dependency horizon. By reducing the calibration number of hyper-parameter, we mitigate the com-
plexity inherent in model tuning.

4.1. Construction of the PSDCN

In this subsection, we offer a comprehensive explanation of the forward propagation for the PSDCN
model. Although the PSDCN model consists of multiple parameter-shared modules, typically only
one parameter-shared module is needed to address most simple spatio-temporal prediction tasks
due to hyper-parameter dependency component (discussed in Section 4.1.3).

When there is only one parameter-shared module, the input data will sequentially pass through
convolutional layers, L spatio-temporal blocks, and another convolutional layer to obtain the final
output. Specifically, the spatio-temporal data {x'};_ p+1 € R first undergo a convolutional layer
to increase the data dimensionality, obtaining the input tensor H; € R"™P*/ for the first spatio-
temporal block. Then, input tensor #H; sequentially passes through L spatio-temporal blocks to
get output tensor H;,; € R/ for the last spatio-temporal block. Finally, output tensor H
undergoes dimensionality reduction through another convolutional layer to obtain the final predic-
tion {&}ii’f € R"1. Equations (2) and (3) further show the forward propagation of the PSDCN
model mathematically.

Hy = STBlock(Conv({xt}ﬁ_p+l)|WT, Wg) =1
PSDCN({xf}ﬁ_p 1):4 Hipr = STBlock(Hi|Wr, W) 1<I<L ()
{&h ] = Conv(STBlock(Ho|Wr, W)  I=L

H, PSTDC(Hi| W)
H, Relu (Hz> + H;

STBlock(Hi|Wr, Wg):{ i
H; = PSGDC| H; Wg

Hip = Norm(Relu(’HO + H;)

where {x'}] € R"*F denotes the input of the PSDCN model, with p being the historical depen-

—p+1
dency horizon; {k};ﬁ € R"*1 represents the output of the PSDCN model, with g being the predic-
tion horizon; STBlock is the spatio-temporal block in the parameter-shared module; H; € R"*P*f
and H;,, € R™P represent the input and output tensors of the I-th spatio-temporal block, with f
being the dimension of the hidden layer; W and Wy; are the learnable parameters shared within L
spatio-temporal blocks; PSTDC and PSGDC represent the operators for mining temporal depen-

dencies and spatial dependencies, respectively; H; ER"™P*/, H; ER™P*/ and H; € R"™*P*/ are tem-
porary variables in PSTDC and PSGDC operators; Conv represents the convolution function for
dimension alignment; Relu represents the activation function; Norm represents the parameter regu-
larization function. Equations (2) and (3) highlight that the essence of the proposed PSDCN model
lies in two key aspects: Definition of the PSTDC operator and Definition of the PSGDC operator.

4.1.1. Parameter-Shared temporal dilated convolutional operator

Aiming to address the issues of over-complex design, low computational efficiency, and large scales
of learnable parameters, we extend the classical temporal convolution operator to efficiently mine
temporal dependencies in data. Illustrated with a two-layer temporal convolutional network as an
example, Figure 2 demonstrates the extension concept of the classical temporal convolution oper-
ator. When the kernel size is set to 3, a two-layer network can model only 5 time windows using the
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[ W Classical Temporal Convolution Kernel Shared Temporal Dilated Convolution Kernel @ Add Operation

Output
Layer

Output
Layer

Hidden
Layer Hidden
Yoo == Layer
k=3
Input ! J i Input ; ; - 5 / ’ ;
Layer Layer i
—4 -3 =9 = ¥ . -6 -5 = -3 -2 -
i I/ A A T A T A
(a) (b)

Figure 2. Extension concept of the classical temporal convolution: (a) classical temporal convolution, and (b) parameter-shared
temporal dilated convolution.

classical temporal convolution operator, whereas it can model 9 time windows using the temporal
dilated convolution operator. In other words, with the historical dependency horizon fixed, the
temporal dilated convolution operator can capture more temporal dependencies with fewer layers,
thus improving the computational efficiency of forward propagation. Furthermore, we find that
introducing the dilation factor does not change the kernel size of the convolution but only its cal-
culation method. This finding implies that we can share kernels between different layers, reducing
the scale of learnable parameters in the optimization process. Inspired by these observations, we
propose the lightweight PSTDC operator.

In contrast to the classical temporal convolutional operator, the PSTDC operator presents two
primary advantages. First, the PSTDC operator regulates the network depth via the dilation factor,
improving forward propagation efficiency. Second, the PSTDC operator facilitates kernel sharing
across layers, diminishing the scale of learnable parameters during optimization. Taking the tensor
‘H; as an example, Equation (4) demonstrates the computation of the PSTDC operator.

K K

L(t—p+1)—(K—k)d" Lt—(K—k)dT
ZWI}Ghl(p )—(K=k)d; ZW]%th (K=k)d;
k=1 k=1

PSTDC(H;|Wy) = : - : (4)

K K

L(t—p+1)—(K—k)d" Lt—(K—k)dT
Zw’%@hn(p)( b w’}Gn( )d]
k=1 k=1

where H; = {{hf”_”l}?:l}fil € R™P*/ represents the input tensor of the PSTDC operator in the
I-th spatio-temporal block, with h* € R/*! being the state of node v; in the t-th time window;
Wr = {wh}X_| € R/*K represents the shared temporal kernels, with K being the kernel size and
wk. € R/¥! being the k-th shared kernel; d! represents the dilation factor of the PSTDC operator
in the I-th spatio-temporal block; and © represents the vector product. Note: We need to input the
kernel W into the next spatio-temporal block to enable parameter sharing in the I-th and (/ + 1)th
spatio-temporal blocks.

4.1.2. Parameter-Shared graph dilated convolutional operator

After applying the PSTDC operator in the I-th spatio-temporal block, we obtain the tensor
H; ER™P, Similar to temporal dimension, we extend the classical graph convolutional operator
to efficiently explore spatial dependencies in tensor 7. Illustrated with a two-layer graph convolu-
tional network as an example, Figure 3 demonstrates the extension concept of the classical graph
convolution operator. For a target node, a two-layer network using the classical graph convolution
operator can model only 6 spatial neighbors, whereas it can model 9 spatial neighbors using the
graph dilated convolution operator. This indicates that introducing the dilated factor can capture
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—> Timeline Direction Message-Passing  -----» ----- » Classical Graph Convolution Kernel = ===~ »  Shared Graph Dilated Convolution Kernel

@  Target Node @O  Neighbor Nodes or Dilated Neighbor Nodes of the Target Node QO  Other Nodes

Input Layer Hidden Layer Output Layer

d=1
(a) (b)

Figure 3. Extension concept of the classical graph convolution: (a) classical graph convolution, and (b) parameter-shared graph
dilated convolution.

more distant spatial dependencies with fewer layers, enhancing the computational efficiency of for-
ward propagation. Additionally, the dilation factor does not change the kernel size of most classical
graph convolution operators (see Appendix A), meaning we can share graph kernels between differ-
ent layers to reduce the scale of learnable parameters in the optimization stage. Inspired by these
observations, we propose the lightweight PSGDC operator.

In the spatial dimension, the PSGDC operator also has two notable advantages compared to the
classical graph convolutional operator. First, it improves the computational efficiency of forward
propagation, and second, it reduces the scale of learnable parameters in the optimization process.
Additionally, to enhance the prediction capability of the PSGDC operator, we design its forward
propagation based on graph attention, as shown in Equations (5) and (6).

L(t— iy L (f— 2 . 2
X AR X
d a
. jEAll jEAll
|
PSGDC(’H; Ws) = : . : (5)
E(t—pt1) 3 L(r— £ gk
st Vi P it POWY L st jflhl”WX
jea,! jea,!
exp (Relu ([ hj| hnt] Wg))
£ = (©)

jn =

> sexp <Relu([ h k| h ntt) Wg))
keA,

= . n P
where 7—[1{ {h =T+ } } € R™P*/ denotes the input tensor of the PSGDC operator in the I-th

i=1J) =1

spatio-temporal block, with hi** € R/*! being the state of node v; in the t-th time window; Yin
. . d; R
denotes the impact weight of node v; on node v,; A, represents the dilation factor of the

PSGDC operator in the I-th spatio-temporal block, calculated using the method provided by
Wang et al. (2024); (W;’ , Wg) € Wy are the shared learnable parameters in the PSGDC operator;
[-|-] denotes the vector concatenation function; Relu represents the activation function; exp
denotes the exponential function. Note: We need to input the kernel Wg = (W;’, W(s;)) into the
next spatio-temporal block to enable parameter sharing in the [-th and (I + 1)th spatio-temporal
blocks.
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4.2. Optimization of the PSDCN

4.2.1. Hyper-parameter dependency component

In the construction process of the PSDCN model, we introduced several hyper-parameters, includ-
ing the historical dependency horizon p, the count L of spatio-temporal blocks, the dimension f of
hidden layers, the kernel size K of the temporal convolution, the dilation factor d] in the PSTDC
operator, and the dilation factor dls in the PSGDC operator. As mentioned earlier, having too many
hyper-parameters can increase the difficulty of model calibration. Therefore, we proposed a hyper-
parameter dependency component to establish relationships between hyper-parameters, reducing
the number of hyper-parameter calibrations.

As shown in Figure 4, when d] and K exhibit a power relationship in the I-th spatio-temporal
block, the PSTDC operator can fully utilize the receptive field of shared temporal convolutional ker-
nels to capture longer time windows. Similarly, when d7 and 2 exhibit a power relationship, the
PSGDC operator can effectively capture a broader spatial range. Furthermore, to ensure that a
single parameter-shared module can handle most simple prediction tasks, we must enable the L spa-
tio-temporal blocks to fully model p time windows. Specifically, Equations (7)—(9) define the par-
ameter dependencies in the PSDCN model.

dl = k! )
ds =21 (8)
L = min (K'>p)—1 (9)

where K denotes the kernel size of the shared temporal convolution; d/ and df represent the
dilation factor in the PSTDC/PSGDC operator of the I-th spatio-temporal block; L represents the
total number of spatio-temporal blocks. Once the dependencies of hyper-parameters are defined,
we only need to calibrate 3 hyper-parameters instead of 6, namely p, f, and K.

4.2.2. Loss function

The PSDCN model predicts the future g spatio-temporal data from the historical p spatio-temporal
data. During the optimization process, mean squared error is employed to minimize the loss
between the predicted values and the actual values, as illustrated in Equation (10).

.2 , ,
LW)=min) > (7 - &) (10)
j=1 i=1

where xf+j € R'! denotes the actual value of node v; in the (t + j)-th time window; 5c§+j e R

denotes the predicted value of node v; in the (¢ + j)-th time window

Shared Temporal Dilated Convolution Kernel @ Add Operation ------ Multiply Operation Time Window Message-Passing
------- > Shared Graph Dilated Convolution Kernel @ TagetNode (@ Dilated Neighbor Nodes of the Target Node O Other Nodes

Output
Layer

Hidden
Layer

Input

Layer ’ ! : ’ ’ ' Input Layer 1} Hidden Layer

@ (b)

Output Layer

Figure 4. lllustration of hyper-parameter dependencies (a) hyper-parameters in the PSTDC operator, and (b) hyper-parameters in
the PSGDC operator.
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4.3. Training and optimization

This subsection details the optimization of the PSDCN model. During optimization process, his-
torical spatio-temporal data is segmented into training and testing datasets. The training dataset
is utilized to adjust the learnable parameters in the PSDCN model, while the testing dataset is
employed to evaluate its prediction performance. Algorithm 1 outlines the optimization procedure
of the PSDCN model. Initially, training dataset is constructed from the spatio-temporal matrix
(lines 1-3). Next, we determine the number of spatio-temporal blocks using the hyper-parameter
dependency component (line 5). Then, we calculate the dilation factors for each spatio-temporal
block(line 9) and iteratively obtain the prediction results (line 10). Finally, the learned PSDCN
model is gained by minimizing loss function (line 11).

Algorithm 1. Training Process of PSDCN

Input: Spatio-temporal matrix:X = {x'}__,

Historical dependent horizon: p

Prediction horizon: g

Dimension of the hidden state: f

Kernel size: K

Output: PSDCN model: Mpspey

Q<0

:foreacht € p, 2,...,T—ql

: construct training samples (x'=P+!, ... S XD DT, LX) e
: initialize learnable parameters W of PSDCN

: determine hyper-parameters L by Equation (9)

: repeat until Mpspcy converges:

: randomly select a batch of samples (), from ()

:foreach/ €1, 2, ..., L]

: determine hyper-parameters d,T and d,5 by Equations (7)—(8)

10: compute tensor Mg or K7, ... , X% by Equations (2)—(3)
11: update W by minimizing the mean squared error

12: output the trained PSDCN model Mpspcy

WONOUBWN=

5. Experiments
5.1. Data sources and data preprocessing

In urban systems, real-time prediction of traffic flow, air quality, and weather is a prevalent and crucial
task. Therefore, this subsection employed three publicly available datasets—PM, s, traffic, and temp-
erature datasets—to assess the performance of PSDCN model (P. Wang, Zhang, Cheng, et al. 2024).

Figure 5 illustrates the spatial distribution of three spatio-temporal datasets. The PM, 5 dataset
comprises 36 monitoring sensors, operating on a 60-minute time window. The traffic dataset con-
sists of 71 monitoring sensors, operating on a 5-minute time window. The temperature dataset
encompasses 45 monitoring grids, operating on a 5-minute time window.

The data flow in this study is divided into three main steps. First, the spatio-temporal data is pre-
processed to ensure it meets the input requirements of the model. Second, the forward propagation is
executed to obtain the model’s output. Finally, the model is optimized to obtain a prediction model
suitable for practical applications. Since the forward and backward propagation processes have been
described in the previous section, this section focuses on the data preprocessing procedure, as follows:

(1) Raw spatio-temporal data often contain missing values, affecting the prediction accuracy of the
model. In this study, we used the BTTF model, as proposed by Chen and Sun (2022), to impute
the missing values.

(2) We constructed a first-order adjacency matrix based on the similarity between spatial objects.
Specifically, the first-order neighbors of the target spatial entities were identified using the 10
most similar spatial objects.
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Figure 5. Spatial distribution of three datasets: (a) PM, s dataset, (b)traffic dataset, and (b) temperature dataset.

(3) We partitioned the spatio-temporal data into training and testing samples, with the training
samples constituting 80% and the testing samples 20%.

5.2. Evaluation metrics and baselines

5.2.1. Performance criteria

This study mainly evaluate the three indicators of the model, i.e. prediction precision, compu-
tational efficiency, and scale of learnable parameters. More specifically, we first utilized RMSE
and MAPE to quantitatively measure the prediction precision of the PSDCN model. Then, we eval-
uated the computational efficiency by calculating the runtime for both forward and backward
propagation. Finally, we determined the scale of learnable parameters by counting the number of
trainable parameters. Considering that the computation of runtime and parameter count is
straightforward, we only present the calculation methods for prediction precision metrics, as
shown in Equations (11)—(12).

1 K< ; 2
RMSE = |—> " (" — &) (11)
mweq I S
100 I |/ — 21
MAPE = — S (12)
nkq ; ; xfﬂ

where xf+j and 5cf+j respectively indicate the actual values and predicted value of node v; in the (f 4 j)-th
time window; n denotes the total count of graph nodes; and g denotes the prediction horizon.

5.2.2. Baselines
In this study, nine baseline models were employed to analyze the strengths of the PSDCN models,
organized into three categories.

« Statistical learning or machine learning models: The first category emphasizes the advantages
of deep learning models in terms of prediction precision, primarily including HA model(Camp-
bell and Thompson 2008), the ST-KNN model(Z. Zheng and Su 2014), and the BTMF model (X.
Chen and Sun 2022).

e Deep learning models without lightweight design: The second category emphasizes the advan-
tages of the proposed PSDCN model in terms of both computational efficiency and prediction
precision, primarily including the ST-GCN model(Yu, Yin, and Zhu 2018), the BiSTGN mod-
el(Wang et al. 2022), the DSTAGNN model (Lan et al. 2022), the STA-ODE model (P. Wang,
Zhang, Zhang, et al. 2024), and the GDGCN model(Y. Xu et al. 2023).
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e Deep learning models with lightweight design: The third category emphasizes the advantages
of the proposed PSDCN model in terms of parameter scale, primarily including the STGDN
model (P. Wang, Zhang, Cheng, et al. 2024).

5.3. Hyper-parameter calibration

The hyper-parameters of the PSDCN model mainly include the historical dependency horizon p, the
dimension f of the hidden layer, the number L of spatio-temporal blocks, and the kernel size K of
the PSTDC operator, the dilation factor df /d; of the PSTDC/PSGDC operator in the I-th spatio-tem-
poral block. Theoretically, each hyper-parameter of the PSDCN model must be calibrated using the con-
trol variable method. However, by utilizing the hyper-parameter dependency component, we can
calibrate multiple hyper-parameters simultaneously. For example, Equation (7) allows for the simul-
taneous calibration of the dilation factor le and the kernel size K, while Equation (9) facilitates the sim-
ultaneous calibration of the historical dependency horizon p and the number L of spatio-temporal blocks.

Based on the previous analysis, the PSDCN model requires calibration of only three hyperpara-
meters: the historical dependency horizon p, the dimension f of the hidden layer, and the kernel
size K of the PSTDC operator. To further simplify hyper-parameter tuning, we fixed the historical
dependency horizon at 10 for all three datasets. Taking the PM, s dataset as an example, Figure 6
shows the calibration process of the PSDCN model. Figure 6(a) indicates that the RMSE initially
decreases and then stabilizes as f increases. In general, an increase in f enhances the model’s fitting
ability while also increasing its parameter scale. Therefore, setting f to 32 is a highly appropriate
choice. Figure 6(b) indicates that the RMSE first stabilizes and then increases as K increases. From
Equation (7), it can be observed that the dilation factor increases as K increases. While this enhance-
ment in the dilation factor improves the computational efficiency of the model, it also results in the
loss of certain information, accounting for the decrease in model accuracy as K increases. Therefore,
setting K to 2 is a highly appropriate choice. Similarly, for the traffic and temperature datasets, f and K
were determined in the same manner as described above, with f ultimately set to 32 and K set to 2.

5.4. Quantitative analysis

This subsection first compared the differences in prediction precision between the PSDCN model
and baselines. Then, we compared the differences in computational efficiency between the PSDCN

PM, ¢ Dataset (step=1) PM,; Dataset (step=1)

30 25

28

RMSE

8 16 32 64 128 1 2 3 4 5
Dimension of Hidden Layer Kernel Size of the PSTDC operator
(a) (b)

Figure 6. Hyper-parameter tuning of the PSDCN model on the PM, 5 dataset: (a) the dimension of the hidden layer, and (b) the
kernel size of the PSTDC operator.
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model and baselines. Finally, we compared the differences in the scale of learnable parameters
between the PSDCN model and baselines.

5.4.1. Quantitative analysis of prediction precision

During model training, different random seeds initialize distinct learnable parameters, which
leads to subtle variations in prediction precision of the model. To fairly compare the prediction
precision of the PSDCN model and baselines, we present the optimal metrics of the models under
different random seeds, as summarized in Table 1. The results indicate that the prediction pre-
cisions of the second and third category models exceed those of the first category models. Specifi-
cally, the deep learning models outperform both the machine learning and statistical learning
models in terms of prediction precision. The reason is that deep learning models exhibit superior
nonlinear fitting capabilities, making them more suited for spatio-temporal prediction tasks.
Additionally, the results show that the prediction precision of the proposed PSDCN model is
comparable to that of existing advanced deep learning models, such as the DSTAGNN model,
the STA-ODE model, the GDGCN model, and the ST-GDN model. The reason is that the pro-
posed PSDCN improves computational efficiency and reduces the parameter scale without sacrifi-
cing prediction precision. Furthermore, the results indicate that the prediction accuracy of the
PSDCN model and baselines varies across the three datasets. This variation primarily stems
from differences in the complexity of the spatio-temporal dependencies within each dataset.
For example, temperature data generally exhibit smoother changes, while traffic and PM, ;
data may experience abrupt fluctuations. Based on the t-test and the 5-step prediction results,
Table 2 illustrates the statistical significance of the predictions. The results indicate that the pro-
posed PSDCN significantly outperformed the baselines in most cases. Only one group out of 12
tests failed the hypothesis test at the 5% significance level. Figure 7 illustrates the stability of pre-
diction models with superior precision. The results show that the PSDCN model maintains rela-
tively stable prediction precision across different random seeds, further affirming its ability to
compete with advanced prediction models.

Table 1. Prediction precision (RMSE/MAPE) of the PSDCN model and baselines.

PM, s Dataset Traffic Dataset Temperature Dataset

Models 1-step 5-steps 1-step 5-steps 1-step 5-steps

HA 46.36/72.32 73.80/141.1 8.17/20.32 41.10/281.79 3.81/11.60 5.56/16.97
ST-KNN 41.11/62.66 54.31/102.5 8.69/24.25 10.17/27.08 1.94/5.52 2.84/7.01
BTMF 32.23/50.04 51.81/95.3 10.08/35.4 9.63/25.94 1.49/4.29 2.44/6.88
ST-GCN 28.46/39.47 50.17/89.54 8.67/24.73 9.78/28.67 1.38/3.72 2.34/6.42
BiSTGN 24.99/31.56 49.38/83.06 8.32/20.41 9.02/25.69 1.17/3.18 2.38/6.09
DSTAGNN 23.32/28.70 48.12/80.67 7.05/19.32 8.71/23.27 1.31/3.37 2.24/6.24
STA-ODE 23.78/28.99 47.95/80.37 7.09/19.97 8.82/24.73 1.07/2.88 2.19/5.83
GDGCN 23.43/29.70 47.23/79.43 7.03/19.61 8.69/23.82 1.04/2.72 2.12/5.74
STGDN 23.10/28.52 47.17/78.78 7.03/19.09 8.65/22.78 1.03/2.72 2.09/5.73
PSDCN 23.09/28.43 47.16/78.71 7.05/18.72 8.63/22.52 1.04/2.72 2.06/5.71

Table 2. Statistical significance based on t-test.

PM, 5 Dataset Traffic Dataset Temperature Dataset
Models t-statistic p-value t-statistic p-value t-statistic p-value
DSTAGNN —6.84 0.001 —3.82 0.005 —4.55 0.002
STA-ODE —4.09 0.003 2.03 0.076 -5.26 0.001
GDGCN —-2.91 0.012 2.66 0.028 -3.01 0.016

STGDN -1.79 0.097 2.82 0.022 -2.39 0.043
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Figure 7. Stability of the PSDCN model and baselines across different random seeds: (a) PM, s dataset, (b) traffic dataset, and
(c) temperature dataset.

5.4.2. Quantitative analysis of computational efficiency

In addition to evaluating prediction precision, we conducted a comprehensive analysis of the compu-
tational efficiency between the PSDCN model and various baselines. Given that the proposed PSDCN
model is a deep learning architecture, our comparisons were focused on deep learning models, as
summarized in Table 3. In this context, inference time reflects the speed of online predictions,
while optimization time indicates the efficiency of offline training. The results suggest the PSDCN
model exhibits superior computational efficiency compared to baselines such as ST-GCN,
DSTAGNN, STA-ODE, GDGCN, and STGDN. This can be attributed to the fact that the PSDCN
model carefully adjusts the number of forward propagation using the dilation operation and
hyper-parameter dependency component, reducing the running time of model. The results also indi-
cate that the computational efficiency of the PSDCN model and the baselines varies slightly across the
three datasets. This variation is attributed to differences in the number of graph nodes in each dataset.
Specifically, as the number of graph nodes decreases from the traffic dataset to the temperature dataset
and then to the PM, 5 dataset, the computational efficiency increases accordingly. Additionally, Figure
8 shows that the PSDCN model exhibits a slower running time than the BiSTGN model, yet achieves
higher prediction precision. Notably, the computational efficiency of the proposed PSDCN model sig-
nificantly exceeds that of existing lightweight STGDN model. The reason may be that the overly

Table 3. Running time (milliseconds) of the PSDCN model and baselines with batch size being 256.

Models Time for One Inference Time for One Optimization
ST-GCN PM, 5 Dataset 40.29+2.94 55.18+4.18
Traffic Dataset 276.47 £19.18 368.31 £ 20.18
Temperature Dataset 141.14 = 15.47 171.24 = 16.87
BiSTGN PM, 5 Dataset 29.84 +2.29 4520 + 2.29
Traffic Dataset 49.87 + 3.88 66.38 + 4.73
Temperature Dataset 3419 + 2.22 49.40 + 2.80
DSTAGNN PM, s Dataset 3862 +3.74 49.29 + 4.55
Traffic Dataset 22439 £7.79 325.84 £ 9.29
Temperature Dataset 123.74 £ 14.73 158.51 £ 15.16
STA-ODE PM, 5 Dataset 13521 + 11.78 180.17 + 14.24
Traffic Dataset 987.14 + 30.78 1253.1 + 35.15
Temperature Dataset 367.98 £ 19.76 43442 + 21.67
GDGCN PM, s Dataset 71.84 + 2.64 171.10 + 14.24
Traffic Dataset 208.66 + 10.12 575.55 + 25.35
Temperature Dataset 84.77 + 3.94 304.19 £ 19.17
STGDN PM, 5 Dataset 27.26 £ 1.23 48.10 + 1.38
Traffic Dataset 173.73 £ 15.38 258.77 +17.28
Temperature Dataset 59.47 + 5.76 93.03 + 6.16
PSDCN PM, s Dataset 20.91 = 1.75 35.90 + 2.36
Traffic Dataset 32.46 + 3.84 55.83 + 441

Temperature Dataset 17.95 £ 1.85 31.92 + 5,57
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Figure 8. Prediction precision vs. computational efficiency: (a) inference time on PM, 5 dataset, (b) inference time on traffic data-
set, (c) inference time on temperature dataset, (d) optimization time on PM, s dataset, (e) optimization time on traffic dataset,
and (f) optimization time on temperature dataset.

complex parameter adjustment process in the STGDN model makes it challenging to optimize com-
putational efficiency while maintaining prediction accuracy. However, the hyper-parameter depen-
dency component introduced in this study effectively addresses this challenge.

5.4.3. Quantitative analysis of parameter scale

Similar to computational efficiency, we examined the scale of learnable parameters, as detailed in
Table 4. Our investigation highlights a significant advantage of the PSDCN model over baseline
models regarding the scale of learnable parameters. Moreover, when compared with the lightweight
STGDN model, the PSDCN model also achieves a reduction in the scale of its learnable parameters.
This advantage arises from the substantial reduction in parameter scale achieved through the par-
ameter-sharing mechanism. The results also demonstrate that the PSDCN model maintains a con-
sistent parameter scale across all three datasets. The primary reason is that the parameter sizes of the
PSDCN model are primarily determined by the dimensions of the hidden layers. Since the hidden
layer sizes are identical across the three datasets, this results in an equal number of learnable par-
ameters in the model. Furthermore, Figure 9 presents a scatter plot that visualizes the relationship
between parameter scale and prediction precision. Despite having fewer learnable parameters, the
PSDCN model maintains superior prediction precision.

Table 4. Parameter Scale (bytes) of learnable weights for the PSDCN models and baselines.

Models PM, s Dataset Traffic Dataset Temperature Dataset
ST-GCN 96209 171773 96245
BiSTGN 13509 29477 13249
DSTAGNN 70457 113749 92221
STA-ODE 286138 605572 423653
GDGCN 198980 277580 273420
STGDN 38149 35077 22469

PSDCN 8613 8613 8613
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Figure 9. Prediction precision vs. scale of learnable parameters: (a) PM, 5 dataset, (b) traffic dataset, and (c) temperature dataset.

5.5. Qualitative analysis

This subsection visually illustrates the prediction precision of the PSDCN model. Figure 10 displays
discrepancies between predicted values and actual values in the temporal dimension, while Figure
11 displays variations in the spatial dimension. Our findings reveal that the PSDCN model shows
notably lower prediction precision for multi-step forecasting compared to single-step forecasting,
particularly in time intervals and spatial areas with significant data fluctuations. This observation
aligns with existing research indicating that irregular fluctuations in spatio-temporal data can
affect prediction precision (Wang, Zhang, Cheng, et al., 2024). Therefore, the observed decrease
in prediction precision of the PSDCN model is consistent with these expectations. Furthermore,
despite the marked variation in prediction precision between single-step and multi-step forecasting,
the proposed PSDCN model consistently captures temporal trends and relative spatial distributions
of data accurately, underscoring its strong prediction performance. Leveraging the proven advan-
tages of PSDCN in computational efficiency and parameter scalability, we can deploy the model on
resource-constrained devices to support managerial decision-making. For example, rapid traffic
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Figure 10. Temporal visualization depicting the predicted results of the PSDCN model: (a) predicting one-step on PM, 5 dataset,
(b) predicting five-steps on PM, ;5 dataset, (c) predicting one-step on traffic dataset, (d) predicting five-steps on traffic dataset, (e)
predicting one-step on temperature dataset, and (f) predicting five-steps on temperature dataset.
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Figure 11. Spatial visualization depicting the predicted results of the PSDCN model: (a) actual values on PM, s dataset, (b) actual
values on PM, 5 dataset, (c) actual values on traffic dataset, (d) predicting one-step on PM, s dataset, (e) predicting five-steps on
PM, 5 dataset, (f) predicting one-step on traffic dataset, (g) predicting five-steps on traffic dataset, (h) predicting one-step on
temperature dataset, and (i) predicting five-steps on temperature dataset.

flow prediction can enable precise traffic diversion, while quick air quality prediction can issue
timely alerts to safeguard urban residents from pollution.

5.6. Ablation study

In this subsection, ablation studies are conducted to validate the rationale behind the model design.
Specifically, Table 5 presents the prediction precision of the PSDCN model and its components,

Table 5. Prediction precision (RMSE/MAPE) between the PSDCN model and its components.

PM, s Dataset

Traffic Dataset

Temperature Dataset

Models 1-step 5-steps 1-step 5-steps 1-step 5-steps

PSTDC 24.15/34.32 48.13/82.71 7.53/22.09 8.71/24.32 1.19/3.04 2.19/5.91
PSGDC 25.12/35.12 49.13/84.12 8.23/24.02 8.84/25.12 1.24/3.27 2.31/6.08
PSDCN 23.09/28.43 47.16/78.71 7.05/18.72 8.63/22.52 1.04/2.72 2.06/5.71
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Table 6. Impact of parameter sharing and dilated operations on model predictions.

Designs Precision (PM, 5:RMSE/MAPE) Efficiency (inference/optimization) Scale (bytes)
Dilatated Operations Y 23.09/28.43 20.91/35.90 —

N 23.03/28.07 32.43/51.37 —
Parameter Sharing Y 23.09/28.43 — 8613

N 22.93/27.69 — 18913

while Table 6 illustrates the impact of parameter sharing and dilated operations on model perform-
ance. The results indicate that the prediction precision of the PSTDC component exceeds that of the
PSGDC component, and the PSDCN model outperforms both individual components—PSTDC
and PSGDC—in terms of prediction precision. These findings highlight the significant impact of
temporal correlation on prediction outcomes, underscoring the necessity of integrating both tem-
poral and spatial relationships simultaneously to improve the overall prediction performance of the
model. In addition, the results indicate that the dilatated operation enhances the computational
efficiency of the model without sacrificing prediction precision. On the other hand, parameter shar-
ing significantly reduces the model’s parameter scale, although it may lead to a slight loss in pre-
diction precision. These findings support the use of dilatated operation and parameter sharing.

6. Discussions and conclusions

Lightweight and high-precision prediction models for urban states are anticipated to run efficiently
on resource-limited devices, serving as key technologies for realizing smart city management. How-
ever, many existing models, despite achieving high prediction precision, suffer from overly complex
designs, leading to low computational efficiency, a large number of learnable parameters, and
difficulty in hyper-parameter calibration. To address these challenges, we establish a lightweight
spatio-temporal prediction model, namely the PSDCN model.

In the experimental section, the proposed PSDCN model was validated using PM, s, traffic, and
temperature datasets. Compared to deep learning models with superior precision (Lan et al. 2022;
P. Wang, Zhang, Zhang, et al. 2024; Y. Xu et al. 2023), the proposed PSDCN model not only
demonstrates efficient computational performance but also achieves or approaches the prediction
precision of various baselines, indicating that the PSDCN model can be applied to scenarios requir-
ing fast model training and inference speed. In comparison to existing lightweight models (P.
Wang, Zhang, Cheng, et al. 2024), the PSDCN model strictly controls the scale of learnable par-
ameters and the number of hyper-parameters, reducing both the spatial complexity and the training
difficulty of the model. Additionally, we conducted ablation studies to validate the rationale behind
the parameter-sharing mechanism and dilated operation. Overall, we believe that the PSDCN
model is a valuable spatio-temporal prediction model.

Given that many existing prediction models are constrained by complex designs, the proposed
parameter-sharing mechanism and dilated operation offer substantial potential for widespread
application. On one hand, we can integrate the concepts of parameter sharing and dilated operation
into complex models to simplify the existing network structure without compromising prediction
precision (Guangyue Li et al. 2024; Y. Xu et al. 2023). On the other hand, the PSDCN model can
serve as a base learner for ensemble learning, enabling the construction of a lightweight ensemble
learning model to further enhance prediction precision (Cheng et al. 2019; Jia and Yan 2021).

There are two limitations in this study: (1) Similar to existing graph-based prediction models, the
proposed PSDCN model faces computational bottlenecks when dealing with large graph structures,
especially those with over ten thousand nodes; (2) The proposed PSDCN can be regarded as a base
operator, resulting in suboptimal performance in highly complex scenarios, such as those involving
missing data. To address the aforementioned limitations, future work will concentrate on two key
aspects. First, we will examine the critical value for the number of graph nodes and identify the
maximum number of nodes to which the PSDCN model can be applied. Second, we will enhance
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the existing missing-data-tolerant model by integrating the ideas presented in this work, with the
goal of developing a lightweight, high-precision prediction model for complex scenarios.
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