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ABSTRACT  
Investigating spatial heterogeneity is a crucial aspect of spatial 
analysis. Existing studies have primarily focused on measuring 2D 
geographic distribution, which cannot be directly applied to 
extensive 3D big earth datasets. To address this gap, we propose 
a novel 3D spatial heterogeneity index (3D-SHI) to explore 3D 
spatial heterogeneity in big earth data. First, we introduce some 
new concepts including the Earth cube model and connected 
components to effectively capture 3D spatial heterogeneity. 
Second, we derive the formulation for 3D-SHI and propose a 
connected component model (CCM) to facilitate near real-time 
computation of the index. To elucidate the geographic 
significance of this index, we analyzed its characterization in 
comparison with three traditional methods. In our experiments, 
we simulated 3D datasets to demonstrate the efficiency and 
capacity of the proposed 3D-SHI. Additionally, we used a real- 
world sea temperature dataset from the North Atlantic were 
conducted to quantify high dimensional spatial heterogeneity. 
The experimental results illustrated that 3D-SHI can effectively 
capture changes in spatial heterogeneity and reveals patterns 
that exist across both temporal and spatial dimensions.
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1. Introduction

Spatial heterogeneity, as an important spatial characteristic in the field of geographical 
information system, aimed to characterize the uneven geographic distribution of 
elements, and can be divided into local heterogeneity and stratified heterogeneity (Good-
child 2004; Tobler 2004). Local heterogeneity refers to the variation in attribute values of 
a point compared to its surrounding areas (Fotheringham and Sachdeva 2022), whereas 
stratified heterogeneity signifies the differences between various regions (Wang and Xu 
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2017). Spatial heterogeneity has been extensively employed in spatial data analysis, such 
as geographic zoning, which delineates dissimilar units and creates heterogeneous 
boundaries (Figure 1(a)) (Zhang et al. 2024). Climate zones, land use maps, and geomor-
phology maps are all typical manifestations of spatial heterogeneity (Huang et al. 2023; 
Potapov et al. 2020; Taghizadeh-Mehrjardi et al. 2014; Zhu et al. 2022). However, existing 
studies on spatial heterogeneity primarily focus on two-dimensional geographic analyses, 
including land use change analysis (Potapov et al. 2020) and the identification of El Niño 
– Southern Oscillation (ENSO) through sea surface temperature (SST) anomaly patterns 
(Cai et al. 2018).

Recent advances in Earth observation technology have significantly expanded sensing 
capabilities across air, space, land, and ocean, enabling acquisition of vast amounts of true 
three-dimensional (3D) data (Wang et al. 2022). The availability of extensive Earth data 
underscores the importance of spatial heterogeneity within real-world 3D Contexts. 
Quantifying heterogeneity in true 3D data is essential for accurately representing geo-
graphic phenomena and processes in geographic modeling (Shen et al. 2024; Wu et al. 
2017). Research on the heterogeneity of three-dimensional Earth features has been exten-
sively conducted. In the marine domain, efforts have concentrated on quantifying the 
spatial heterogeneity of physical variables, such as temperature and salinity, and establish-
ing their relationships with oceanic phenomena (Mahadevan 2003; Qin, Zhang, and Yin 
2015). In atmospheric science, the simulation of heterogeneity in pollutant concentrations 
and its correlation with human activities has emerged as a prominent research focus (Fan, 
Xin, and Xiangzheng 2021; Gao et al. 2018). In soil science, detailed investigations have 
been conducted on the relationship between the heterogeneity of soil salinity and moisture 
content, along with the mechanisms of water transmission and their implications for land-
scape ecology (Yang and Yao 2007). To characterize the heterogeneity of Earth’s features in 
three-dimensional space, a common and intuitive approach involves applying existing 
spatial heterogeneity results along specific dimensions in a sliced manner. Each slice is ana-
lyzed as a two-dimensional plane, facilitating the quantification of spatial heterogeneity 
through various statistical metrics. These metrics include spatial autocorrelation indices, 
such as Moran’s I (Moran 1950; Tian, Zhang, and Yuan 2014) and Geary’s C (Geary 

Figure 1. Spatial heterogeneity of geographic elements in different spatial perspectives. (a) in 2D 
space. (b) in 2.5D space. (c) in 3D space.
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1954), which evaluate the degree of spatial correlation. Additionally, measures of spatial 
variability, including semivariograms and their extensions (Matheron 1963), are employed. 
Information entropy indices, such as Shannon entropy, offer insights into the randomness 
and complexity of spatial distributions (Chen and Huang 2018). These metrics are utilized to 
quantify spatial heterogeneity within each slice. The quantification results for each slice are 
subsequently analyzed along the chosen dimension to reveal underlying geographic patterns 
(Qin, Zhang, and Yin 2015; Shen et al. 2024; Sun et al. 2024). The second approach empha-
sizes inter-slice heterogeneity, building upon the spatial heterogeneity quantification within 
each slice. This is typically accomplished through statistical methods, such as the geographi-
cal detector Q statistic, which quantifies spatial differentiation between slices (Wang and Xu 
2017). The results of intra-slice and inter-slice heterogeneity are then integrated to provide a 
comprehensive representation of three-dimensional spatial heterogeneity (Luo et al. 2023; 
Sun et al. 2024; Zhao et al. 2020).

However, the distribution of true 3D spatial elements does not align neatly with stra-
tified divisions, as shown in Figure 1(b). True 3D elements typically have more complex 
distributions; elements with spatial autocorrelation often expand in various directions, 
forming irregular shapes in space (Figure 1(c)) (Shen et al. 2024; Ying et al. 2021). 
Thus, a 2D slice perspective cannot fully capture the changes in spatial heterogeneity 
arising from irregular shapes formed by the expansion of elements in all directions 
within a 3D space. Hence, how to measure spatial heterogeneity on a 3D scale earth 
system element, such as soil, water, and atmosphere, remains a pressing research chal-
lenge (Borrelli and Relyea 2022; Zhao et al. 2019).

Meanwhile, big Earth data are rapidly evolving toward higher dimensions, higher res-
olutions, and massive data volumes. For example, marine environmental elements, sup-
ported by projects such as the Argo program (Roemmich et al. 2019) and the Global 
Drifter Program (He et al. 2024; Swenson and Ams 2000), now generate high-quality, 
long-term, high-resolution gridded numerical products on a large scale. The representa-
tive Institute of Atmospheric Physics version 4 dataset (IAPv4), which provides global 
monthly gridded temperature and heat content data since 1940, has a horizontal resol-
ution of 1° × 1° and covers depths of 1–6000 meters (119 layers) in the ocean (Cheng 
et al. 2024). Figure 2 presents a set of data from this dataset, clearly revealing an initial 
observation of the three-dimensional spatial heterogeneity of sea temperature. For 
atmospheric elements, using carbon dioxide as an example, advancements in ground- 
based CO2 observation stations and passive satellite detection technologies have 
enhanced temporal and spatial resolution. CO2 concentration data at a global scale 
can achieve a spatial resolution of 1° × 1°, while areas can reach a spatial resolution of 
up to 30 meters and a vertical resolution of up to 100 meters (He et al. 2022; Liang 
et al. 2022). Soil elements have also benefited from advances in data collection technol-
ogies, achieving a horizontal resolution of 1° × 1° at the global scale and up to 1 km ×  
1 km in local areas, with vertical coverage up to 0–289 meters (Li et al. 2022; Orgiazzi 
et al. 2018; Pelletier et al. 2016). The true 3D distributions of various Earth system 
elements present highly complex patterns, making sliced spatial heterogeneity solutions 
inadequate for meeting the practical needs of true 3D Earth system elements.

The increasing dimensions, resolution, and data volume of Big Earth data facilitate the 
representation of finer-scale and more accurate geographic patterns in three-dimensional 
space (Guo et al. 2017). The higher dimensionality of Big Earth data requires the 
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representation of spatial heterogeneity from a genuinely three-dimensional perspective 
to effectively illustrate the multi-dimensional spatial patterns of geographical features. 
Enhanced resolution allows the dataset to capture more detailed and realistic complex 
forms, thereby increasing the demands on methodologies to accurately represent this 
complexity. Furthermore, the substantial volume of data leads to significant compu-
tational loads, imposing elevated requirements on computational resources and perform-
ance. However, existing methods necessitate multiple linear computations for each 
sample point, resulting in considerable time and spatial complexity when calculating het-
erogeneity within massive datasets. This complicates the accurate representation of het-
erogeneity in true three-dimensional space (Fortin et al. 2012; Gaudart et al. 2007; Li, 
Wang, and Wang 1998). Consequently, Big Earth data imposes heightened demands 
on methodologies aimed at quantifying three-dimensional spatial heterogeneity: 

(1) Higher-dimensional heterogeneity representation requirements: Representing het-
erogeneity in 3D space requires fully accounting for all dimensions within 3D space.

(2) Increased demands for computational efficiency: The sheer volume of data places 
more stringent requirements on the efficiency of representation algorithms.

In this study, we propose a method for characterizing the 3D spatial heterogeneity of big 
Earth data, called 3D spatial heterogeneity index (3D-SHI). This method quantifies spatial 
heterogeneity by recording information on voxel-connected components and calculating 
their distribution scale. The 3D-SHI presents three key advantages. First, it converts 
regions with complex morphologies into connected components within a voxel data 
model and preserves connectivity information via a connected component model 

Figure 2. IAPv4 sea temperature gridded dataset for June 2020.
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(CCM). This model stores connectivity information as a two-dimensional matrix, with 
rows representing voxel values and columns representing the scale of connected 
components. This structure makes 3D-SHI both universally applicable and capable of con-
ducting near-real-time analysis on large-scale geospatial data. Second, 3D-SHI quantifies 
the distribution scale of connected components to accurately measure the spatial hetero-
geneity of true 3D Earth system data. Unlike methods that address heterogeneity on a 
sliced basis, it evaluates spatial heterogeneity across all dimensions in 3D space, offering 
a novel perspective for understanding spatial heterogeneity at a 3D scale. Third, 3D-SHI 
enables the quantification of 3D spatial heterogeneity within a specific range of interest 
by setting adjustable weights, thereby providing considerable flexibility.

The rest of this paper is organized as follows. Section 2 presents preliminary concepts, 
including the big Earth data, voxel data model, connected components, and homo-
geneous connected components. Section 3 introduces the deviation of 3D-SHI and its 
algorithm. Section 4 provides a detailed analysis of the characterization capabilities of 
3D-SHI. Section 5 demonstrates the use of this method both simulated datasets and a 
sea temperature dataset of the North Atlantic as case studies. Finally, Section 6 summar-
izes the conclusions and future research directions.

2. Preliminary

In this section, we will explain some terms, including big Earth data, Earth cube model, 
connected component and homogeneous connected component. These concepts will 
serve as the foundation for the subsequent derivation of 3D-SHI.

2.1. Definition 1 big earth data

A scientific big data set with spatial features that records information about Earth 
elements (Figure 3). It is characterized by its massive volume, heterogeneity, multiple 
time phases, and multi-scale properties, exhibiting strong spatiotemporal correlations 
(Guo et al. 2014; Guo, Wang, and Liang 2016). Earth data can encompass a wide 
range of features with spatial information, including ocean temperature, soil salinity, 
carbon dioxide concentration, and other relevant element data, all of which constitute 
big Earth data (Rew and Davis 1990; Wang et al. 2013). For managing such Earth 
data, netCDF has emerged as a widely adopted file format standard due to its efficient 
data storage and management capabilities, support for multidimensional data, metadata 
management, and ability to handle large volumes of array-oriented data. Notably, ERA5, 
the most representative global climate and weather reanalysis dataset, utilizes netCDF as 
its file format standard (Hersbach et al. 2020).

2.2. Definition 2 earth cube model

Inspired by netCDF, we propose a data model for big Earth data called Earth Cube 
Model. It consists of a set of Earth element voxels that store the information of elements 
within a 3D space of the Earth. Figure 4(b) shows a typical earth cube model f (x):V → T, 
where the model V , Z3 is composed of a set of voxels x [ V , x = {x1, . . . , xN}, with 

N being the number of voxels.
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The voxel is the basic unit of this data model. A voxel is a cubic geometric body repre-
senting a collection of element features within an actual spatial area, with side lengths 
corresponding to the dataset’s minimum resolution in each direction. In practical scen-
arios, the center point or corner (i.e. vertex) of the cube can be used to represent the 
entire voxel (Xu, Tong, and Stilla 2021). Figure 4(a) shows a basic voxel. If two voxels 
share a face, vertex, or edge, these two voxels are considered adjacent. For every xk, 

Figure 3. Big Earth data. A scientific big data set with spatial features that records information about 
Earth elements.

Figure 4. Schematic of Earth cube model and basic voxel unit. (a) Basic voxel unit xi. (b) Typical Earth 
cube model f (x):V → T .
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there is a discrete voxel value tj, with a range of a closed set T = {t1, t2, . . . , tM}, and 
Dt = ti+1 − ti.

The Earth cube model effectively translates three-dimensional scale information into 
discrete voxel units, making it an ideal data model for representing elements of the three- 
dimensional Earth system. By storing feature information – such as gas concentration, 
soil salinity, ocean temperature, and other parameters – within these voxels, the model 
enables the representation of various Earth system components, including water, soil, 
air, and life, thereby facilitating the simulation of diverse geographical phenomena 
(Meyer et al. 2018; Shen et al. 2006; Shen, Takara, and Liu 2016; Van Lancker et al. 
2017). Moreover, utilizing voxels as discrete units allows for an accurate depiction of 
the morphology and boundaries of elements exhibiting heterogeneous phenomena in 
three-dimensional space, thus providing a foundational model for investigating hetero-
geneity within geographical contexts (Xu et al. 2018).

2.3. Definition 3 connected component

As for an Earth cube model f (x):V → T, if there exists a subset V # V , and for any two 
voxels in V, there exists a sequence of voxels xi, xj, . . . , xk, with all voxels in the sequence 
having the same value t [ T. If there is no such that x � V and adding x to V would 
still maintain connectivity, then V is a connected component in V .

It should be noted that the connected component can vary depending on the voxel 
adjacency method. The most commonly used is the 26-adjacency, which means that if 
a voxel is adjacent to any of its 26 neighboring voxels with the same voxel value, then 
the two voxels are considered connected. Figure 5 shows a typical example of a connected 
component formed by the 26-adjacency method, where all voxels in V have the same 
value t = 4, and any two voxels xi, xj in V can form a continuous sequence of voxels 
with t = 4.

2.4. Definition 4 homogeneous connected component

A connected component within the same Earth cube model f (x):V → T that has the 
same voxel value t and the same scale u (i.e. the number of voxels is the same). For 
the voxel value t and scale u, the number of homogeneous connected components can 
be represented as Cf (t, u).

Figure 5. Typical example of a connected component with 26-adjacency. All voxels in V have the 
same value t = 4.
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3. 3D-SHI (3D-spatial heterogeneity index)

In this section, we start by deriving and defining the 3D-SHI from the perspective of connected 
components. Secondly, we propose the CCM tool, which can store information about the 
scale of connected components, and demonstrate the algorithm for 3D-SHI using CCM.

3.1. Definition of 3D-SHI

We first consider the size of each connected component (CCS) and assign a scale weight 
to each connected component (i.e. multiply by itself) to obtain each term. This gives 
larger-scale connected components a greater weight. Then, we take the square root of 
the sum of all terms and divide it by the sum of all CCS to obtain the scale of spatial con-
nected component (SSCC).

SSCC =
���������􏽐

CCS2
􏽰

􏽐
CCS

=

�������������������
􏽐tm

i=t1

􏽐Ns

j=1
Cf (i, j)j2wi

􏽳

􏽐tm

i=t1

􏽐Ns

j=1
Cf (i, j)jwi

(1) 

The sum of all CCS can also be represented by N:

N =
􏽐tm

i=t1

􏽐Ns

j=1
Cf (i, j)jwi (2) 

where N is the total number of voxels of interest in the dataset (which is the total number of 
samples when the weight w is not considered); i is the value of the voxels included in the con-
nected component Vk in f (x):V → T, with i [ T = {t1, t2, . . . , tM}; j is the scale of Vk; Ns 
is the maximum scale of the connected component corresponding to the voxel value; Cf (i, j) 
is the number of homogeneous connected components with voxel value i and volume j; wi 
represents the weight assigned to the voxel value i, typically, the weight for the voxel value 
of interest k is set to wk = 1, and the weights for other voxel values are set to 0.

The index quantifies the scale at which voxel units form connected components in space. 
A larger index value indicates that the connected components in space tend to be distributed 
in the form of large-scale connected components. Note that SSCC is related to the total 
number of voxels N. To serve as a universally applicable method for characterizing the het-
erogeneity of three-dimensional space, it is necessary to eliminate the impact of different N 
on the index. Therefore, we linearly map the value of SSCC to the interval [0, 1] to obtain the 
three-dimensional spatial heterogeneity index 3D-SHI:

3D − SHI = 1 −
SSCC −

1
N

1 −
1
N
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􏽐tm
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Cf (i, j)jwi −
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(3) 

where i, j, Cf (i, j), wi in Equation (3) have the same meanings as in Equation (1).
The 3D-SHI has a value range of [0,1]. When 3D-SHI takes the minimum value of 0, 

SSCC reaches its maximum value of 1, corresponding to the scenario with the highest 
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spatial heterogeneity: in the Earth cube model f (x), any voxel xi has no other voxel xj with 
which it can form a connected component, meaning all connected component scales are 
1. Conversely, if any two voxels xi and xj in f (x) can form a connected component, the 
scenario exhibits minimal spatial heterogeneity; in this case, SSCC reaches its minimum 
value of 1/N, and 3D-SHI reaches its maximum value of 1. A smaller 3D-SHI indicates 
that the space is more likely to be dominated by larger-scale connected components, 
hence the spatial heterogeneity is lower.

The weight wi of a voxel value i typically takes values of 0 or 1, serving a filtering role. 
By default, all wi are set to 1. A value of 1 indicates that the contribution of the connected 
components under this voxel value to the heterogeneity is considered, while a value of 0 
means that the contribution of all connected components under this voxel value is 
ignored in the calculation of 3D-SHI. By setting the weight of the voxel value of interest 
to 1 and the weights of other voxel values to 0, it is possible to filter and compute the 
spatial heterogeneity for one or more specific voxel values. In this scenario, it should 
be noted that a 3D-SHI value of 0 may indicate either the absence of voxels of interest 
within the Earth cube model or that all voxels with the voxel value of interest form a 
single connected component. These situations need to be analyzed further. A 3D-SHI 
value approaching 1 similarly suggests that all voxels with the voxel value of interest 
tend to be distributed as individual discrete voxels within 3D space.

3.2. Algorithm

From Equation (3), the key to calculating the 3D-SHI is to count the number of homo-
geneous connected components within the Earth cube model. To improve computational 
efficiency, we have proposed a new algorithm called CCM (Connected Component 
Model) to store all homogeneous connected component information. The CCM is 
denoted as CCMf (cn, am) and provides a statistical representation by calculating the 
binary conditional probability density function of the voxel values in f (x):V → T. 
Specifically, CCMf (cn, am) = Cf (cn, am). The CCM generated by f has a fixed number 
of rows equal to M (the number of elements in set T) and a dynamic number of 
columns equal to N (the maximum scale of the connected components in f ).

Figure 6 illustrates the entire process of calculating 3D-SHI for an example Earth cube 
model f (x) using CCM: As shown in Figure 6(a), if the original voxel data is numerical, a 
connected component threshold width needs to be set based on the actual scenario to 
form a voxel value mapping f → g, generating a connected component Earth cube 
model g(x). Threshold selection plays a pivotal role in voxel value mapping, where 
higher values emphasize large-scale spatial trends while lower values resolve fine-scale 
spatial patterns. Our heuristic determination method leverages the characteristic var-
iance reduction trend observed with increasing threshold values. However, after reaching 
a certain threshold, the rate of variance reduction diminishes significantly. This juncture 
indicates the optimal threshold. The specific procedure is outlined as follows: 

(1) Define an equally-spaced candidate threshold list W = [w1, w2, . . . , wn], where 
w1 = mn and wn = mx represent the minimum and maximum values of the 
threshold range with a constant step size s, such that wi+1 = wi + s for 
i = 1, 2, . . . , n − 1;

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9



(2) Iterate through the list, and for each candidate threshold wi, perform voxel value 
mapping on the data;

(3) Compute the variance vi of the transformed data and derive the second-order finite 
difference D2V(i) from the variance sequence, as defined in Equation (4).

(4) Select the threshold corresponding to the maximum D2V as the optimal mapping 
value wbest.

(5) To enable comparable spatial heterogeneity analysis across scenarios, we develop an 
extremum-based standardization approach: deriving a reference threshold w* as the 
mean of maximum wmax and minimum wmin optimal thresholds from Step (4), 
which is then uniformly implemented for consistent cross-scenario evaluation.

D2V(i) = vi+1 − 2vi + vi− 1, 1 ≤ i ≤ n − 1 (4) 

where i indexes the threshold list W = [w1, w2, . . . , wn], vi is the variance at wi, and 
D2V(i) (second-order difference at wi) quantifies the acceleration of change – larger 
values correspond to sharper transitions.

As shown in Figure 6(b), the g(x) is input into CCM calculation tool, which creates 
and maintains a union-find (UF) set based on g(x), keeping track of all connected com-
ponents in the model; Then, as shown in Figure 6(c), the process recursively traverses 
V → g(x), checking if each voxel v has already been assigned to a known connected com-
ponent. If not, the process starts from this voxel and performs Area expansion to check 
for connectivity. If connectivity is established, the UF is updated; After the recursion is 
completed, the matrix CCM shown in Figure 6(d) is generated. Finally, we input the 
output CCM into Equation (3) to calculate the 3D-SHI value.

The bottleneck of the algorithm arises from the fact that, although the Union-Find (UF) 
data structure is employed to maintain the connectivity information of all voxels, each 
find and union operation has a time complexity of O(n) (Galler and Fischer 1964). 

Figure 6. Example of CCM Calculation for 3D-SHI. (a) Model mapping process. (b) Initialization of UF. 
(c) Recursive updating of the union-find process. (d) Generation of CCM. (e) Calculation of 3D-SHI 
based on the output CCM.
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This leads to considerable time consumption, particularly with large datasets. To address 
this issue, we introduced two key optimizations:

First, we enhanced the Union-Find structure itself through path compression and union 
by rank (Gao et al. 2008), which reduces the average time complexity of each find and union 
operation to nearly constant time. Second, to mitigate the problem of redundant voxel 
lookups, we implemented memoization, caching the lookup results (i.e. the root nodes) for 
each voxel to avoid repeated lookups. The optimized algorithm is detailed in Algorithm 1.

Additionally, in Table 1, we analyze the time complexity of the algorithm. The results 
indicate that the optimizations reduce the average time complexity of the Union-Find 
operations to nearly constant time, thereby bringing the overall time complexity down 
to O(n) and the space complexity to O(n2). This enhancement enables the algorithm 
to manage large-scale datasets and perform near-real-time 3D-SHI computations. Fur-
thermore, the algorithm demonstrates significant potential for parallel computation. 
The Union-Find structure can utilize local subtree path compression and parallel 
query operations, necessitating only a global cache to manage and update subtrees 
through deferred merging and updates.

Algorithm 1: 3D-SHI Calculation through CCM with Optimized Union-Find

Input: Earth cube model f (x), threshold width, union-find data structure UF.
Output: 3D-SHI value.

1: g(x) ← Apply threshold width to f (x); // Generate connected components Earth cube model g(x)
2: Initialize UF, Cache; // Initialize union-find and memoization cache
3: for each voxel v in g(x) do
4: if v is not assigned to a component then
5: Start new connected component from v; // Perform Area Expansion
6: Update UF with new connected component;
7: end if
8: Perform path compression in UF; // Optimize UF structure
9: Cache[v] ← Find(v); // Memoize the result of Find
10: end for

11: Initialize CCM with dimensions |attributes| × |connected components|;
12: for each voxel v in g(x) do
13: root ← Cache[v]; // Get the root from Cache
14: voxel value ← f (v); // Get the value of the voxel
15: // Increment the CCM matrix entry for the associated attribute and component
16: CCM[voxel value, root] ← CCM[voxel value, root] + 1; // Add 1 to the existing value
17: end for

18: for each union operation between components do
19: Union by rank; // Union by rank optimization
20: end for

21: 3D − SHI ← Compute 3D − SHI using Equation (3) with CCM
22: return 3D − SHI;

Table 1. Algorithm time complexity analysis.
Lines Complexity Description

Line 2 O(n) Initialize union-find and generate model process
Lines 3–10 O(na(n)) Path compression and find operations for all voxels; a(n) refers to the inverse Ackermann 

function, operations that depend on a(n) almost constant time
Lines 11–17 O(n) Generation of CCM based on union-find results
Lines 18–20 O(na(n)) Perform union by rank operations for each union call
Total O(n)+ O(na(n))+ O(n)+ O(na(n)) ≈ O(n)
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4. Characteristics of 3D-SHI

From the perspective of connected components, spatial heterogeneity can be expressed 
by the distribution characteristics of connected components at different scales. 
Figure 7 shows three scenarios with connected components of different scales, and 
thus the degree of spatial heterogeneity in the scenarios also varies significantly. An 
obvious conclusion is that spaces distributed in the form of large-scale connected com-
ponents tend to have less heterogeneity. We find that large-scale connected components 
have a negative contribution to the increase in spatial heterogeneity.

Hence, the 3D-SHI focuses on connected components as the perspective of study. 
Compared to traditional two-dimensional spatial heterogeneity statistical methods, the 
3D-SHI can also reflect differences in results under its different spatial distribution scen-
arios, making this method an extension of spatial heterogeneity methods. To verify this, 
we first designed a scenario with different spatial distributions in a two-dimensional 
plane from the perspective of traditional statistical methods, as shown in Table 2: The 
six scenarios from left to right represent a change process from completely discrete to 
completely aggregated spatial distribution, with spatial heterogeneity gradually decreas-
ing. Table 2 shows the calculation results of 3D-SHI and three typical methods (Moran’s 
I, semivariograms and spatial entropy). We find that (Figure 8):

Figure 7. Examples of scenarios with different spatial heterogeneity levels. Noted that the same 
grayscale areas that are spatially adjacent represent connected components.

Table 2. Calculation results of 3D-SHI and three typical spatial heterogeneity statistical methods for 
scenarios with six different spatial distributions. Noted that the line of the sill ‘–’, represented by a 
large Nugget value, makes the Sill value of no practical significance.

Scenarios

Methods Results

3D-SHI 1.000 0.886 0.707 0.655 0.500 0.000
Moran’ s I Index −1 −0.126 0 0.352 0.924 1

p-value 0.001 0.001 0.127 0.001 0.001 0.001
Semivariograms Nugget 2.5 1.47 1.2 0.7 0.2 0

Sill – – – 4.1 2.0 0
Spatial Entropy 1.38 1.38 1.38 1.38 1.38 0
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3D-SHI can also identify changes in the magnitude of heterogeneity under different 
spatial distributions. In the extreme scenarios at both ends, the 3D-SHI achieves 
extreme values opposite to those of Moran’s I. The scenario on the far left corre-
sponds to the maximum value situation. Conversely, the minimum value of 0 corre-
sponds to the scenario on the far right. However, the 3D-SHI cannot obtain a 
determinate value similar to 0 like Moran’s I in spatially random distribution, and 
such distribution is not the focus of our attention in the quantification of spatial het-
erogeneity issues.

Furthermore, 3D-SHI effectively detects the emergence of local clusters in scenarios 
characterized by a discrete or scattered overall spatial distribution, yet locally aggregated 
patterns. In cases of relatively random and discrete spatial distributions, 3D-SHI demon-
strates stability in quantifying spatial heterogeneity, even when the semivariogram is 
unable to determine the Sill value due to pronounced heterogeneity. This capability 
enables 3D-SHI to identify small-scale connected components. Furthermore, in large- 
scale datasets, this feature facilitates the quantification of local geographic phenomena 
across broader areas. Additionally, 3D-SHI incorporates considerations of local spatial 
autocorrelation, which allows it to monitor changes in spatial heterogeneity, even 
when voxel values remain unchanged but the spatial distribution varies. Consequently, 
3D-SHI is highly generalizable, supporting comparative analyses of heterogeneity 
across various scales and geographic contexts.

The 3D-SHI assigns greater significance to large-scale connected components, making it 
particularly effective in characterizing spatial heterogeneity in scenarios where the form 
and scale of these components fluctuate. These scenarios can be categorized into two 
types based on the variations in the scale of connected components. The first scenario 
involves the aggregation and expansion of large-scale connected components, with 
typical phenomena including the initial aggregation of water bodies that form large- 

Figure 8. 3D voxel datasets under four different scenarios. (a) Case a, the baseline scenario. (b) Case 
b. (c) Case c.
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scale connected components during the development of oceanic water masses (Hu et al. 
2017), the construction of large-scale urban green spaces (Willcock et al. 2021), and the 
emergence of atmospheric phenomena (Resplandy et al. 2024). The second scenario 
entails the fragmentation of large-scale connected components, with specific phenomena 
such as the splitting of oceanic water masses (Hu et al. 2017) and (Liao et al. 2013).

5. Case study

5.1. Experimental datasets

5.1.1. Simulation dataset
Considering the emergence of massive amounts of data with vast increases in data 
volume and spatial resolution (Wang et al. 2022), we design four 3D voxel datasets 
shown in Figure 9, aimed at simulating the representation capability of the method 
from a three-dimensional perspective and within large datasets:

Each dataset consists of dimensions measuring (60, 60, 60), resulting in a total of 
216000 data samples, with discrete voxel values ranging from 1 to 8. Different colors 
are used to represent these various voxel values. The distribution of voxels for each of 
the eight voxel values follows a normal distribution based on the total number of 
voxels assigned to each value. 

(1) Case a (Figure 9(a)): This represents the baseline scenario, where voxels are ran-
domly assigned to generate connected components. All generated domains are con-
strained to a maximum volume of 300, making this scenario exhibit the least 
heterogeneity among the four scenarios examined.

Figure 9. Sea temperature data at different depths for June 2023 in the IAPv4 dataset.

14 P. SUN ET AL.



(2) Case b (Figure 9(b)): Building upon Scenario 1, this case introduces two large con-
nected components with volumes of 1000 and values of 1 and 8,. The original pos-
ition voxels are randomly assigned to regions outside these large connected 
components, simulating a situation where large-scale connected components 
appear locally.

(3) Case c (Figure 9(c)): This scenario also builds on Scenario 1, incorporating two large 
connected components with volumes of 6000 (value 4) and 5000 (value 5) into the 
Earth cube model. The original position voxels are again randomly assigned to 
areas outside the large connected components. Notably, the scale of the two inserted 
connected components is significantly larger than the total volume of all connected 
components in the baseline scenario, illustrating a typical case of large-scale con-
nected component aggregation of attribute values within the Earth cube model.

5.1.2. North Atlantic Sea temperature dataset
In the ocean, the spatial heterogeneity of sea temperature reflects the structure of temp-
erature distribution (Wang et al. 2024; Zhang et al. 2023). This distribution structure is 
strongly correlated with heat transport and exchange in the ocean, as well as the distri-
bution and interaction of various water masses. The heterogeneity of temperature distri-
bution can indirectly indicate differences in heat transport patterns within a region 
(Cheng et al. 2022; Yang et al. 2020).

To comprehensively validate the capability of 3D-SHI to indicate spatial heterogeneity 
under different scenarios, we selected the IAP Global Ocean Heat Content 1° grid data 
set, fourth edition (IAPv4), from the Institute of Atmospheric Physics, Chinese 
Academy of Sciences (Cheng et al. 2024), Figure 10 presents the sea temperature data 
at various depths in the dataset for June 2023. The study period spans 12 months 
from January to December 2023. We identified two distinct areas in the North Atlantic 
as the primary study regions, as illustrated in Figure 11(a): the Greenland-Iceland Area 
(designated as Area 1 in this paper), a critical region for the formation of North Atlantic 
Deep Water (NADW) (Larkin et al. 2022), which extends from 0°W to 15°W longitude 

Figure 10. Schematic figure of the study area selection. (a) Horizontal Areal selection: Area1 Green-
land-Iceland Area (formation area of North Atlantic Deep Water); Area2 North Atlantic Current Area. (b) 
Vertical Areal division: Upper layer Euphotic Zone, depth 0–200 m; Middle layer Mesopelagic Zone, 
depth 200–1000 m; Semi deep sea layer Bathypelagic Zone, depth 1000–4000 m.
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and from 60°N to 80°N latitude; and the North Atlantic Current Area (designated as Area 
2), characterized by the upwelling of warm water, which ranges from 60°E to 80°E longi-
tude and from 25°N to 40°N latitude (Fröhle, Handmann, and Biastoch 2022). Addition-
ally, the area is subdivided into three depth layers, as shown in Figure 11(b): the upper 
euphotic zone (0–200 m), the middle mesopelagic zone (200–1000 m), and the bathype-
lagic zone (1000–4000 m). The horizontal area and depth partitions combine to form six 
sub-study areas.

Figure 11(a) presents the integrated sea temperature data (January–December 2023) 
from both study areas. For 3D-SHI computation, we initialized voxel value mapping 
using a candidate threshold list W ranging from 0.5 to 9.5 with 0.5 intervals. The 
second-order variance difference analysis based on the algorithm in Section 3.2 
(Figure 11(b)) determined 1.5°C to be the optimal threshold. Notably, the lowest temp-
erature in the dataset, −4.38°C, serves as the baseline, and the range from −5°C to −3.5°C 
is assigned a voxel value of 1, with subsequent voxel values increasing accordingly.

5.2. Simulation experiment results

For the simulation experiment, we first calculated 3D-SHI for the four scenarios, which is 
shown in Figure 12. We evaluate the performance of 3D-SHI against three established 
spatial analysis methods (Moran’s I, semivariogram, and spatial entropy) applied to 
the 3D simulation dataset. Quantitative comparisons of computational accuracy and pro-
cessing time are presented in Table 3. For benchmarking purposes, Table 3 additionally 
reports the runtime performance of Moran’s I and spatial entropy when implemented on 
60 equally-spaced 2D slices along the depth axis. The complete 2D slice-based analytical 
results are graphically displayed in Figure 13. All computations were carried out on an 
Intel® Xeon® Silver 4216 × 64 workstation. We find that:

Firstly, the 3D-SHI is more sensitive to changes in the scale of large-scale connected 
components. The 3D-SHI in Scenario 2 decreases compared to Scenario 1, albeit not 
markedly. This is attributed to the presence of larger-scale connected components for 
voxel values 1 and 8 within the scenario, without significant changes in the distribution 

Figure 11. Statistical analysis of experimental results. (a) Distribution of sea temperature across 
different months. (b) Comparative variance analysis across months using multiple threshold criteria.
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Table 3. Calculation results of 3D-SHI and five typical spatial heterogeneity statistical methods for 
simulation datasets. Noted that the average CPU time includes both data preprocessing and 
method execution time.

Methods

Calculation Results

Average CPU Time (s)Case a Case b Case c

3D-SHI 0.925 0.886 0.707 0.191
Moran’ s I (3D) Index 0.2175 0.2177 0.228 79.43

p-value 0.001 0.001 0.001
Semivariograms (3D) Nugget 0.02 0.03 0.03 234.47

Sill 4.8 4.8 4.7
Spatial Entropy 

(3D)
2.07 2.07 2.07 0.124

Moran’ s I 
(2D, 60 slices)

– – – 7.792

Spatial Entropy 
(2D, 60 slices)

– – – 0.132

Figure 13. Moran’s I (all p < 0.05) and spatial entropy across 60 depth slices.

Figure 12. Simulation dataset experiment 3D-SHI calculation results. Noted that ’Global’ refers to the 
global calculation results, while the others refer to the voxel-wise calculation results.
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of the largest connected component volumes. In contrast, the connected components 
introduced in Scenario 3 are significantly larger than all other connected domains, result-
ing in a substantial decrease in the 3D-SHI for Scenario 3 compared to the other two 
scenarios. This observation provides empirical evidence of the greater contribution of 
large connected components to the 3D-SHI.

Secondly, the calculations of 3D-SHI for each voxel value more accurately detect 
changes, elucidating the sources of heterogeneity and enhancing the overall 3D-SHI. Scen-
ario 2 differs from Scenario 1 solely by the insertion of a connected component for voxel 
values 1 and 8. The significant decrease in the 3D-SHI values for these voxel values 
accounts for the difference from Scenario 1. Furthermore, the global 3D-SHI values for 
Scenario 3 are significantly lower than those for the other scenarios, which corresponds 
to the 3D-SHI values for voxel values 4 and 5 being at a higher level, while the 3D-SHI 
for other voxel values shows no significant difference compared to the other two scenarios.

Thirdly, within the realm of big data, 3D-SHI can achieve near-real-time speeds in 
quantifying changes in spatial heterogeneity. Results from the three traditional 
methods exhibit minimal variation across the three scenarios, with spatial entropy calcu-
lations revealing almost no differences. This underscores the limitations of traditional 
methods in representing small-scale spatial aggregation phenomena within large data-
sets, while 3D-SHI effectively complements and enhances existing spatial characteriz-
ation techniques. Moreover, 3D-SHI demonstrates a significant advantage in 
computation time. In a 3D dataset comprising 216000 samples, the 3D-SHI method exhi-
bits superior performance compared to conventional techniques. Specifically, it outper-
forms Moran’s I, which has an average computation time of approximately 80 s, and the 
semivariogram approach, which averages around 230 s. Although the implementation of 
Moran’s I and spatial entropy on 60 2D slices significantly reduces runtime in compari-
son to full 3D processing, these slice-based methods inherently overlook heterogeneity 
along the axis perpendicular to the slices. In contrast, the 3D-SHI method effectively cap-
tures heterogeneity in all spatial dimensions while completing calculations over 800 times 
faster, requiring merely 0.19 s. This result conclusively demonstrates the superiority of 
our algorithm for large-scale geospatial data analysis.

5.3. Spatial and temporal dimensional heterogeneity of the North Atlantic Sea 
temperature areas

We first calculated 3D-SHI for six areas across different months, with the results pre-
sented in Figure 14. We find that heterogeneity shows significant differences both hori-
zontally and vertically. Horizontally, the 3D-SHI for all layers in Area 1 is markedly 
greater than that in Area 2, indicating that Area 1 is more characterized by small-scale 
fragmented sea temperature connected components, leading to more frequent heat 
exchange phenomena. Vertically, the two areas exhibit similar spatial heterogeneity 
characteristics across different depth layers; the bathypelagic zone demonstrates signifi-
cantly lower heterogeneity compared to the upper and middle layers. The heterogeneity 
in the upper layer is slightly less than that in the middle layer yet it remains high, exceed-
ing 0.9, which reflects the spatial heterogeneity across different depth zones.

On the temporal dimension, heterogeneity in the various areas also displays distinct 
differences. Figure 14(b–d) illustrate the calculation results for the six sub-areas, 
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indicating that the spatial heterogeneity of all sub-areas fluctuates throughout the year, 
with a clear increase followed by a decline in heterogeneity between May and October. 
Additionally, in Area 1, the increase in spatial heterogeneity at different depth layers 
exhibits a clear time lag feature, with the timing of the decrease occurring progressively 
later as depth increases. This change in heterogeneity may be linked to the formation 
mechanism of NADW. In contrast, while Area 2 also shows an increase in heterogeneity 
across different depth layers, it lacks a pronounced time lag feature. The differences in the 
temporal fluctuations and lag characteristics of spatial heterogeneity between the two 
areas reflect the temporal changes in temperature structure.

5.4. Discussion

3D-SHI quantifies the scale of connected components within the Earth Cube Model to 
characterize three-dimensional spatial heterogeneity in big Earth data. This metric 

Figure 14. 3D-SHI calculation results for six sub-areas. (a) Summary of monthly 3D-SHI calculations for 
the six sub-areas. (b–d) Calculation results for each sub-area, where each column represents a 
different large area, and each row represents the same depth partition.
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processes several key features: firstly, it demonstrates high sensitivity to variations in the 
size of large connected components. Additionally, 3D-SHI can accurately detect changes 
for each individual value, thereby elucidating the sources of heterogeneity. Consequently, 
it serves as a robust indicator of spatial heterogeneity across different scenarios, including 
fluctuations in the magnitude of heterogeneity across various spatial distributions. Simu-
lation experiments and case studies further illustrate that 3D-SHI effectively reveals 
spatiotemporal heterogeneity patterns by assessing spatial heterogeneity in three 
dimensions.

Moreover, 3D-SHI exhibits considerable potential for high-dimensional datasets, 
such as those incorporating temporal data or other Earth system attribute variables. 
Based on the Earth Cube Model we proposed, each voxel in the high-dimensional 
dataset is extended from a single attribute variable to a high-dimensional spatiotem-
poral attribute vector. Unlike single-variable datasets, where thresholds can be directly 
established for discretization to identify connected components, high-dimensional 
vectors necessitate the use of vector similarity measures (such as cosine similarity 
(Han, Kamber, and Pei 2012) or Kullback–Leibler divergence (Kullback and Leibler 
1951)) to define new connectivity standards and generate novel connected com-
ponents. This methodology produces an Earth Cube Model that resembles the discre-
tized version of single-attribute variables but incorporates standardized values. By 
inputting this model into our algorithm, we are able to quantify the spatial heterogen-
eity of high-dimensional datasets. However, it is essential to note that this metric has 
certain limitations, which can be highlighted in the following aspects: First, the 
results of the 3D-SHI calculation are influenced by dataset resolution. Datasets with 
varying resolutions for the same spatial area yield Earth Cube Models with differing 
total voxel counts, resulting in discrepancies in connected component scales. This vari-
ation can lead to differences in calculations between datasets of different resolutions. 
Second, when calculating 3D-SHI with continuous attribute values, it is necessary to 
establish a Width parameter for discretization. Variations in Width will also affect 
the 3D-SHI results. Furthermore, it is important to recognize that 3D-SHI is a non-
linear metric. In Section 5, we computed 3D-SHI values for scenarios with different 
levels of spatial heterogeneity, observing a sequential decrease from 1 to 0. The first 
four scenarios, characterized by relatively dispersed or randomly distributed hetero-
geneity, show 3D-SHI values decreasing from 1 to 0.655. In contrast, the latter two 
scenarios which exhibit more aggregated spatial distributions, see a rapid decline in 
3D-SHI to 0.5 and subsequently to 0. This swift decrease is attributable to the larger 
contribution of extensive connected components to 3D-SHI. Consequently, while 
3D-SHI is more suitable for comparing the relative levels of spatial heterogeneity 
across different datasets, it may be less effective in providing a definitive understanding 
of heterogeneity magnitude based on absolute values.

6. Conclusions

This paper proposes an index called 3D-SHI to characterize the 3D spatial heterogeneity 
of big Earth data. By designing the Earth Cube model, we provide the foundation for this 
method, and introduce new concepts such as connected components and homogeneous 
connected components to capture 3D spatial heterogeneity. The 3D-SHI formulation, 
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along with the CCM and optimized Union-Find, enables near real-time computation of 
spatial heterogeneity.

We demonstrated the effectiveness of our method by comparing it with three typical 
statistical approaches for detecting heterogeneity. The 3D-SHI method accurately cap-
tures changes in spatial heterogeneity, particularly when large-scale connected com-
ponents undergo spatial shifts. It offers a novel means of characterizing spatial 
heterogeneity across three-dimensional scales, thereby complementing existing meth-
odologies. Subsequently, we applied our method to a 3D simulation dataset and two 
regional sea temperature datasets from the North Atlantic, evaluating the applicability 
of 3D-SHI to large Earth data. This method exhibits strong indicative capabilities in 
scenarios characterized by large-scale connected component distributions. Further-
more, calculating the 3D-SHI for each voxel value allows for the identification of 
the contributions of different voxel values to global spatial heterogeneity, thereby elu-
cidating the causes of changes in heterogeneity. The case study of sea temperatures in 
the North Atlantic illustrates that 3D-SHI reveals significant spatial heterogeneity 
across both spatial and temporal dimensions. Horizontally, the Greenland-Iceland 
area displays lower heterogeneity compared to the North Atlantic Current area. Ver-
tically, depth bands in both regions exhibit similar patterns of heterogeneity. Tem-
porally, heterogeneity fluctuates, with oscillatory patterns observed in the upper and 
middle layers of the Greenland-Iceland area, while the North Atlantic Current area 
experiences distinct variations. The bathypelagic zones in both regions demonstrate 
greater stability. Additionally, in the Greenland-Iceland area, heterogeneity increases 
with depth from June to November, revealing a lag that is not present in the North 
Atlantic Current area.

This study shows that 3D-SHI can effectively quantify 3D spatial heterogeneity and is 
particularly suitable for measuring the spatial heterogeneity of 3D big Earth data. Future 
directions for this work encompass several short-term extensions, including the expan-
sion of use cases for our method and the development of 3D-SHI indicators to assess 
local area spatial heterogeneity. Additionally, we aim to incorporate spatial information 
into connected components to identify regions exhibiting the greatest spatial heterogen-
eity. Furthermore, we plan to extend this method to accommodate spatio-temporal big 
data and large datasets with multiple attributes. A long-term objective of this research 
is to study spatial heterogeneity within 3D large geospatial data. Compared to traditional 
2D geospatial data, this endeavor involves larger scales, higher spatial and temporal res-
olutions, and more complex spatial distribution characteristics. These factors present 
challenges for simplifying the CCM data structure in the future, with the goals of conser-
ving storage space and enhancing algorithm efficiency.
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