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ABSTRACT ARTICLE HISTORY
Accurate estimation of missing traffic data is one of the essential Received 7 October 2021
components in intelligent transportation systems (ITS). The non- Accepted 17 January 2022

Euclidean data structure and complex missing traffic flow patterns
make it challenging to capture nonlinear spatiotemporal correla-
tions of missing traffic flow, which are critical for the imputation
of missing traffic data. In this study, we propose a novel
multi-view bidirectional spatiotemporal graph network called
Multi-BiSTGN to impute urban traffic data with complex missing
patterns. First, three spatiotemporal graph sequences are con-
structed to comprehensively describe traffic conditions from dif-
ferent temporal correlation views, i.e. temporal closeness view,
daily periodicity view, and weekly periodicity view. Then, three
bidirectional spatiotemporal graph networks are fused by a para-
metric-matrix-based method to obtain the final imputation results.
To train the Multi-BiSTGN model, a novel loss function that con-
siders the interactions between three temporal correlation views
is designed to optimize the parameters of the Multi-BiSTGN
model. The proposed model was validated on real-world traffic
datasets collected in Wuhan, China. Experimental results showed
that Multi-BiSTGN outperformed ten existing baselines under dif-
ferent missing types (random missing, block missing, and mixed
missing) and missing rates.

KEYWORDS
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spatiotemporal correlations

1. Introduction

Accurately monitoring traffic conditions of urban road networks is an indispensable
part of an intelligent transportation system (ITS), and is of great significance to allevi-
ate traffic congestion and pollutant emission (Ermagun and Levinson 2018, Jia and
Yan 2021, S. Zhang et al. 2021). With the rapid development of the Internet of Things
(IoT), many fixed-position sensors have been installed on urban roads to continuously
monitor traffic conditions (Zhan et al. 2017, Deng et al. 2018, Hara et al. 2018).
However, due to technical problems in data collection, data missing is common, which
seriously restricts the performance of traffic flow modeling and traffic management
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practices (Cheng et al. 2020, Tang et al. 2021, D. Xu et al. 2020). Therefore, how to esti-
mate missing data (aka., traffic data imputation), is one of the essential preparatory
works for traffic flow modeling (Cheng et al. 2018, Yang et al. 2021, Yi et al. 2021).

At present, the existing imputation methods not only face the challenge of model-
ing nonlinear spatiotemporal correlations of traffic flow, but also the challenge of com-
plex missing patterns, such as random missing, block missing, and mixed missing (Li
et al. 2019). To capture nonlinear spatiotemporal correlations, data-driven models have
gradually become the mainstream methods of missing data imputation due to their
excellent performance and generalization capabilities (Cheng et al. 2020, L. Li et al.
2020, Tang et al. 2021). To deal with complex missing patterns, multi-view learning
has been integrated into traffic flow modeling (Cheng et al. 2019). For example, some
tensor factorization models explore the spatiotemporal correlations between closeness
and daily periodicity views to improve the imputation accuracy (X. Chen et al. 2019,
2020, X. Chen and Sun 2021). Despite these efforts on missing traffic flow imputation,
the imputation performance is still not satisfactory due to non-Euclidean traffic flow
on urban road networks since vehicles can only travel along road networks, which
manifest non-Euclidean geometry and topology structures. Existing imputation models
designed for Euclidean data structure are difficult to obtain satisfactory performance
on road networks, which can be intuitively abstracted as graphs (Cai et al. 2020).
Fortunately, the rapid development of graph neural networks (GNNs) significantly facil-
itates non-Euclidean data modeling (Zhang et al., 2020, Li et al., 2021, Yi et al. 2021).
At present, GNNs have demonstrated state-of-art performance in ITS, including traffic
speed prediction (Zhao et al. 2020), ride-hailing demand prediction (Geng et al. 2019),
and subway passenger flow prediction (Ye et al. 2020). Therefore, we adopt GNNs for
missing traffic data modeling to further improve the performance of missing data
imputation. There are two main types of GNNs, which are spatial-based and spectral-
based methods (Wu et al. 2021, Zhou et al. 2021). In spectral-based GNNs, graph con-
volution operations are defined as specific filters from the perspective of graph signal
processing, i.e. factorization of graph Laplacian matrix (Yu et al. 2018). Spatial-based
GNNs define graph convolution operations from the perspective of neighborhood
aggregation which is typically realized via the message-passing neural network
(MPNN) paradigm (Li et al. 2017, Tailor et al. 2021). Compared with spectral-based
GNNs, spatial-based GNNs do not depend on the Laplace matrix, and are more suit-
able for directed graph structures, such as road networks (Defferrard et al. 2017, Kipf &
Welling 2017). However, there are still challenges to directly use spatial-based GNNs to
improve the imputation accuracy of missing traffic flow. These challenges are
as follows:

1. Traffic flow data, which are constrained by road networks, are subject to dynamic
changes over time. If we model a road network as a graph, traffic conditions on
the graph nodes change continuously. However, the vanilla GNNs are mainly used
for static graphs, and they cannot easily adapt to dynamic graphs (Rossi
et al. 2020).

2. Missing traffic flow data contains complex missing patterns, such as random miss-
ing, block missing, and mixed missing. Existing studies leverage prior traffic
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pattern knowledge to improve the imputation performance, such as daily or
weekly periodicity of traffic flows. However, how to make better use of this pat-
tern information in GNNs is still an open problem.

Some research efforts have been made to cope with the above challenges. For
example, the temporal graph convolutional network (T-GCN) (Zhao et al. 2020) and
the spatiotemporal graph convolutional network (ST-GCN) (B. Yu et al. 2018) are used
for dynamic graph modeling. However, T-GCN and ST-GCN models are designed based
on spectral GNN and rely heavily on Laplace matrices, which are determined by net-
work topologies, limiting the representative capabilities of learned embeddings given
new graphs with unknown topological structures. Therefore, based on the spatial-
based GNNs, we propose a novel multi-view bidirectional spatiotemporal graph net-
work called Multi-BiSTGN to impute missing traffic flow of urban road networks. This
study makes the following three contributions:

1. Based on the MPNN paradigm, we propose a novel bidirectional temporal graph
network called BiSTGN by defining specific message, aggregation, and update
functions that are well-suited for traffic flow imputation under dynamic traffic
environments on directed road networks;

2. We integrate a multi-view learning scheme into the Multi-BiSTGN model to
improve the imputation performance of traffic flow under complex missing pat-
terns, i.e. temporal closeness view, daily periodicity view, and weekly periodicity
view. Based on the multi-view learning scheme, a novel loss function that consid-
ers the interactions between multiple views is designed to optimize the parame-
ters of the Multi-BiSTGN model.

3. The performance of the Multi-BiSTGN model was evaluated using two real-world
traffic flow data, demonstrating the advantages of our model compared with ten
baseline methods.

2. Related works

Existing missing traffic data imputation methods can be roughly divided into two cate-
gories: statistical methods and data-driven methods.

2.1. Spatiotemporal traffic data imputation based on statistical methods

Statistical methods assume that the distributions of missing data are constrained by
specific a prior knowledge in spatiotemporal dimensions, and establish specific para-
metric models to describe the traffic patterns of missing data. For example, the inverse
distance weighting (IDW) model (Bartier and Keller 1996) is based on the first law of
geography (Tobler 1970), and imputes missing values by calculating the distance
between missing data and observed data. Kriging interpolation methods assume that
the spatial distribution of observation data satisfies the second-order stability, and use
covariance functions to obtain the optimal linear unbiased estimation of missing data
(Pesquer et al. 2011). Based on the time stability assumption, autoregressive integrated
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moving average (ARIMA) (Yozgatligil et al. 2013), seasonal ARIMA (SARIMA) (Williams
and Hoel 2003), and simple exponential smoothing (SES) are used to infer the missing
data based on the observations in previous time windows (Gardner 2006). In addition,
based on the above models, some scholars proposed spatiotemporal statistical models
based on the characteristics of missing data, such as spatiotemporal IDW (ST-IDW) (L.
Li et al. 2014), Spatiotemporal ARIMA (ST-ARIMA) (Peibo Duan et al, 2016),
Spatiotemporal Kriging (ST-Kriging) (Aryaputera et al. 2015), and P-BSHADE (Hu et al.
2013, C.-D. Xu et al. 2013). Although statistical methods have been widely used in
missing data modeling, imputation accuracy is still unsatisfactory. On the one hand,
statistical methods are based on strict a priori assumptions, and the actual traffic envi-
ronments are overly too complex to meet the pre-conditions of the models; on the
other hand, traffic data has complex nonlinear spatiotemporal patterns, which are diffi-
cult to describe with specific parametric models (Cheng and Lu 2017, L. Li et al. 2020).

2.2. Spatiotemporal traffic data imputation based on data-driven methods

The data-driven methods do not require the data distributions to obey specific prior
knowledge. They can automatically mine the spatiotemporal patterns from observed
data (Li et al. 2014). For example, Wu et al. (2014) and Yu et al. (2016) applied the spa-
tiotemporal k-nearest neighbor (ST-KNN) algorithm to traffic flow data modeling.
Chang and Ge (2011) applied a variety of traditional matrix factorization models to
impute missing traffic flow. The matrix factorization models consider temporal close-
ness constraints, such as time regularized matrix factorization (TRMF) and Bayesian
temporal matrix factorization (BTMF) (Yu et al. 2016). Over the past few years, many
deep learning algorithms have been used to impute missing traffic data, and achieved
good performance. For instance, Cheng et al. (2020) used extreme learning machine
(ELM) to integrate IDW and SES algorithms, and proposed a lightweight ensemble spa-
tiotemporal interpolation model (ST-ISE). Li et al. (2017) combined deep neural net-
work and the P-BSHADE algorithm to develop a hybrid spatiotemporal two-step
missing data reconstruction framework (ST-2SMR). To deal with complex missing pat-
terns, a series of tensor decomposition methods were developed to mine missing pat-
terns from multiple views, such as Bayesian temporal tensor factorization (BTTF) (Chen
and Sun 2021), Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) (Chen et al. 2019),
and low-rank tensor completion with truncated nuclear norm (LRTC-TNN) (Chen et al.
2020). Compared with classical statistical methods, data-driven methods do not require
prior knowledge and explicit mathematical equations, and tend to have better data
imputation results. Although the existing data-driven models have achieved better
imputation performance, there are still shortcomings. Most existing models are mainly
designed for imputing data under Euclidean space, and their imputation performance
is still limited in non-Euclidean space (Zhang et al., 2020, 2021). In order to extract traf-
fic flow patterns from traffic data with non-Euclidean geometries and topologies, a
variety of GNN-based models were applied to traffic flow modeling, such as T-GCN
(Zhao et al. 2020) and ST-GCN (B. Yu et al. 2018). However, the T-GCN and ST-GCN
models are mainly designed for traffic flow forecasting, and are not used for missing
traffic data imputation.
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3. Preliminaries and definitions
3.1. Definition 1 (traffic road network)

A traffic road network can be abstracted as a directed graph structure G =< S,E,A >,
where S = {s;}7 | represents n nodes in the graph G; E represents the set of edges in
G, i.e. the connection relationships of nodes. In this study, the connection relationship
mainly refers to the topological relationship. For simplicity, the topological relation-
ships in the road network can be represented by an adjacency matrix A € R™". If
there is an edge that starts from a node s; to node s;, then A;;=1, otherwise A;;=O0.
As the traffic road network is a directed graph, A;; is not necessarily equal to A; ;.

3.2. Definition 2 (traffic state)

Traffic state represents the quantitative traffic features of the nodes within a road net-
work during a specific time window. As shown in Figure 1(a), the traffic state on the
entire road network can be expressed as a tensor X € R"™™*9 where n represents
the number of nodes on G, m represents the number of time windows (if the size of
the time window is 15 min, there are 96 time windows in a day), d represents the
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Figure 1. Preliminary definitions: s; represents the jith node on the road network G, w; represents
the tth time window, and G; represents the traffic state information of G within the time win-
dow w;.
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number of traffic states to be studied. As shown in Figure 1(b), the studied object of
this work is a single traffic state on the traffic road network, i.e. traffic speed or traffic
volume. Therefore, the tensor X' can be further simply represented by the matrix X €
R™M e, d=1.

3.3. Definition 3 (spatiotemporal graph sequence)

A spatiotemporal graph sequence SGS = {G};_, represents a series of temporally-order
graphs, each of which represents ever-changing traffic state information on the road net-
work over time. Specifically, the spatiotemporal graph sequence encodes dynamic traffic
state on the road network, i.e. G: =< S, E, A, x; >. As shown in Figure 1(c), G; represents
graph information in time window w;, where x, = {x!}| , represents the traffic states of
graph G;, x{ represents the traffic state of node s; in time window w;.

In real-world applications, the traffic state information in a spatiotemporal graph
sequence is often missing. This study aims to impute the missing information in a spe-
cific time window by using spatial-based graph neural networks. Taking a target graph
Gy =< S,E,A,xg > of the g th time window as an example, the imputation tasks can
be formulated by Equations (1) and (2).

{ Gg=M<—{Gi}; 1<g<m 0

Gg = <S,E, A x>

()

Xg=¢ VieQ
X4 Vien

where M represents the imputation model proposed in this work, i.e. Multi-BiSTGN
model; {G;};_, represents a spatiotemporal graph sequence with missing data; Gg rep-
resents the graph of the target time window; xg = ¢ indicates that the traffic state

. n
information of the node s; in the time window wy is missing; x4 = {x’g} represents
i=1

the traffic state vector after imputation; £, represents the index of the missing data
in the graph Gg.

4. Methodology

In this section, we introduce the proposed Multi-BiSTGN model for missing traffic data
imputation. The schematic structure of Multi-BiSTGN is presented in Figure 2. The
Multi-BiSTGN model consists of three main components: a spatiotemporal graph data
model, the construction of the BiSTGN, and the fusion of multi-view results, which are
introduced in Sections 4.1-4.3, respectively. First, three spatiotemporal graph sequen-
ces are constructed to comprehensively describe the traffic states of the studied road
network. Then, three BiSTGN models are developed to obtain the imputation results of
three temporal correlation views by defining specific message, aggregation, and
update functions based on the classical MPNN modeling paradigm (Li et al. 2017,
Tailor et al. 2021). Finally, the imputation results from the three views are fused via a
parametric matrix to obtain the final imputation result. In addition, the interactions
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Figure 2. Overview of the Multi-BiSTGN model.

between multiple views are considered in the parameter optimization of the Multi-
BiSTGN model, with the goal to improve the imputation performance of the Multi-
BiSTGN model

4.1. Spatiotemporal graph data model

Traffic flow data manifest complex traffic patterns, making it difficult to directly model
the traffic flow data. Therefore, multi-view learning can be used to decompose com-
plex patterns into multiple separate simple patterns, which alleviates the burdens of
describing complex nonlinear traffic patterns (Sun et al. 2020, Zhang et al., 2020). The
key of graph-based multi-view learning is to build a spatiotemporal graph data model.
We reorganize the corresponding spatiotemporal traffic states from multiple views by
multiple spatiotemporal graph sequences, describing the spatiotemporal correlations
under different views.

Existing studies have shown that traffic flow data have apparent closeness and peri-
odicity characteristics (Cheng et al. 2019). Among them, the closeness characteristics
indicate that the traffic state of a specific road segment at a specific time is affected
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by the traffic states of neighboring road segments and of previous time windows. The
periodic characteristics indicate that the traffic patterns of a specific road segment
usually repeat on a daily or weekly basis. Therefore, we construct spatiotemporal
graph sequences from three views: temporal closeness, daily periodicity, and weekly
periodicity. Furthermore, to capture the impacts of contextual information on missing
data, spatiotemporal graph sequences are constructed from two directions along time
(forward or backward). Taking the imputation of the missing data in the graph G4 as
an example, its corresponding spatiotemporal closeness graph sequence SGS, spatio-
temporal daily periodic periodicity sequence SGS%, and spatiotemporal weekly period-
icity graph sequence SGS;"" are defined in Equations (3) (4), and (5).

Jev

SGS;‘/ = {Gngr}t:fICV = {Gg_[cv, Ggi(/cvi-l), ceey Gg+(/cv71), Gg+ICV} (3)
’dv

SGSZV = {Gg+t*pdv t v = {Ggfld‘/*pd‘/' Ggf(,dviﬂ*pdv, ceoy Gg+(,dv71)*pdv, Gng/dv*pdv} (4)
v

SGS;V " = {Ggstap fr—_pw = {Gg-prspm, Gy (e 1)upwrs - - "Gg+(lwvf1)*pwv,Gg+/WV*pWV} (5)

where Gq represents the target graph to be imputed; I, 1% and "V respectively repre-
sent the time-dependent steps of the clossness view, the daily periodicity view, and
weekly periodicity view. As we capture the spatiotemporal dependence of missing
data from two directions along time, the target graph Gy is located in the middle of
the spatiotemporal graph sequence. p® represents the number of time windows
between two adjacent days; p*V represents the number of time windows between
two adjacent weeks. If the time window is 15 minutes, pd" is equal to 96 (1440/15)
and p"¥ is equal to 672 (1440/15 x 7).

4.2. Construction of the BiSTGN

A spatiotemporal graph sequence under a particular view contains spatiotemporal
constraints in two directions along time (forward and backward). Compared with static
graphs, the spatiotemporal graph sequence contains more complex spatiotemporal
correlations, which pose a greater challenge for GNNs to mine the traffic patterns
from the spatiotemporal graph sequence. As the traditional GNN models cannot be
directly used to model spatiotemporal graph sequences, a novel bidirectional spatio-
temporal graph network called BiSTGN is proposed to capture spatiotemporal patterns
in spatiotemporal graph sequences.

The BiSTGN is a spatial-based graph neural network, which follows the MPNN para-
digm to define message propagation and update operations under time constraints
from two directions. Inspired by RNN that models time series data (Schmidhuber
1992), we define two memory states for each node in the graph in order to apply the
GNN models to the spatiotemporal graph sequences. As shown in Figure 3, based on
the memory state, the basic idea of the BiSTGN model can be simply described in
three steps. First, along the forward direction of the time axis, the memory state Hg
of the g th time window is obtained from Hy_;r and G4_;. Then, along the backward
direction of the time axis, the memory state Hy,, of the g th time window is obtained
from Hyi14 and Ggiq. Finally, Hg, and Hgs are integrated to obtain the imputation
results for a specific view. Taking imputing the missing data in the target graph G4 as
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Figure 3. lllustration of memory state in BiSTGN: Hy.r = {h’g,} and Hy = {h’g,b} respect-
“Ji=1 ) i=1
ively memorize the traffic states of the target time window (g th) at the historical time and the
future time, i.e. the compressed representations of the traffic states at the historical time or the

future time.

an example, the imputation value of node s; in g th time window can be defined by
Equations (6) (7) and (8).

m ;' = message; .y (”"971;::'"271)
forward : ";;f = aggregate ({m’lg?i }jg/vf > ©)
h.,; = update (a’g:f)

m’ﬁi = Mmessage;cyp (hi X, )

g+1:b" "g+1
backward : { @y, = aggregate ({mj;’i }jeNf’> 7
h.,, = update (a;:b)
Ky = [yl e ©

where x’g € R™" represents the imputation value of the node s; in the gth time win-
dow; x’gq € R"™ represents the observation value of the node sj in the (g — 1)th time
window; x’ng1 € R™ represents the observation value of the node s; in the (g + 1)th
time window; the message, aggregate, and update represent the redefined functions
in MPNN paradigm, respectively; [-||-] denotes the vector connection function; N/ and
Nf’ denote the collection of spatiotemporal neighbors in two time directions of the
node s;, respectively; m’;i and m’;’i € R™? denote the message that the node Sj
transmits to the node s; in two time directions, respectively; ay,, and ag, represent
the compressed representation of multiple messages received by the node s; in two
time directions; h;:f and h;:b € R"™ denote the two memory states of the node s; in
the gth time window, and d represents the dimension of the memory state; weut ¢
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Figure 4. lllustration of messaging passing in BiSTGN: Along the forward direction, the target node
s; receives the traffic state x’k1 € R'™ of the spatiotemporal neighbors in the previous time win-
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dow, and the memory state hl;H:f € R4 of the neighbors in the historical time window. Along
the backward direction, the target node s; receives the traffic state x{m e R™ of the spatiotem-

poral neighbors in the next time window, and the memory state hjgﬂjb € R™4 of the neighbors
in the next time window.

R?%1 represents a learnable conversion matrix, which converts two memory states
into imputation values. According to Equations (6)-(8), the key of BiSTGN is to define
the message, aggregation and update functions in the model.

4.2.1 Message function

The message function of the BiSTGN model is used to define the message that
the target node s; receives in the g th time window. Figure 4 shows the BiSTGN
messaging process in both directions. In the BiSTGN model, a specific node not
only receives messages from its own node (temporal neighbors), but also
receives messages from surrounding nodes (spatial neighbors). As the traffic road
network is a directed graph, the spatiotemporal neighbors in the forward direction
only include nodes connected by the incoming edge, and the spatiotemporal
neighbors in the backward direction only include nodes connected by the out-
going edge.

Since each spatiotemporal neighbor transmits two kinds of messages with different
dimensions, the message function in the BiSTGN needs to merge the two types of
messages. Inspired by the GGNN model (Li et al. 2017), we integrate the GRU model
into the BiSTGN to capture the long-term dependence in the spatiotemporal graph
sequence. In the BiSTGN model, the message function of the node s; in the g th win-
dow is defined by Equations (9) and (10).

P = o(Wilk,_,l1x1))
Zlgf_o-(wf[ 1f||XJ ])
ti | = tanh (WP +H, . |1x) )
m_ —( z’_;]:f)*h{;f”—ﬁ—z’ «AY

gf = g:f

forward :
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'ng = G(W’[ g+1: ol g+1])
z’gb = G(Wf[ g+1bH 9+1]>
m’;’ :tanh(Wm[rlgb g+1b|| 9+1])
mﬁ'_( z’ )*h’ b-l-Z L

gb — g+1:

backward :

gb

where m“f' e R denotes the message sent by the node s; to the node s; along the
forward dlrectlon i.e. the fused message; m’g_[,' e R denotes the message sent by
the node s; to the node s; along the backward direction; ng_1 and x’g+1 denote the
observation data of neighbor nodes in the previous and next time window, respect-
ively; h’ 1 and h’g+1 ., denote the memory state of neighbor nodes in historical and
future tlme windows, respectively; W, W%, W?, Wi, WZ, and W] ¢ R%(@1) denote
the learnable parameter matrices; o(x) denotes the sigmoid activation function; [-||-]
denotes the vector connection function; tanh(x) denotes the hyperbolic tangent acti-

vation function.

4.2.2. Aggregation function
The aggregation function of the BiSTGN model is used to aggregate the messages

received by the target node s; in the g th time window, i.e. aggregate {mj_(';;i}‘ y and
f Sjen

{m"g];’} R The most common aggregation function is the mean function. However,
© ) jent

the mean function assigns equal weights to the messages of different nodes and
ignores the differences between nodes (Hechtlinger et al. 2017, Chen et al. 2020). In
real-world scenarios, traffic states of different roads, such as spatial neighbors and
temporal neighbors, should have different effects on the traffic states of the examined
node. Therefore, inspired by the graph attention mechanism (Velickovi¢ et al. 2018),
we aggregate the messages from spatial and temporal neighbors via a weighted
scheme. The aggregation function of the target node s; in the g th time window is
shown in Equations (11) and (12).

agf =|a nga ]
a;tf — mlg7l
J—i =i
forward : g:f - ZjeNf jl=i 7\, m’ )
o exp (LeakyReLU ([m’ﬂ’| ‘mlﬂl]we))
f =

D ke, k=i €XP (LeakyReLU ([ my ' Im ] er) )
“;:b = [“g;tb““ig:;sb]

ity = m)
a;fb = ZJGN” =i Nﬂlmj -

exp (LeakyReLU ([mﬁ’HmH} We))

2 kene, ki—i €XP (LeakyReLU ([ my'Im;)] WZ) )

backward :

J=i _
X =
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it
where ag

the forward direction, respectively; a’, and a;;b denote the aggregation values of the

and a’s denote the aggregatlon values of the spatiotemporal neighbors in

spatiotemporal neighbors in the backward direction, respectively; N,f and Nf’ denote

the neighbor collection of the target node s; in two directions, respectively; m’;i and

m’;,i € R"9 denote messages sent by neighbor node s;j to target node s; in two direc-

tions, respectively; k{f’ and Nfi denote the message weight coefficient; W§ and W} €
R2@1 are the conversion matrices that are used to obtain the weight coefficients;
exp(x) denotes the exponential function; [-||-] denotes the vector connection function;
LeakyReLU(x) denotes the nonlinear activation function.

4.2.3. Update function

The update function of the BiSTGN model is used to obtain the memory state h; €
R4 of the target node s; in a specific time window. Take the g th time window as
an example, along the forward direction, the update function is used to update the
aggregated value a f € R to the memory state h! gf € R of the current time
window. Similarly, along the backward direction, the update function is used to update
the aggregated value a,, € R"*’ to the memory state h], € R'*? of the current
time window. For simplicity, in the BiSTGN model, the update function of node s; in
the g th window is shown in Equations (13) and (14).

hlg:b = ag:bwz (14)

where W¢ and W{ € R?™? represent the learnable transformation matrices. After
transformation, along the forward direction, the memory state h;:, € R™ at the cur-
rent time has the same dimension as the memory state h’ .4 € R at the previous
time. Similarly, along the backward direction, the memory state h’ b € R at the cur-
rent time has the same dimension as the memory state th » € R at the next
time. Therefore, the BiSTGN model can iteratively learn the missing patterns in spatio-
temporal graph sequences from two time directions.

4.2.4. Advantage analysis of BiSTGN

The RNN, GNN, and BiSTGN can all be regarded as a kind of MPNN. In this section, the
advantages of BiSTGN are further analyzed from the perspective of MPNN. As shown
in Figure 5, in the RNN model (GRU and LSTM models can be regarded as special
RNNs), the node in the graph is regarded as an independent sample. The target node
can only receive the messages transmitted by its historical nodes, ignoring the topo-
logical connection of the graph (Figure 5(a)). Compared with the RNN model, the GNN
model considers the spatial connection of graph nodes and receives messages from
surrounding nodes. However, the GNN model does not have the concept of time
(Figure 5(b)). Compared with the RNN and GNN models, the BiSTGN model combines
the advantages of the RNN and GNN models from message propagation. The target
node receives the messages delivered by its historical node and receives the messages
delivered by surrounding nodes (Figure 5(c)). Specifically, RNN and GNN can be
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@ other nodes @ targetnode (O temporal neighbor @ spatial neighbor

Forward Forward

RNN/Forward GNN BiSTGN/Forward
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Figure 5. Difference between BiSTGN and GNN and RNN from the perspective of MPNN: m’ "and
m," € R4 represent the message received by the target node from the neighbor nodes

regarded as a particular case of BiSTGN. When the nodes in the graph are only self-
connected (the adjacency matrix is the identity matrix), the BiSTGN model degenerates
to the RNN model. When there is only a single moment of graph information (the
length of the spatiotemporal graph sequence is 1), the BiSTGN model degenerates to
the GNN model.

4.3. Fusion of multi-view results

Three BiSTGN models are established to obtain imputation results from different views.
The imputation results from multiple views are essentially different manifestations of
multiple traffic patterns. The imputation results under each view have limited capabil-
ities in capturing missing patterns of traffic flow. To improve the performance of miss-
ing data imputation, inspired by Li et al. (2021), we use the parametric-matrix-based
fusion method to fuse the three views to obtain the final imputation result. Taking fill-
ing the missing data in the graph G4 as an example, the fusion process is shown in
Equation (15).

Xg = Xg OW + X OW™ + X OW™ (15)

where x4 € R‘M represents the final imputation results of the gth time window; xg ,
xg" and x " € R™ represent the imputation results from the closeness view, daily
per|od|C|ty view and weekly periodicity view, respectively; W<, W% and W"" ¢ R
represent the parameter fusion matrices of the closeness view, daily periodicity view
and weekly periodicity view, respectively; © represents Hadmard product.
Theoretically, the final model can be obtained by minimizing the square loss
between the real traffic state x; and the imputation traffic state x,. However, only
optimizing the square loss between x; and X, ignores the interactions between views,
i.e. the imputation result of a single view is independent from the results of other
views. When the imputation result of single view deviates greatly from the true value,
the fusion result may lead to inferior imputation performance. In fact, there is an
implicit relationship between the imputation results of different views. For example,
different views describe the internal characteristics of traffic states from different

aspects, and the imputation results of each view should be as consistent as possible.
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Therefore, the internal relationship is integrated into the optimization process of
Multi-BiSTGN, and the overall loss function is shown in Equation (16).

. . cov o v o cov o
£W) = min || xg—k |13 o1 || X§ X5 I3 +B || 5" —%3" 3 +v || x5—%" I3 (16

where xg4 represents the true value of the gth time window; x4 represents the imput-
ation value of the gth time window; W represents the parameters that can be learned
in the Multi-BiSTGN; )?;V, )?;V and )?;VV e R¥ represent the imputation results from
the closeness view, daily periodicity view and weekly periodicity view, respectively; a,
B and vy represent the regularization terms from the clossness view, daily periodicity
view and weekly periodicity view respectively, i.e. the interactions of imputation

results from different views.

4.4. Algorithms and optimization

The basic principle of the Multi-BiSTGN model is to establish a semi-supervised learning
method that uses the observable data in the graph to estimate the missing values in the
traffic network under time constraints. To train the Multi-BiSTGN model, the observed traf-
fic flow data were divided into training samples and test samples. The training samples
were used to train the parameters of model M, and the test samples were used to test
the imputation performance of model M. The training process of M is shown in
Algorithm 1, where € records the index of training data in the g th time window. First,
the spatiotemporal graph sequences under three views are constructed for the target
graph Gy that needs to be imputed (line 3). Then, the training sample is composed of the
index of the training data and the spatiotemporal graph sequences under the three views
(line 4). Finally, the parameters of the Multi-BiSTGN model are obtained by minimizing the
errors between the imputation values and the true values (lines 7-12). After the imput-
ation model is trained, the imputation problem is converted into a prediction problem and
the missing values are predicted iteratively.

Algorithm 1. Training Process of Multi-BiSTGN

Require: Graph sequence that needs to be imputed: {Gg}
Index sequence of training data: {Qg}
Graph sequence of all times: SGS = {G;}", graph sequence
Time dependent step: [<V, /%, "V
Regularization coefficients: o, B,y

Ensure: Multi-BiSTGN model: M

//construct training instances samples

1: D0

2: for each G, € {Gy} do

3: construct fscs;V, SGS%,5GS + with SGS, 1,1, and ¥

4: put a training instance ({SGS;",SGSZ",SGS;"V},QQ> into D

//train Multi-BiSTGN model

5: initialize the parameters W

6: repeat

7: randomly select a training instance Dy from D
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8: obtain results f(;" of the closeness view by Formulas (6), (7) and (8)

9: obtain results f(;v of the daily periodicity view by Formulas (6), (7) and (8)

10: obtain results )?;W of the weekly periodicity view by Formulas (6), (7) and (8)
11: obtain fusion results x4 by Formulas (15)

12: find W by minimizing the Formula (16) with g, o, and y

13: until stopping criteria is met (the loss function is less than a specific threshold)
14: output the learned Multi-BiSTGN model M

5. Experimental results and discussions
5.1. Data preparation

5.1.1. Data sources
Two types of datasets were used to evaluate the imputation performance of the Multi-
BiSTGN model: Traffic speed and volume data collected in Wuhan, China.

The traffic speed data were obtained based on the taxi trajectory data and the traf-
fic road network data. The time window size of the traffic speed data is 15 minutes.
The time span of traffic speed data is from August 1, 2018, to August 28, 2018. In add-
ition, due to the relatively small number of people traveling in the early morning, we
only calculate the average speed from 6:00 to 24:00. Figure 6(a) shows the road net-
work used in the experiment including a total of 82 road segments. As shown in
Table 1, each record contains the unique identification ID of road segment, time win-
dow, the shape of the road segment (line elements composed of coordinate sequen-
ces), and average traffic speed within the time window.

The traffic volume data were obtained based on the automatic vehicle identification
(AVI) data that were derived from camera videos. We counted the traffic volume of a
single camera at an intervals of 5 minutes, i.e. the time window size is 5 minutes. The
time span of traffic volume data is from March 1, 2021, to March 28, 2021. Similar to
the traffic flow speed, we only calculated the traffic volume from 6:00 to 24:00. Figure
6(b) shows the spatial distribution of experimental cameras. A total of 10 experimental
cameras were selected in the experiment. As shown in Table 2, each record contains

ne1s 14716 14°17 114°1630" nse170°

N
Spatial Distribution of Road Segments
A ] 3036

Spatial Distribution of Cameras
3036

>z

30350 Fsoe3s0°

30°3430" Fs0e3430°

Legend

Legend :
0o 05 i 2 0 250 50 7,000 @ Camera Location
——— ——T)

Road Segment Location

1415 1416 n#17 1o ugine

(a) ()
Figure 6. Sketch map of the study area.
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Table 1. Traffic speed sample of single road segment.

Segment ID Time window Shape Traffic speed
b5a6*** 2021-08-01 06:00 ~ 2021-08-01 06:15 Geometry (Polyline) 331
b5a6*** 2021-08-01 06:15 ~ 2021-08-01 06:30 Geometry (Polyline) 34.4
b5a6*** 2021-08-01 06:30 ~ 2021-08-01 06:45 Geometry (Polyline) 34.7
b5a6*** 2021-08-28 23:55 ~ 2021-08-29 00:00 Geometry (Polyline) 42.6

***Means the content is omitted.

Table 2. Traffic volume sample of single camera.

Camera ID Time window Latitude Longitude Traffic volume
9634CE*** 2021-03-01 06:00 ~ 2021-03-01 06:05 30.6™** 114.1%%* 41
9634CE*** 2021-03-01 06:05 ~ 2021-03-01 06:10 30.6%** 114.1%%* 4
9634CE*** 2021-03-01 06:10 ~ 2021-03-01 06:15 30.6%** 114.7%%% 54
9634CE*** 2021-03-28 23:55 ~2021-03-29 00:00 30.6™** 114,774 36

***Means the content is omitted.

the unique identification ID of the camera, time window, spatial position of the cam-
era, and traffic volume in the time window.

5.1.2. Data preprocessing
We preprocessed traffic speed and traffic flow data with the following steps:

1. According to the connection relationship of the traffic network, the topological
structures of the road segments and the cameras were constructed.

2. There are mainly three missing types in actual scenes, i.e. random missing,
block missing, and mixed missing. Random missing means that data missing is
random, which is generally caused by poor equipment signal. Block missing
indicates that data missing is continuity, which is generally caused by equip-
ment failure or power failure. Mixed missing means that the data contains not
only block missing but also random missing. In this study, partial traffic states
were deleted at 20% and 40% missing rates based on the three missing types,
respectively. Figure 7 shows the temporal and spatial location of the artificially
missing values (grey). The horizontal axis represents the time window of the
missing value, and the vertical axis represents the unique identifier of the spa-
tial location.

3. The constructed missing data in the last step was divided into training samples
and test samples using an 80:20 split ratio.

5.2. Evaluation metrics

In this study, mean absolute error (MAE), root mean square error (RMSE), and mean
absolute percentage error (MAPE) are used as quantitative indicators to verify the
imputation accuracy of the Multi-BiSTGN. The MAE represents the average of the abso-
lute error between the imputation value and the true value, the RMSE represents the
sample standard deviation of the error between the imputation value and the true
value, and the MAPE represents the average of the proportion of the error to the true
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Figure 7. Traffic speed information after preprocessing: (a) random missing, (b) block missing, and
(c) mixed missing.

value. The MAE, RMSE, and MAPE are calculated as shown in Equations (17) (18), and
(19).

1 i .
MAE:NZX;—x;’ (17)
i€Qq
RMSE = |- i xi)’
SE = N;(Xg—xg) (18)
i€y
100% — |X. —X!
MAPE — °297.9 (19)
N i€y Xé?

where €, represents the index of missing data in the target graph; N is the total num-
ber of missing data, i.e. |Qg|; x; represents the actual traffic state of node s; in time
window wg; )?; represents the traffic state imputed by the model of node s; in time
window wy.

5.3. Hyper-parameter selection

The Hyper-parameters of Multi-BiSTGN model mainly include closeness dependence
step I, daily periodicity dependence step /%, weekly periodicity dependence step
1"V, coefficient o, coefficient B, and coefficient y. There are two ways to calibrate
these hyper-parameters of the Multi-BiSTGN model. One way is to treat the Multi-
BiSTGN model as an end-to-end model, and calibrate the six hyper-parameters of the
Multi-BiSTGN model simultaneously. Another way is to treat the Multi-BiSTGN model
as a combination of multiple imputation components, and only calibrate the hyper-
parameters of one component at a time. Considering that simultaneous calibration of
multiple hyper-parameters is computionally cubersome and the model is difficult to
converge, we adopt the second method. In the calibration process, the control vari-
able method was used to obtain the optimal combination of parameters (Cheng et al.
2020). Taking the random missing rate of 20% as an example, Figure 8 shows the cali-
bration process of the [, %, and "V on the traffic speed dataset. The results show
that the RMSE of the Multi-BiSTGN model decreases first and then increases with the
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Figure 8. Parameter tuning of the Multi-BiSTGN model on traffic speed data.

increase of /Y. When /=5, the model has achieved good accuracy. Similarly, 1% and
" were also calibrated: /?V=3 and /"V=2.

5.4. Comparison with baselines

To comprehensively evaluate the imputation performance of model proposed in this
study, we used ten baseline methods for comparison, including HA (Campbell and
Thompson 2008), SES (Gardner 2006), ST-KNN (P. Cai et al. 2016, B. Yu et al. 2016), ST-
2SMR (Jiang et al. 2018), ST-ISE (Cheng et al. 2020), TRMF (H.-F. Yu et al. 2016), BTMF
(X. Chen and Sun 2021), LRTC-TNN (X. Chen et al. 2020), BTTF (X. Chen and Sun 2021),
and BGCP (X. Chen et al. 2019) models. These baseline methods can be roughly div-
ided into three categories. The first category includes the HA and SES methods, which
are regarded as classic statistical models. The second category includes the ST-KNN,
ST-2SMR, ST-ISE, TRMF, and BTMF methods, which are data-driven models for
Euclidean data structures. The third category includes the LRTC-TNN, BTTF, and BGCP
methods, which are tensor factorization models for Euclidean data structures.

Table 3 shows the comparison results between the Multi-BiSTGN model and the
baselines under random missing. Overall, the imputation accuracy of the second and
the third category models are slightly higher than that of the first category models,
i.e. the imputation performance of the data-driven models is higher than that of the
statistical models. For the random missing patterns, the imputation performance of
the statistical model is greatly affected by the changes of the missing rate. In contrast,
the imputation performance of the data-driven models is less affected by variations of
the missing rate. With the increase of missing rate, the imputation performance of the
statistical models decreases obviously, while the imputation performance of the data-
driven models is relatively stable. The results show that the data-driven models are
easier to mine random missing patterns in traffic flow data. However, the data-driven
models in the baselines are mainly designed for Euclidean datasets. Compared with
the baselines, the Multi-BiSTGN model achieves the highest imputation accuracy, indi-
cating that the Multi-BiSTGN model is more suitable for modeling on non-Euclidean
data sets, such as traffic flow.

Table 4 shows the comparison results between the Multi-BiSTGN model and the
baselines under block missing. The imputation performance of the three category
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Table 3. Comparison results (in MAE/RMSE/MAPE) with baselines for random missing.

Traffic Speed

Traffic Volume

Models MR: 20% MR: 40% MR: 20% MR: 40%
HA 6.86/8.26/7.83% 8.45/10.21/21.08% 8.37/10.63/15.62% 9.83/12.17/17.68%
SES 3.41/4.29/9.83% 4.10/5.16/11.49% 5.98/7.89/12.31% 6.20/7.96/12.50%
ST-KNN 2.53/3.13/7.48% 2.64/3.31/7.62% 6.17/7.83/12.15% 6.69/8.59/12.39%
ST-ISE 2.94/3.82/9.10% 3.13/4.11/9.51% 6.02/7.64/11.45% 6.09/7.77/11.59%
ST-2SMR 3.25/4.27/10.47% 3.46/5.43/10.98% 6.76/8.99/13.16% 7.05/9.23/13.65%
TRMF 2.84/3.48/8.80% 3.29/3.92/9.74% 5.86/7.46/11.03% 5.77/7.34/10.93%
BTMF 2.39/2.92/7.20% 2.50/3.08/7.45% 5.77/7.35/11.01% 5.86/7.46/11.00%
LRTC-TNN 2.47/3.09/7.18% 2.81/3.36/7.89% 5.37/6.87/10.65% 5.48/6.95/10.49%
BTTF 2.61/3.06/7.75% 2.70/3.17/7.81% 5.83/7.39/11.31% 5.93/7.52/11.60%
BGCP 2.75/3.23/8.07% 2.82/3.25/8.12% 5.61/7.23/11.04% 5.63/7.15/10.86%
Multi-BiSTGN 1.58/2.64/5.58% 2.14/2.67/6.23% 3.87/5.67/6.79% 4.03/5.64/7.22%

Table 4. Comparison results (in MAE/RMSE/MAPE) with baselines for block missing.

Traffic Speed

Traffic Volume

Models MR: 20% MR: 40% MR: 20% MR: 40%

HA 13.74/17.18/31.87% 14.16/17.62/34.31% 15.92/19.53/28.26% 19.44/23.94/34.22%
SES 8.75/10.71/23.73% 9.57/12.70/24.93% 9.58/13.10/19.82% 10.00/13.58/22.45%
ST-KNN 4.78/6.67/13.65% 6.86/8.81/18.74% 10.22/13.58/19.65% 10.49/13.44/20.45%
ST-ISE 4.06/5.59/12.40% 4.30/5.89/13.07% 8.72/11.78/16.19% 9.16/12.77/16.92%
ST-2SMR 6.68/8.64/15.68% 6.14/8.07/18.13% 10.09/14.25/18.51% 11.84/17.54/21.23%
TRMF 8.34/10.92/21.06% 9.44/12.33/24.57% 6.87/9.10/12.44% 8.59/11.98/15.29%
BTMF 6.76/9.44/17.40% 7.90/9.99/20.67% 6.56/8.68/12.45% 7.25/9.76/14.17%
LRTC-TNN 3.74/4.55/9.65% 4.38/5.47/11.44% 5.97/7.65/11.10% 6.81/8.91/12.67%
BTTF 2.99/3.63/8.03% 3.10/3.79/8.52% 6.05/7.61/12.08% 6.57/8.51/13.04%
BGCP 3.06/3.53/8.60% 3.13/3.74/8.65% 6.00/7.67/11.61% 6.99/9.24/13.68%
Multi-BiSTGN 2.02/2.56/7.26% 2.47/3.06/7.53% 4.85/6.98/8.34% 5.58/7.63/10.49%

models shows apparent differences in the block missing, i.e. the imputation perform-
ance of the third category models is better than that of the second category models,
and the imputation performance of the second category models is greater than that
of the first category models. At the same time, in the block missing, the first and the
second category models are greatly affected by the missing rate. With the increase of
missing rates, the imputation performance of the first and second category models
decreases significantly. The reason is that the first and second models are single view
models that only consider the temporary closeness view. When there is a block miss-
ing in traffic flow, it is difficult for the first and second category models to account for
the missing patterns from neighboring time windows (i.e. the closeness view).
Compared with the first and second category models, the third models have more sta-
ble imputation performance in the block missing. The reason is that the third category
models can be regarded as the multi-view models considering the closeness view and
daily periodicity view. Even if the traffic flow data is missing in blocks, the third cat-
egory models can still mine the missing patterns from the daily periodicity view.
Compared with all the baselines, the Multi-BiSTGN model obtains the highest imput-
ation performance under the block missing. The reason is that the Multi-BiSTGN model
considers multiple views and the non-Euclidean data structure of traffic flow. Similarly,
Table 5 shows the comparison results between the Multi-BiSTGN model and the base-
lines under mixed missing, and the results are similar to those in Table 4.
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Table 5. Comparison results (in MAE/RMSE/MAPE) with baselines for mixed missing.

Traffic Speed

Traffic Volume

Models MR: 20% MR: 40% MR: 20% MR: 40%

HA 9.25/12.27/24.41% 12.12/15.41/29.41% 9.61/13.26/17.41% 11.21/14.61/20.14%
SES 7.37/10.44/22.63% 8.26/11.22/22.55% 6.66/8.92/13.99% 7.41/9.79/14.89%
ST-KNN 3.89/6.13/11.62% 4.01/5.72/10.62% 6.81/9.01/13.22% 6.82/9.13/13.79%
ST-ISE 3.41/4.67/10.72% 3.59/4.96/10.93% 6.10/7.77/11.56% 6.48/8.21/12.16%
ST-2SMR 4.68/7.98/15.68% 6.78/8.92/24.13% 7.44/9.45/14.01% 7.80/9.87/15.20%
TRMF 5.08/7.06/15.50% 5.36/7.17/14.90% 6.76/8.92/13.06% 7.74/10.40/14.42%
BTMF 4.38/6.62/13.57% 5.17/7.04/14.40% 6.53/8.45/12.59% 7.25/9.51/14.06%
LRTC-TNN 3.18/3.88/8.43% 3.19/3.92/9.00% 5.84/7.51/11.26% 6.43/8.45/12.54%
BTTF 2.64/3.19/7.42% 2.91/3.51/8.82% 5.97/8.01/11.55% 6.22/7.89/12.52%
BGCP 2.85/3.40/7.72% 3.04/3.62/8.54% 5.89/7.87/11.38% 6.21/8.05/12.16%
Multi-BiSTGN 1.79/2.68/6.98% 2.26/2.69/6.73% 4.09/6.08/6.78% 5.08/6.65/9.68%
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Figure 9. Imputation values and corresponding actual values under 20% missing rate: (a) random
missing on traffic speed, (b) block missing on traffic speed, (c) mixed missing on traffic speed, (d)
random missing on traffic volume, (e) block missing on traffic volume, and (c) mixed missing on

traffic volume.

In general, the Multi-BiSTGN model shows good imputation performance under ran-
dom missing, block missing, and mixed missing, proving the superiority of the Multi-

BiSTGN model.

5.5. Qualitative imputation results of Multi-BiSTGN

In this section, scatter plots are used to describe the imputation performance of the
Multi-BiSTGN model. Figure 9 shows the imputation results of the Multi-BiSTGN model
with a 20% missing rate. The results show that the imputation values are relatively
close to the true values on the two datasets. Among them, the residuals between the
observed value and the imputation value are mainly concentrated between [-2.5 and
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Figure 10. Spatiotemporal heterogeneity of imputation results: (a) spatial division of road seg-
ments, where 1~ 9 represent road segments at different spatial locations, (b) spatial heterogeneity,
and (c) temporal heterogeneity.

2.5] on the traffic speed dataset, and the residuals between the observed value and
the imputation value are mainly concentrated between [-5 and 5] on the traffic vol-
ume dataset. This further proves that the imputation result of the Multi-BISTGN model
has high precision.

5.6. Spatiotemporal heterogeneity of imputation results

In this subsection, the 40% mixed missing traffic speed data is used to further analyze
the spatiotemporal heterogeneity of the imputation results, that is, the difference of
imputation results in different spatial locations and different time windows. As shown
in Figure 10, in the spatial dimension, we divide the road segments into segments
near the intersections and other segments not near the intersections. The results show
that the imputation results of segments near intersections are slightly lower than
those of segments not near intersections. There are two main reasons for spatial het-
erogeneity of imputation results. First, the traffic state at the intersection changes
more dramatically and the traffic pattern is difficult to capture. Second, the intersec-
tions in traffic speed data are mainly concentrated at the boundary of the study area,
resulting in partial missing of the topology information of the road segments near the
intersections. There are two ways to reduce the influence of the boundary effect on
imputation results. First, if there are more relevant data of the boundary data, the rele-
vant data can be added to improve the accuracy of the imputation results. Second,
we can use the similarity matrix of the road segment to replace the adjacency matrix
in BiSTGN, making the boundary data have more connections and improving the
imputation results. In the temporal dimension, the imputation accuracy of travel peak
time is slightly higher than in other time periods. The reason may be that the traffic
speed changes relatively smoothly during the travel peak time, and the traffic pattern
is easy to capture.

5.7. Effect of different components on imputation performance

The Multi-BiSTGN model is composed of three different components, i.e. the BiSTGN
model from closeness view (BiSTGN-CV), the BiSTGN model from daily periodicity view
(BiSTGN-DV), and the BiSTGN model from weekly periodicity view (BiSTGN-WV).
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Table 6. Imputation results (in MAE/RMSE/MAPE) of different components.

Traffic Speed

Traffic Volume

Models MR: 20% MR: 40% MR: 20% MR: 40%
BiSTGN-CV (R) 1.19/1.98/3.82% 1.84/2.75/6.20% 2.20/3.29/4.54% 3.15/4.65/5.97%
BiSTGN-DV (R) 1.69/2.57/6.23% 1.97/2.95/6.77% 4.28/6.13/7.78% 4.50/6.33/8.58%
BiSTGN-WV (R) 2.32/2.82/6.86% 2.49/2.98/7.18% 4.95/6.32/9.54% 5.09/6.53/9.79%
Multi-BiSTGN (R) 1.58/2.64/5.58% 2.14/2.67/6.23% 3.87/5.67/6.79% 4.03/5.64/7.22%
BiSTGN-CV (B) 6.69/8.19/24.68% 7.14/8.43/24.13% 10.42/13.16/20.77% 11.61/15.47/21.16%
BiSTGN-DV (B) 1.74/2.53/6.47% 2.46/3.13/6.80% 4.32/6.25/8.44% 5.83/7.20/9.36%
BiSTGN-WV (B) 2.58/3.05/7.32% 2.60/3.28/7.93% 5.67/7.14/10.54% 6.34/8.53/12.40%
Multi-BiSTGN (B) 2.02/2.56/7.26% 2.47/3.06/7.53% 4.85/6.98/8.34% 5.58/7.63/10.49%
BiSTGN-CV (M) 4.94/6.61/15.36% 4.97/7.01/18.14% 4.93/7.48/9.82% 5.57/8.85/10.07%
BiSTGN-DV (M) 1.96/2.81/6.61% 2.41/2.93/6.33% 4.29/6.87/7.60% 4.41/6.71/8.65%
BiSTGN-WV (M) 2.48/3.00/6.93% 2.57/3.10/7.07% 5.22/6.68/10.29% 5.42/7.06/10.41%
Multi-BiSTGN (M) 1.79/2.68/6.98% 2.26/2.69/6.73% 4.,09/6.08/6.78% 5.08/6.65/9.68%
Table 7. Effect of view alignment on imputation results (in MAE/RMSE/MAPE).
Multi-BiSTGN-NoAligned Multi-BiSTGN
Models MR: 20% MR: 40% MR: 20% MR: 40%
Traffic Speed (R) 2.04/3.26/7.03% 1.98/2.47/6.13% 1.58/2.64/5.58% 2.14/2.67/6.23%
Traffic Speed (B) 3.42/4.37/9.72% 4.36/6.73/11.36% 2.02/2.56/7.26% 2.47/3.06/7.53%
Traffic Speed (M) 1.65/2.53/6.83% 3.08/3.22/8.42% 1.79/2.68/6.98% 2.26/2.69/6.73%
Traffic Volume (R) 4.32/6.15/8.27% 4.48/6.36/8.46% 3.87/5.67/6.79% 4.03/5.64/7.22%
Traffic Volume (B) 6.21/9.20/18.03% 7.57/10.65/20.50% 4.85/6.98/8.34% 5.58/7.63/10.49%
Traffic Volume (M) 5.46/8.42/18.66% 6.05/9.69/18.51% 4.09/6.08/6.78% 5.08/6.65/9.68%

Therefore, we analyzed the impact of different components on the imputation per-
formance, and the results are shown in Table 6. The results show that the BiSTGN-CV
component is more affected by the missing pattern, and the BiSTGN-DV and BiSTGN-
WV components are less affected by the missing pattern. When there are only random
missing in the dataset, the imputation performance of the BiSTGN-CV component is
the best among the three components. When there are block and mixed missing in
the dataset, the imputation performance of the BiSTGN-DV and BiSTGN-WV compo-
nents is better, which further demonstrates the necessity of introducing multi-view
components. In addition, the results show that the Multi-BiSTGN model may not be
higher than the imputation performance of all components under specific missing pat-
terns, but the imputation performance of the entire Multi-BiSTGN model can be better
than that of most components. For example, when random missing happens, the
imputation performance of the Multi-BiSTGN model is lower than that of the BiSTGN-
CV component, but higher than that of the BiSTGN-DV and BiSTGN-WV components.
Considering the complexity of missing patterns in real-world applications, the Multi-
BiSTGN model is more practical.

In the model optimization stage, a new loss function is designed to align multiple
views. Therefore, we analyzed the influence of view alignment on model imputation
accuracy. Table 7 shows the effect of view alignment on imputation results, where
Multi-BiSTGN-NoAligned represents the model without view alignment, and Multi-
BiSTGN represents the model with view alignment. The results show that the Multi-
BiSTGN has better imputation performance under most conditions compared with the
Multi-BiSTGN-NoAligned. In 12 comparative experiments, the Multi-BiSTGN-NoAligned
model can only achieve better imputation performance in two experiments. In
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Figure 11. Effect of view alignment on model optimization: (a) traffic speed, and (b) traf-
fic volume.

addition, we further analyzed the impact of view alignment on model optimization, as
shown in Figure 11. The results show that view alignment can significantly improve
the efficiency of model optimization and make the Multi-BiSTGN model con-
verge faster.

6. Conclusions and future work

Accurately estimating the missing data under complex traffic patterns is one of the
essential preparatory work in intelligent transportation systems (ITS), which is of great
significance for subsequent traffic flow modeling. However, due to the non-Euclidean
structure and complex missing patterns of traffic flows, existing imputation models are
difficult to capture the nonlinear spatiotemporal correlations of missing traffic flows.
Therefore, a novel multi-view bidirectional spatiotemporal graph network called Multi-
BiSTGN is proposed to impute the missing traffic data.

In the experimental section, two real traffic datasets collected in Wuhan, China,
were used to verify the imputation performance of Multi-BiSTGN, i.e. traffic speed
data and traffic volume data. First, the control variable method is used to calibrate
the parameters of the Multi-BiSTGN to obtain the optimal parameter combination
of the model. Then, we compared ten existing baselines, including HA, SES, ST-
KNN, ST-2SMR, ST-ISE, TRMF, BTMF, LRTC-TNN, BTTF, and BGCP models. Compared
to the existing methods, the Multi-BiSTGN model achieved the best imputation per-
formance on three missing types (random missing, block missing, and mixed miss-
ing) and two missing rates (20% and 40%). Finally, the influence of different
components in Multi-BiSTGN on imputation accuracy was tested, further proving
that the proposed method is suitable for traffic flow imputation with complex miss-
ing patterns.

The limitations of this study are as follows: (1) As the Multi-BiSTGN model has many
hyper-parameters, which introduce extra computational burdens during parameter
calibration and may affect the converge speed of the model; (2) The Multi-BiSTGN
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model is essentially a general imputation model and can accommodate difference
sources of spatiotemporal data, and we only use traffic datasets to verify the imput-
ation performance of the model. Given the above problems, future work will focus on
two aspects. First, the automatic parameter tuning will be integrated into the Multi-
BiSTGN model to simplify the calibration process. Then, multi-source data, such as air
quality data and meteorological data, will be collected to promote the imputation per-
formance of the Multi-BiSTGN model.
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