
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

Urban traffic flow prediction: a dynamic temporal
graph network considering missing values

Peixiao Wang, Yan Zhang, Tao Hu & Tong Zhang

To cite this article: Peixiao Wang, Yan Zhang, Tao Hu & Tong Zhang (2023) Urban
traffic flow prediction: a dynamic temporal graph network considering missing
values, International Journal of Geographical Information Science, 37:4, 885-912, DOI:
10.1080/13658816.2022.2146120

To link to this article:  https://doi.org/10.1080/13658816.2022.2146120

View supplementary material 

Published online: 17 Nov 2022.

Submit your article to this journal 

Article views: 268

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2022.2146120
https://doi.org/10.1080/13658816.2022.2146120
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2022.2146120
https://www.tandfonline.com/doi/suppl/10.1080/13658816.2022.2146120
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2022.2146120
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2022.2146120
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2022.2146120&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2022.2146120&domain=pdf&date_stamp=2022-11-17


RESEARCH ARTICLE

Urban traffic flow prediction: a dynamic temporal graph
network considering missing values

Peixiao Wanga , Yan Zhanga , Tao Hub and Tong Zhanga

aState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan, China; bDepartment of Geography, Oklahoma State University, Stillwater,
OK, USA

ABSTRACT
Accurate traffic flow prediction on the urban road network is an
indispensable function of Intelligent Transportation Systems (ITS),
which is of great significance for urban traffic planning. However,
the current traffic flow prediction methods still face many chal-
lenges, such as missing values and dynamic spatial relationships
in traffic flow. In this study, a dynamic temporal graph neural net-
work considering missing values (D-TGNM) is proposed for traffic
flow prediction. First, inspired by the Bidirectional Encoder
Representations from Transformers (BERT), we extend the classic
BERT model, called Traffic BERT, to learn the dynamic spatial asso-
ciations on the road structure. Second, we propose a temporal
graph neural network considering missing values (TGNM) to mine
traffic flow patterns in missing data scenarios for traffic flow pre-
diction. Finally, the proposed D-TGNM model can be obtained by
integrating the dynamic spatial associations learned by Traffic
BERT into the TGNM model. To train the D-TGNM model, we
design a novel loss function, which considers the missing values
problem and prediction problem in traffic flow, to optimize the
proposed model. The proposed model was validated on an actual
traffic dataset collected in Wuhan, China. Experimental results
showed that D-TGNM achieved good prediction results under
four missing data scenarios (15% random missing, 15% block
missing, 30% random missing, and 30% block missing), and out-
performed ten existing state-of-the-art baselines.
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1. Introduction

With the continuous increase of urban vehicles, traffic congestion has gradually
become a common problem in almost all modern metropolises, and has seriously dis-
rupted the normal travel of humans (Y. Wang et al. 2019, Lin et al. 2020, Shi et al.

2021). Traffic flow prediction technology, a fundamental objective of the intelligent
transportation system (ITS), can dynamically guide traffic flow based on the traffic
state predicted by the model, which is of great significance for urban traffic planning
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(Fang et al. 2021, F. Zhou et al. 2021a). In recent years, the rapid development of sen-
sors provide essential data sources for traffic flow prediction (J. Yu et al. 2020, P.
Wang et al. 2022a). However, due to technical problems of data collection, data miss-
ing is common in real-world applications, which severely limits the use of traffic data
(Chen et al. 2020, D. Xu et al. 2020, Furtlehner et al. 2022, P. Wang et al. 2022a).

In the early years, some scholars did not consider the missing phenomenon in traffic
flow, and simply established prediction models without considering missing values. This
kind of classical prediction model mainly includes the spatiotemporal k-nearest-neighbor
model (ST-KNN) (S. Wu et al. 2014, B. Yu et al. 2016a), spatiotemporal residual network
(ST-ResNet) (J. Zhang et al. 2017), and HIDLST network (Ren et al. 2020). In addition, con-
sidering that the traffic road network is a non-Euclidean data structure in nature, graph
convolutional networks (GCNs) have been applied to traffic flow modeling and achieved
state-of-the-art (SOTA) prediction performance (Kipf and Welling 2017), such as temporal
graph convolutional network (T-GCN) (Zhao et al. 2020), spatiotemporal graph convolu-
tional network (ST-GCN) (B. Yu et al. 2018), and residual graph convolutional long short-
term memory network (RGC-LSTM) (Y. Zhang et al. 2020). Although the above models
have achieved good prediction results, there are still shortcomings. Specifically, the
above prediction models do not have the ability to deal with missing values but convert
data with missing values into data without missing values through preprocessing. The
above models adopt two preprocessing methods to deal with the missing values. One
is to estimate missing data before constructing the prediction models, and the other is
to delete the time series with missing data (Yang et al. 2021). The preprocessing meth-
ods not only increase the computational complexity of the prediction model, but also
may lead to insufficient training data to obtain a reliable prediction model. In addition,
traffic flow collected in the real world may contain multiple missing patterns (character-
istics of the missing pattern are described in Supplementary Appendix A), which also
seriously restrict the performance of the prediction models (Chen et al. 2020, D. Xu
et al. 2020, Furtlehner et al. 2022, P. Wang et al. 2022b).

In recent years, some scholars have tried to establish traffic prediction models con-
sidering missing values, which directly use raw data to predict the future traffic state
without preprocessing missing values. For example, Che et al. (2018) proposed the
gate recurrent unit with decay mechanism (GRU-D), and Tian et al. (2018) proposed
the long short-term memory network with missing data (LTSM-M). However, GRU-D
and LTSM-M are pure time series models that ignore the spatial patterns of traffic
flow. In addition, matrix and tensor factorization models also provide a solution for
traffic flow prediction based on missing data (H.-F. Yu et al. 2016b, Chen and Sun
2022). However, the matrix and tensor factorization models are mainly designed for
the Euclidean structure, limiting the modeling ability on non-Euclidean datasets. In
recent years, relevant scholars have also applied GCNs to traffic flow modeling with
missing data and obtained good prediction results, such as spectral graph Markov net-
work (SGMN) (Cui et al. 2020) and Heterogeneous Spatiotemporal graph convolution
network (RIHGCN) (Zhong et al. 2021). However, the SGMN and RIHGCN models rely
heavily on the predefined adjacency matrix. In the natural traffic environment, due to
the influence of signal lights and traffic events, the spatial association between roads
is not fixed, but dynamically changes with time. Therefore, the predefined adjacency
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matrix cannot accurately describe the spatial association between roads (Z. Wu et al.
2021, F. Zhou et al. 2021a).

In general, the current traffic flow forecasting methods still face two challenges.
One is that missing data affects the performance of prediction model, and the other is
that fixed adjacency matrixes cannot accurately describe the dynamic spatial associ-
ation on the traffic network. This study proposes a novel solution to address the
above two challenges. Specifically, a dynamic temporal graph network considering
missing values (D-TGNM) is proposed for traffic flow prediction. The main contribu-
tions are summarized as follows:

1. We propose a novel temporal graph neural network considering missing values
(TGNM) for traffic flow prediction under missing data scenarios. In the TGNM
model, we designed a missing data processing component to capture missing
patterns in traffic flow automatically. Supported by the proposed component, the
TGNM model does not need to impute the missing values in the traffic flow in
advance, but directly captures the complex spatiotemporal relationships in the
traffic flow for traffic flow prediction.

2. Inspired by Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al. 2019, Bao et al. 2021), we develop a novel self-supervised learning
method called Traffic BERT, which enables the TGNM model to capture dynamic
spatial relationships in traffic flow.

3. A novel loss function is proposed to optimize the parameters of proposed model.
The proposed loss function divides the optimization function into temporal-based
imputation tasks, spatial-based imputation tasks, and prediction tasks. That is, the
loss function considers not only the problem of missing value, but also the prob-
lem of traffic flow prediction.

2. Related works

In this section, we systematically review the work related to this study. Existing traffic
flow prediction methods can be roughly divided into two categories: spatiotemporal
prediction based on complete data, and spatiotemporal prediction based on incom-
plete data, which are discussed in Sections 2.1–2.2, respectively. Among them, com-
plete data refers to data without missing values, and incomplete data refers to data
containing missing values.

2.1. Spatiotemporal prediction models based on complete data

As the prediction models based on complete data are challenging to deal with the
missing values in the data, the prediction models based on complete data are often
divided into multi-stage modeling. More specifically, relevant scholars first used imput-
ation methods, such as matrix factorization (Asif et al. 2016, H.-F. Yu et al. 2016b), ten-
sor factorization (Chen et al. 2019, Chen and Sun 2022), and spatiotemporal
interpolation (S. Cheng and Lu 2017, S. Cheng et al. 2020), to estimate the missing val-
ues in traffic flow, and then model the complete traffic flow to predict the future
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traffic state (Liu et al. 2018, Ge et al. 2019, Q. Li et al. 2020). For example, S. Cheng
and Lu (2017) adopted a two-step spatiotemporal interpolation (ST-2SMR) to impute
the missing values of traffic flow, and proposed adaptive spatiotemporal k-nearest
neighbor (adaptive-STKNN) (S. Cheng et al. 2018) and dynamic spatiotemporal k-near-
est neighbor (D-STKNN) (S. Cheng et al. 2021) to model the complete traffic flow. P.
Wang et al. (2021) used the linear interpolation method (P. Cai et al. 2016) to impute
the missing values in the dataset, and proposed an improved deep belief network
(Improved-DBN) to predict the traffic state in 30, 60, and 120-min intervals. In addition,
some scholars directly deleted the incomplete data series to model the remaining
complete traffic flow data. For instance, J. Zhang et al. (2017) proposed the spatiotem-
poral residual networks (ST-ResNet) to forecast the inflow and outflow in every city
region. L. Cai et al. (2020) proposed a novel deep learning framework called Traffic
Transformer to capture the continuity and periodicity of time series and to model spa-
tial dependency. Although above models have achieved good prediction performance,
there are still shortcomings. More specifically, vehicles can only travel along road net-
works, which manifest non-Euclidean geometry and topology structures. Above mod-
els are mainly designed for Euclidean structured datasets, limiting the modeling ability
for non-Euclidean datasets (Z. Wu et al. 2021, J. Zhou et al. 2021b).

Fortunately, the rapid development of graph convolutional neural networks (GCNs)
provides a solution for non-Euclidean data modeling (Y. Zhang et al. 2020, M. Li et al.
2021, Yi et al. 2021). As mentioned above, the traffic road network is a non-Euclidean
data structure in nature, the GCNs are naturally applied to traffic flow modeling and
achieved SOTA performance (Y. Zhang et al. 2020, K. Zhang et al. 2021a, S. Zhang et al.
2022). For example, Zhao et al. (2020) proposed a temporal graph convolutional net-
work (T-GCN), which uses the GRU and GCN models to mine the temporal patterns and
spatial patterns of traffic flow, respectively. B. Yu et al. (2018) integrated the one-dimen-
sional CNN into the GCN and proposed a spatiotemporal graph convolutional network
(ST-GCN) to mine the spatiotemporal patterns of traffic flow. K. Zhang et al. (2021a) inte-
grated the temporal convolutional network (TCN) into the GCN and proposed a novel
graph attention temporal convolutional network (GATCN) to predict future traffic state.
T. Zhou et al. (2022) proposed an attention-based hybrid spatiotemporal model for city-
wide traffic flow forecasting, accounting for spatial and feature heterogeneity of traffic
flows. Although these graph-based prediction models have the capability to handle
non-Euclidean data, most of them can only make predictions based on complete data.
The prediction models based on complete data either estimate missing data before con-
structing the prediction models, or delete the time series with missing data. The former
adds an extra computational burden and the imputation accuracy directly affects the
performance of the prediction models (S. Cheng et al. 2018, 2019, 2021), while the latter
may lead to insufficient training data for the models and fail to obtain reliable traffic
flow patterns (L. Cai et al. 2020, Y. Zhang et al. 2020, Yi et al. 2021).

2.2. Spatiotemporal prediction models based on incomplete data

Compared with the prediction models based on complete data, the prediction models
based on incomplete data integrate missing patterns into the prediction models and
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directly use raw data to predict the future traffic state. For example, Che et al. (2018)
proposed the GRU-D model based on the gated recurrent unit (GRU), which effectively
integrates masking and time interval into the deep model architecture to capture the
long-term time dependence in the missing time series. Tian et al. (2018) integrated
the multi-scale time information of traffic flow into the long short term memory net-
work (LSTM), and proposed the LSTM-M to model missing traffic flow. Although GRU-
D and LSTM-M models can model missing traffic sequences, there are still deficiencies.
Specifically, GRU-D and LSTM-M models are simple time series models, which ignore
the impact of spatial information on traffic flow prediction (Ermagun and Levinson
2018, Medrano and Aznarte 2021). In addition, matrix/tensor factorization models pro-
vide a natural solution to address traffic flow prediction with missing data. For
instance, H.-F. Yu et al. (2016b) proposed the temporal regularized matrix factorization
model (TRMF) for traffic flow prediction with missing data based on the rolling predic-
tion scheme and the traditional matrix factorization model. To improve the nonlinear
fitting ability of the matrix factorization, Yang et al. (2021) integrated LSTM and graph
Laplacian (GL) into the solution of the matrix factorization, and proposed the LSTM-
GL-ReMF model for traffic flow prediction with missing data.

Considering the non-Euclidean structure of the traffic road network, relevant schol-
ars also applied GCNs to the traffic flow prediction with missing values. For example,
Cui et al. (2020) proposed a novel spectral graph Markov network (SGMN), which grad-
ually infers the missing data and predicts the future traffic state by defining the
Markov process on the graph. Zhong et al. (2021) proposed a heterogeneous spatio-
temporal graph convolution network (RIHGCN) for traffic forecasting with missing val-
ues. However, compared with the prediction models based on complete data, limited
research explored the graph-based prediction model considering missing values. In
addition, SGMN and RIHGCN models are a kind of spectral GCN, which rely heavily on
the predefined static adjacency matrix. In other words, the spatial relationship
between road segments is constant in SGMN and RIHGCN models. However, in the
actual scene, the spatial relationship between road segments often changes dynamic-
ally with time, which makes it difficult for the static matrix to capture the dynamic
spatial relationship (Diao et al. 2019, M. Xu et al. 2021).

Therefore, to address above two challenges (dynamic spatial associations and miss-
ing value), we propose a dynamic temporal graph network considering missing values
(D-TGNM) for traffic flow prediction. The D-TGNM model does not rely on the prede-
fined static adjacency matrix but captures the dynamic associations in the traffic flow.
In addition, the D-TGNM model also can to predict traffic flow under miss-
ing scenarios.

3. Preliminaries and problem definitions

In this section, we first introduce the definitions of several key concepts, and then pre-
sent the traffic flow prediction problem based on the definitions.

Definition 1 (Traffic Road Network), As shown in Figure 1(a), a traffic road network
can be abstracted as a graph structure G ¼< V , E,A >, where V ¼ vif gni¼1 represents
n nodes in the graph G (such as n intersections or detectors); E represents the set of
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edges in G, i.e., the relationships of nodes. For simplicity, the connection relationships
between nodes can be represented by an association matrix A 2 Rn�n: Note: The con-
nection relationship between nodes is not the same as the topological relationship in
the physical world, but an implicit relationship dynamically learned through the states
between nodes.

Definition 2 (Traffic State), As shown in Figure 1(b), the traffic state on the entire
road network G within a specific time window can be expressed as a spatiotemporal
state matrix X 2 Rn�g, where xti represents the traffic state of node vi in the time win-
dow st , xt ¼ xti

� �n
i¼1 2 Rn�1 represents a spatial sequence of all nodes in the time

window st:

Definition 3 (Zero-one Matrix), Zero-one matrix M 2 Rn�g is a matrix containing
only elements 0 and 1, whick is used to distinguish missing values and observed val-
ues in the spatiotemporal state matrix X: If Mt

i ¼ 0, it means that the traffic state of
node vi in the time window st is missing, i.e., xti ¼ /: Similarly, mt ¼ Mt 2 Rn�1 is
used to distinguish missing values and observed values in the spatial sequence xt:

Definition 4 (Dynamic Temporal Graph Sequence), A dynamic temporal graph
sequence DTGS ¼ Gtf gm

t¼1 represents a dynamic graph sequence in which graph infor-
mation changes over time. Specifically, the dynamic graph means that the traffic state
and the relationships between nodes in the graph change over time, i.e., Gt ¼<
V , Et ,At , xt ,mt>: As shown in Figure 1(c), Gt graph information in time window st ,
where xt and mt have the same meaning as in Definition 2 and Definition 3, Et and At

represent the associations between nodes in the time window st , i.e., the relationships
between nodes also changes over time.

Figure 1. Preliminary definitions: (a) traffic road network can be abstracted as a graph structure,
(b) the traffic state on the entire road network can be expressed as a spatiotemporal state matrix,
and (c) the studied traffic flow prediction task in missing.
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Our work aims to build a function F �ð Þ that can mine the spatiotemporal correla-
tions of traffic flow from the dynamic temporal graph sequence with missing values to
forecast future traffic flow accurately. Given a dynamic temporal graph sequence, the
modeling process is shown in Formula (1).

x̂ tf ggþDt
t¼gþ1 ¼ F Gtf gg

t¼1;H
� �

(1)

where Gtf gg
t¼1 represents the historical dynamic temporal graph sequence with miss-

ing values; x̂ tf ggþDt
t¼gþ1 represents the future dynamic temporal graph sequence; F �ð Þ

represents the prediction model proposed in this study, i.e., D-TGNM model; Dt repre-
sents the prediction step, Dt ¼ 1 represents single step prediction, Dt > 1 represents
multi-step prediction; H indicates the learnable parameter in the model.

4. Methodology

In this section, we describe the proposed D-TGNM model for traffic flow prediction
considering missing values. The structure of D-TGNM is presented in Figure 2. The
components of D-TGNM model are introduced in Sections 4.1–4.3, respectively. First,
we construct a dynamic graph sequence to describe the traffic states of the studied
road network. Then, to address two challenges (i.e., dynamic spatial associations and
missing value) in the dynamic graph sequence, we propose a novel self-supervised
learning method called Traffic BERT and a novel temporal graph network considering

Figure 2. Workflow of the D-TGNM model.
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missing values (TGNM), respectively. Finally, the proposed D-TGNM model can be
obtained by integrating the dynamic spatial associations learned by Traffic BERT into
the TGNM model. More specifically, the dynamic graph sequence is used as the input
of Traffic BERT to obtain the dynamic spatial associations in traffic flow. Then, the
dynamic graph sequence and dynamic spatial associations are used as the input of D-
TGNM model to obtain the final output. To train the D-TGNM model, we design a
novel loss function, which considers the missing values problem and prediction prob-
lem in traffic flow, to optimize the proposed model.

4.1. Construction of dynamic association matrix

Due to signal timing and real-time traffic states, the spatial associations between road
segments are often dynamic rather than static, i.e., the spatial associations between
roads change over time (Diao et al. 2019). For example, when the signal light is red,
vehicles will be prohibited from passing, even if there is a topological connection
between the two roads in the physical world. However, existing graph convolutional
networks mostly use the predefined static matrix to encode spatial associations on the
road network, ignoring the dynamics of spatial associations (Zhang et al. 2022).
Compared with the explicit static spatial associations, the implicit dynamic spatial
associations may more accurately describe the spatial relationships between roads.
Therefore, we attempt to integrate the dynamic spatial associations into the graph
convolutional networks to further improve the accuracy of traffic flow prediction.
Inspired by BERT, we extended the classic BERT model to learn the implicit dynamic
spatial associations on the traffic road network (aka., Traffic BERT).

The BERT model is a pre-training model for natural language processing, which
learns the implicit semantic associations between words based on text data (Y. Zhang
et al. 2021b; Y. Zhang et al. 2022). By analogy with the traffic environment, the Traffic
BERT model learns the implicit semantic associations between spatial locations based
on the spatial sequences (Definition 2) of traffic states, i.e., the implicit spatial associa-
tions. Compared with the traditional BERT model, the Traffic BERT model has two
main differences. First, Traffic BERT model is used to process continuous traffic flow
data rather than discrete text data. Second, Traffic BERT focuses on the implicit spatial
associations (i.e., attention matrix) between traffic flows rather than the output of the
model, i.e., Traffic BERT model explicitly uses attention matrix to describe the similarity
between different nodes (intersections or detectors). As shown in Figure 3, the Traffic
BERT model is mainly composed of two stages: model training and dynamic matrix
generation. The training stage is mainly used to optimize the parameters of the Traffic
BERT model. The dynamic matrix generation stage is used to obtain the corresponding
dynamic spatial association matrix of the spatial sequence.

As shown in Figure 3, the spatial sequence containing the missing values obtains
the final output through state embedding, position embedding, and L encoders in
turn. In the Traffic BERT model, the encoder is the key to obtain the implicit dynamic
spatial associations on the traffic network. Therefore, taking the spatial sequence xt of
the t th time window as an example, we describe the operation process of a single
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encoder, which is shown in Formulas (2) and (3).

It ¼ xt⨀mtð ÞWse þWpe

It ¼ It þ Concat Ut
1,U

t
2, . . . ,U

t
p

� �
Wu

Ot ¼ It þ gelu ItW ffð ÞW f

x̂ t ¼ OtWo

8>>>><
>>>>:

(2)

Ut
p ¼ Tt

p ItWv:p
� �

Tt
p ¼ softmax

ItWq:p
� �

ItWk:p
� �T
dk

 !
8>><
>>: (3)

where It 2 Rn�de and Ot 2 Rn�de respectively represent the input and output of the
encoder (de represents the matrix dimensions required by the input and output of the
encoder. In general, the output of the former encoder can be used as the input of the
latter encoder); mt 2 Rn�1 is used to identify observed and missing values in xt , and
xt⨀mt means that only the observed data is input into the Traffic BERT model; x̂ t 2
Rn�1 represents the output of the Traffic BERT model, which is used to calculate the
loss function. Ut

1,U
t
2, . . . ,U

t
p 2 Rn�dk indicate the results of input It through multi-head

attention mechanism (dk represents the matrix dimensions required by the multi-head
attention mechanism); In the multi-headed attention mechanism (Formula 3), Tt

p 2
Rn�n represents the attention matrix of the p-head, which can be used to obtain the
dynamic spatial association matrix of the spatial sequence xt; Wse 2 R1�de , Wpe 2
R1�de , Wu 2 R p�dkð Þ�de , W ff 2 Rde�4de , Wf 2 R4de�de , Wo 2 Rde�1, Wv:p 2 Rde�dk ,
Wq:p 2 Rde�dk , and Wk:p respectively represent the learnable parameters, which are
mainly used for the dimension alignment in the calculation process; Concat �ð Þ repre-
sents the matrix connection function; gelu �ð Þ represents the activation function of
gaussian error linear units; softmax �ð Þ represents the normalized exponential function.

After obtaining the output x̂ t , the parameters of the Traffic BERT model can be
optimized by minimizing the mean square error between the output values x̂ t and
the actual values xt: The optimization process is shown in Formula (4).

Figure 3. Illustration of the Traffic BERT.
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L Wð Þ ¼ min
W

1
2

xt⨀ 1�mtð Þ � x̂t⨀ 1�mtð Þð Þ2 (4)

where W represents the learnable parameter of the Traffic BERT; mt 2 Rn�1 is used to
identify the observed values and missing values in xt; ⨀ represents the Hadamard
product; xt⨀ 1�mtð Þ � x̂t⨀ 1�mtð Þ means that only the output value of the missing
position is used to optimize the parameters of the Traffic BERT. As shown in Figure 4,
from a spatial perspective, the essence of the Traffic BERT model is to use potential
spatial associations to estimate missing values in the spatial sequence. Therefore, the
process of optimizing the Traffic BERT model is the process of learning the potential
spatial associations in the spatial sequence.

After obtaining the optimized Traffic BERT model, we obtain the final dynamic spa-
tial association matrix by fusing the multi-head attention matrix in the encoder.
Although Traffic BERT model contains L-layer encoder, we only fuse the attention
matrix in the last layer encoder in order to facilitate calculation. Taking the spatial
sequence xt of the t th time window as an example, the fusion process is shown in
Formula (5).

At ¼
Xp
i¼1

Tt
i

p
(5)

where At 2 Rn�n represents the implicit spatial associations in the spatial sequence
xt 2 Rn�1, and mainly used for subsequent traffic flow prediction; Tt

i 2 Rn�n repre-
sents the similarity matrix of the i th head, and its calculation method is the same as
that of Formula (3).

4.2. Construction of the TGNM

By replacing the adjacency matrix in traditional GCNs with the dynamic association
matrix obtained by Traffic BERT, traditional GCNs can capture the dynamic spatial asso-
ciation in traffic flow. Compared with static adjacency matrix, the time-varying
dynamic association matrix is more suitable for describing the spatial associations in
the graph. However, the GCNs integrating Traffic BERT still have two shortcomings.

Figure 4. Optimization of the Traffic BERT: the essence of the Traffic BERT model is to use poten-
tial spatial associations to estimate missing values in the spatial sequence.
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First, the traditional GCNs are mainly designed for spatial data, and it is difficult to
mine the temporal patterns in dynamic temporal graph sequence (Rossi et al. 2020).
Second, the traditional GCNs cannot effectively deal with missing values in traffic flow
data (Cui et al. 2020). To solve the above shortcomings, we propose a novel temporal
graph network considering missing values (TGNM) for traffic flow modeling.

The TGNM model defines graph convolution operations under time constraints from
the perspective of neighborhood feature aggregation. As shown in Figure 5, inspired by
the recurrent neural network, we define two memory states for each node in the graph.
Based on the memory state, the basic idea of the TGNM model can be simply described
as three steps. First, the temporal memory state Ht:tm of the t th time window is
obtained from Ht�1:tm and Gt: Then, the spatial memory state Ht:sm of the t th time win-
dow is obtained from Ht�1:sm and Gt: Finally, Ht:tm and Ht:sm are integrated to obtain
the final prediction results. The advantage of the TGNM model is that it captures the
temporal and spatial dependence of graph nodes at the same time. By analogy with
the traffic environment, the traffic state of the current road is not only affected by its
own historical states, but also by the historical states of its adjacent roads.

4.2.1. Forward propagation of the TGNM
Figure 6 describes the forward propagation process of the TGNM model in detail. The
DTGM model iteratively updates the spatial memory state and the time memory state
of the previous moment to obtain the final memory state. As the missing pattern will
be automatically captured before the traffic flow enters the neuron interior (discussed
later), the neuron interior directly operates on the complete data. In addition, there
may be long-term dependence in temporal graph sequences, and the gating mechan-
ism of GRU (Chung et al. 2014) is integrated into the neuron interior. Taking the t th
time window as an example, the forward propagation process of the neuron interior is
shown in Formula (6).

Figure 5. Illustration of memory state in the TGNM model: Ht:tm ¼ ht:tmi

� �n
i¼1 represents the mem-

ory state in the time dimension, and Ht:sm ¼ ht:smi

� �n
i¼1 represents the memory state in the space

dimension. The red dashed line indicates the temporal dependency of the target node, and the
blue dashed line indicates the spatial dependency of the target node.
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rt:tmi ¼ r ½ht�1:tm
i jjxti �Wr

� �
zt:tmi ¼ r ½ht�1:tmi jjxti �Wz

� �
~h
t:tm
i ¼ tanh ½ rt:tmi ⨀ht�1:tmi

� �
jjxti �W ĥ

� �
ht:tmi ¼ 1� zt:tmi

� �
⨀ht�1:tmi þ zt:tmi �~h

t:tm
i

?við Þt ¼Pj2Nt
i
At
ij½ht�1:smj jjxtj �

ht:sm
i ¼ r r ?við ÞtWsm

� �
Wssm

� �
x̂ tþ1i ¼ htiWout ¼ ½ht:tm

i j ht:smi

�� 	
Wout

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(6)

where x̂ tþ1i 2 R1�1 represents the prediction value of node vi in the (tþ 1)th time win-
dow; xti 2 R1�1 represents the observed (or pre-processed) value of node vi in the tth
time window; xtj 2 R1�1 represents the observed (or pre-processed) value of node vj
in the tth time window; ht�1:tmi 2 R1�dh represents the temporal memory state of the
node vi in the (t-1)th time window; ht�1:smi 2 R1�dh represents the spatial memory
state of the node vi in the (t-1)th time window; [�jj�] represents the vector connection
function; r �ð Þ represents the sigmoid activation function; ?við Þt represents the graph
convolution operation of the node vi in the tth time window; At represents the spatial
association matrix of the graph structure (when At is dynamically generated by Traffic
BERT, the TGNM model evolves into the D-TGNM model); Nt

i represents the set of spa-
tial neighbors of node vi in the tth time window; Wr 2 R dhþ1ð Þ�dh , Wz 2 R dhþ1ð Þ�dh ,
W ĥ 2 R dhþ1ð Þ�dh , Wsm 2 R dhþ1ð Þ�4dh , Wssm 2 R4dh�dh , and Wout 2 R2dh�1 indicate the
learnable parameters in the TGNM model.

4.2.2. Handling missing values in TGNM
As mentioned above, the neuron interior of the TGNM is mainly used to capture the
spatiotemporal correlations in the complete (or pre-processed) traffic flow, and does
not process the missing values in the traffic flow. For the problem of missing values in
traffic flow, we design a component for mining the missing patterns in traffic flow
automatically and iteratively impute the missing values of traffic flow. As shown in
Figure 7, the motivation for missing pattern mining component comes from two
points. First, in the single-step prediction of traffic flow, the contribution of temporal
correlation to prediction results is more significant than the contribution of spatial

Figure 6. Forward propagation illustration of TGNM model: the traffic flow containing missing val-
ues enters the neuron interior through the missing value processing, thereby updating the spatial
memory state and temporal memory state of the previous moment.
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correlation to prediction results. Second, with the increase of the prediction steps (i.e.,
multi-step prediction), the contribution of temporal correlation to the prediction
results will decrease, while the contribution of spatial correlation to the prediction
results will increase.

The single-step prediction and multi-step prediction correspond to random miss-
ing and block missing, respectively. Specifically, the random missing value in the
traffic flow can be directly imputed by the temporal memory state Ht�1:tm at the
previous time, while the block missing value in the traffic flow should further intro-
duce the spatial memory state Ht�1:sm to improve the imputation result. To make
TGNM model can identify missing patterns in traffic flow, we introduce an auxiliary
quantity ct ¼ cti

� �n
i¼1, and its calculation method is shown in Formula (7).

cti ¼
st�st�1 þ cti�1 t > 1,mt�1

i ¼ 0
st�st�1 t > 1,mt�1

i ¼ 1
0 t ¼ 1

8<
: (7)

where cti represents the time step of node vi in the t time window from the nearest
observed value; when cti ¼ 1 and mt

i ¼ 0, the missing pattern of node vi in the t th
time window is likely to be random missing; when cti > 1 and mt

i ¼ 0, the missing pat-
tern of node vi in the t th time window is likely to be block missing.

Based on ct , we further define the process for handling missing values. The greater
the ct , the greater the probability of using spatial memory state to estimate missing
values. The smaller the ct , the greater the probability of using the temporal memory
state to estimate the missing value. Based on this principle, the calculation method
that deals with missing values is shown in Formula (8).

xt ¼ mt⨀xt þ 1�mtð Þ⨀ st⨀x̂ t:tm þ 1� stð Þ⨀x̂ t:smð Þ
st ¼ exp �max 0, Wsct þ bsð Þð Þ
x̂ t:tm ¼ Ht�1:tmWtmout

x̂ t:sm ¼ Ht�1:smWsmout

8>>><
>>>:

(8)

where x̂ t:tm 2 Rn�1 represents the prediction value of all nodes obtained by temporal

Figure 7. Motivation for missing pattern mining component.
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memory state; x̂ t:sm 2 Rn�1 represents the prediction value of all nodes obtained by
spatial memory state; exp �ð Þ means exponential function; max means maximum value
function; st 2 Rn�1 represents the missing pattern probability calculated by ct: When
st approaches 1, the missing pattern approaches random missing, and when st

approaches 0, the missing pattern approaches block missing. Wtmout 2 Rdh�1,
Wsmout 2 Rdh�1, and Ws 2 R1�1 respectively represent the learnable parameters in
missing value processing.

4.2.3. Optimization of TGNM
In the process of model optimization, a time-dependent step ld is set to reduce the
computational complexity. That is, the traffic flow in the future x̂ tþ1 can be predicted
by the traffic flow xjf gtj¼t�ld�1 in the previous ld time windows. Theoretically, the pre-
diction model can be obtained by minimizing the square loss between the actual traf-
fic state xtþ1 and the predicted traffic state x̂ tþ1: However, if we only optimize the
square loss between xtþ1 and x̂ tþ1, the impact of missing values on prediction per-
formance will be ignored. Therefore, a loss function that takes into account the impact
of missing values on the prediction results is designed.

As shown in Figure 8, the loss function proposed in this study is mainly composed
of three parts: the temporal-based imputation task loss, the spatial-based imputation
task loss, and the prediction task loss. Among them, the prediction task loss is mainly
used to ensure the accuracy of prediction results, while the imputation task loss
mainly considers the influence of missing value on prediction results. The loss function
proposed in this study is shown in Formula (9).

L Wð Þ¼min
W

Xld
i¼1

xtþ1�i�x̂ tþ1�i:tmð Þ2þ
Xld
i¼1

xtþ1�i�x̂ tþ1�i:smð Þ2þ2ld� xtþ1�x̂ tþ1ð Þ2
 !

(9)

where xtþ1�i�x̂ tþ1�i:tmð Þ2 represents the temporal-based imputation task loss;
xtþ1�i�x̂ tþ1�i:smð Þ2 represents the spatial-based imputation task loss; xtþ1�x̂ tþ1ð Þ rep-
resents the prediction task loss. To guarantee the equal weight of three parts loss, we

Figure 8. Loss function illustration of the TGNM: the loss function is mainly composed of the tem-
poral-based imputation task loss, the spatial-based imputation task loss, and the prediction
task loss.
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enlarge the prediction task loss by 2ld times. Note: In fact, it is more common to add
a set of adjustable hyperparameters as weighting factors for each loss. However, the
increase of hyperparameters will increase the difficulty of model calibration. To sim-
plify the model calibration process, we set only one hyperparameter.

4.2.4. Relationship between TGNM and D-TGNM
In this subsection, we further describe the relationship between TGNM and D-TGNM.
As shown in Figure 9, the D-TGNM model can be regarded as a special case of the
TGNM model. Specifically, the adjacency relationship between nodes in D-TGNM
model is dynamically generated by Traffic BERT, while the adjacency relationship
between nodes in TGNM model can be a static adjacency matrix, such as a spatial
topological adjacency matrix or spatial distance matrix. In other words, the Traffic
BERT model enables the D-TGNM model to capture the dynamic spatial association in
the Traffic flow. In addition, although the TGNM model is a part of the D-TGNM model,
the TGNM model is essentially an independent component for traffic flow prediction
considering missing values. The advantages of designing the TGNM model as an inde-
pendent component are as follows: when the TGNM model does not rely on Traffic
BERT, the TGNM model can still run using a static spatial association matrix, such as a
fixed spatial distance matrix or spatial topological adjacency matrix.

4.3. Training and algorithm

In sections 4.1 and 4.2, we have discussed in detail the two core components in D-
TGNM, i.e., Traffic BERT and TGNM. In this section, we further introduce the training
process of the D-TGNM model. The basic principle of the D-TGNM model is to estab-
lish a supervised learning model that uses the missing patterns and spatiotemporal
correlation in the traffic flow to predict the future traffic state. Considering that the D-
TGNM model relies on the dynamic association matrix estimated by Traffic BERT, two
models will be obtained after model training, i.e., MTrafficBERT and MDTGNM: The train-
ing process is shown in Algorithm 1. First, we build two different training instances
(lines 1–6), i.e., DTrafficBERT and DDTGNM: Then, based on DTrafficBERT, the Traffic BERT

Figure 9. Illustration of the TGNM and D-TGNM models: (a) TGNM model, and (b) D-TGNM model.
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model was trained (lines 7–12). Finally, based on DTrafficBERT and DDTGNM, the final pre-
diction model was obtained (lines 13–19). In the model testing stage, we only need to
use the forward propagation process of D-TGNM to obtain the final prediction results.

Algorithm 1. Training Process of D-TGNM

Require：Dynamic temporal graph sequence： Gtf gg
t¼1

Number of encoders in Traffic BERT: L
Number of multi-headed attention in Traffic BERT: p
Time dependent step: ld

Ensure：Traffic BERT model:MTrafficBERT

D-TGNM model:MDTGNM

//construct training instances of Traffic BERT
1: DTrafficBERT  ;
2: for each Gt 2 Gtf gg

t¼1 do
3: put a training instance xt ,mtf g into DTrafficBERT based Gt

//construct training instances of D-TGNM
4: DDTGNM  ;
5: for next t 2 [ld, ld þ 1, … … , g] do
6: put a training instance mjf gt

j¼t�ld�1, xjf gtj¼t�ld�1, mjf gtþ1
j¼t�ld , xjf gtþ1j¼t�ld

� �
into DDTGNM

//train Traffic BERT model
7: initialize the parameters W of Traffic BERT
8: repeat
9: randomly select a training instance DTrafficBERT

b from DTrafficBERT

10: obtain results x̂ t by Formulas (2) and (3) with L and p
11: find W by minimizing the Formula (4)
12: untilMTrafficBERT converges
//train D-TGNM model
13: initialize the parameters W of D-TGNM
14: repeat
15: randomly select a training instance DDTGNM

b from DDTGNM

16: obtain dynamic matrix fÂt�ld�1, Â
t�ld , . . . . . . , Â

tg by MTrafficBERT

and x̂ jf gt
j¼t�ld�1

17: obtain results x̂ jf gtþ1
j¼t�ld by Formulas (6), (7), and (8)

18: find W by minimizing the Formula (9)
19: untilMDTGNM converges
20: output the learned modelsMTrafficBERT andMDTGNM
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5. Experimental results and discussions

5.1. Data preparation

5.1.1. Data sources
Traffic flow data in Wuhan, China, was used to evaluate the prediction performance of
the D-TGNM model. Traffic flow data was obtained by Automatic Vehicle Identification
(AVI) technology, which automatically identifies spatial coordinates of vehicles through
photos taken by cameras. We counted the traffic flow of a single camera at intervals
of 5min, i.e., the time window size is 5min. The period of traffic flow data was from 1
March 2021 to 28 March 2021. Figure 10 shows the spatial distribution of the experi-
mental cameras. In this study, a total of 71 experimental cameras were selected, i.e.,
we built a graph with 71 nodes (each camera represents a graph node, and the associ-
ation between any two cameras is determined by Traffic BERT). Table 1 shows the traf-
fic information counted by each camera. Each record contains the unique
identification ID of the camera, the time window, the latitude and longitude of the
camera, and the traffic flow in the time window.

5.1.2. Data preprocessing
To support the research of this work, we further preprocessed traffic volume data, and
the preprocessing process is mainly as follows:

1. There are natural missing data in the raw traffic flow collected by cameras, and
the traffic flow collected by different cameras may have different missing rates.
Since different missing rates may affect the fairness of subsequent experiments,
we imputed the natural missing values in the raw traffic flow. Referring to
P. Wang et al. (2022b), the Multi-BiSTGN model achieved SOTA imputation

Figure 10. Spatial distribution of cameras.
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performance compared with existing multiple models. Therefore, we use the
Multi-BiSTGN model to impute natural missing values in the raw traffic flow.

2. Referring to Cui et al. (2020), Tian et al. (2018), and Yang et al. (2021), based
on two missing types (random missing and block missing), partial traffic state
is deleted at 15% and 30% missing rates by artificial experience. Figure 11
shows the traffic flow information for three days after manual processing, and
the details of the missing traffic flow are described in Supplementary
Appendix A.

3. The data processed manually were divided into training samples and test samples.
According to the 20–80 criterion, the training samples account for 80%, and the
test samples account for 20%.

5.2. Evaluation metrics

In traffic flow forecasting, a key issue is how to evaluate the performance of the fore-
casting model. In this study, the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) were used as quantitative indicators
to verify the prediction accuracy of the proposed model (S. Cheng et al. 2021). The cal-
culation methods of MAE, RMSE, and MAPE are shown in Formulas (10), (11), and (12).

MAE ¼ 1
n�Dt

XDt
t¼1

Xn
i¼1

xti � x̂ ti
�� �� (10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�Dt
XDt
t¼1

Xn
i¼1

xti � x̂ ti
� �2vuut (11)

Table 1. Traffic volume sample of single camera.
Camera ID Time window Latitude Longitude Traffic volume

DE28HN��� 2021-03-01 00:00� 2021-03-01 00:05 30.6��� 114.1��� 26
DE28HN��� 2021-03-01 00:05� 2021-03-01 00:10 30.6��� 114.1��� 18
DE28HN��� 2021-03-01 00:10� 2021-03-01 00:15 30.6��� 114.1��� 18
… … … … … … … … … …
DE28HN��� 2021-03-28 23:55� 2021-03-29 00:00 30.6��� 114.1��� 13
���means the content is omitted.

Figure 11. Traffic volume information after preprocessing: (a) 15% random missing, (b) 30% ran-
dom missing, (c) 30% block missing, and (d) 30% block missing.
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MAPE ¼ 100%
n�Dt

XDt
t¼1

Xn
i¼1

xti�x̂ ti
xti

����
���� (12)

where xti represents the ground truth of node vi in the t th time window in the future;
x̂ ti represents the predicted traffic state of node vi in the t th time window in the
future; n represents the total number of nodes in the graph; Dt represents the predic-
tion step.

5.3. Estimation of hyper-parameters

In this study, the historical traffic flow is processed on a PC (CPU: Intel(R) Xeon(R) E-
2224G @ 3.50GHz, memory: 16.0GB). Moreover, we built our model based on PyTorch
and Python3.7 on a Graphics Processing Unit (GPU) platform with 24GB of
GPU memory.

The hyper-parameters of the D-TGNM model mainly include the number of
encoders L and the number of multi-head attention p in the Traffic BERT component,
and the time-dependent step ld in the TGNM component. As Traffic BERT and TGNM
are two independent components, we only calibrate the hyper-parameters of one sin-
gle component at a time. In the process of model training, the control variable
method is used to obtain the optimal combination of hyperparameters, where the
value range of L is [1,8], the value range of p is [1, 7], and the value range of ld is
[1,10]. Figure 12 shows the process of parameter calibration in the missing scenario.
The results show that with the increase of L and p, the MAE of Traffic BERT decreases
first and then stabilizes. When L¼6 and p¼4, the Traffic BERT component achieves bet-
ter accuracy. Similarly, with the increase of ld, the MAE of TGNM also decreases first
and then stabilizes. When ld¼7, the TGNM component obtains a reasonable accuracy.

5.4. Comparison with baselines

Classical statistical methods always perform worse than data driven methods on many
traffic forecasting tasks, due to their inability to handle complex spatiotemporal infor-
mation (Fang et al. 2021, Yi et al. 2021). We directly compare the D-TGNM with popu-
lar data-driven methods. In this study, the D-STGM model was compared with ten
baseline methods. The baseline methods can be roughly divided into four categories.
The first category is the ST-KNN model (S. Wu et al. 2014, B. Yu et al. 2016a), which is

Figure 12. Impact of parameters L, p and ld on the prediction performance.
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regarded as a shallow machine learning method that does not consider missing val-
ues. The second category includes the TCN (Bai et al. 2018), T-GCN (Zhao et al. 2020),
and ST-GCN (B. Yu et al. 2018) models, which are regarded as deep learning models
that do not consider missing values. The third category includes the TRMF (H.-F. Yu
et al. 2016b), BTMF (Chen and Sun 2022), and BTTF (Chen and Sun 2022) methods,
which are regarded as shallow machine learning models that consider missing values.
The fourth category includes the GRU-D (Che et al. 2018), LSTM-M (Tian et al. 2018),
and SGMN (Cui et al. 2020) methods which are regarded as deep learning models that
consider missing values.

5.4.1. Comparison results on complete data
In this section, we compare the prediction results of the D-TGNM model and baseline
methods on the complete data. The complete data represents the dataset after the nat-
ural missing value is imputed, and the comparison results are shown in Table 2. On the
complete data, the difference in prediction accuracy between the four categories of mod-
els is relatively small, and the prediction accuracy of the deep learning models is slightly
higher than that of the machine learning models. In addition, in the deep learning mod-
els, the prediction performance of graph-based spatiotemporal prediction models such as
T-GCN, ST-GCN, and SGMN is lower than that of time prediction models such as TCN,
GRU-D, and LSTM-M. There are two main reasons for the above inconsistent results with
common sense. First, T-GCN, ST-GCN, and SGMN models are graph convolution networks
based on static graph structure. When the static graph structure is challenging to describe
the spatial relationship of traffic flow, the graph convolution network based on static
graph structure may introduce more errors, making the prediction performance of the
prediction model lower than that of the simple time graph network model. Second, T-
GCN, ST-GCN, and SGMN models integrate graph convolution in series, making it more
challenging to mine the nonlinear relationship in traffic flow data. Compared with the
baseline methods, the D-TGNM model not only considers the dynamic spatial relationship
in traffic flow data, but also integrates graph convolution in parallel. Therefore, the D-
TGNM model achieves the highest prediction performance on the complete data.

5.4.2. Comparison results on incomplete data
In this section, we further compare the prediction results of the D-TGNM model and
baseline methods on the incomplete data. The incomplete data represents the dataset
after the complete data is artificially missing. Due to space limitations, we only show

Table 2. Comparison results (in MAE/RMSE/MAPE) of D-TGNM and baseline methods without
missing data.
Models 1-step (5-min) 3-steps (15-min) 5- steps (25-min) 7-steps (35-min)

TCN 4.85/7.82/20.29% 5.38/9.05/21.68% 5.85/10.04/23.24% 6.41/11.32/24.71%
ST-KNN 5.92/10.11/25.84% 6.18/10.70/26.93% 6.53/11.35/28.52% 6.86/11.94/30.37%
T-GCN 6.65/11.86/32.18% 7.21/12.92/34.16% 8.12/14.94/36.44% 8.73/16.38/38.86%
ST-GCN 6.99/12.78/33.14% 7.96/14.65/36.33% 8.73/16.38/38.86% 8.96/16.46/39.52%
TRMF 5.49/8.85/25.11% 6.77/10.97/29.43% 6.79/11.19/29.43% 6.91/11.24/29.63%
BTMF 5.34/8.52/27.53% 5.38/8.84/27.68% 5.68/9.24/28.28% 6.84/10.90/31.80%
BTTF 5.32/8.46/28.17% 5.53/9.01/30.11% 5.96/9.82/29.16% 6.31/10.63/32.37%
GRU-D 4.83/7.84/26.08% 5.34/8.99/27.70% 5.81/9.94/29.48% 6.36/11.19/31.21%
LSTM-M 4.86/7.93/27.00% 5.35/9.02/28.69% 5.81/9.91/30.64% 6.38/11.17/32.69%
SGMN 5.38/8.51/24.85% 5.84/9.57/26.26% 6.22/10.31/27.89% 6.70/11.43/29.41%
D-TGNM 4.62/7.49/19.81% 5.08/8.57/21.48% 5.46/9.25/23.18% 5.99/10.39/24.87%

Bold indicates best results.
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the comparison results of one-step prediction and three-step prediction. Tables 3 and 4
show the comparison results of the prediction performance under the missing scenario.
When data missing happens, the prediction models such as TCN, ST-KNN, T-GCN, and
ST-GCN that do not consider missing values have poor prediction performance, while
TRMF, BTMF, BTTF, GRU-D, LSTN-M, and SGMN that consider missing values have better
prediction performance. In addition, in different missing data scenarios, the prediction
performance of the BTTF, GRU-D, and LSTN-M models is relatively stable, while the pre-
diction performance of the TRMF, BTMF, and SGMN models is greatly affected by the
missing data scenarios. Compared with the TRMF, BTMF, and SGMN models, the D-
TGNM model also has stable prediction performance and the highest prediction results.
Overall, the D-TGNM model has obvious advantages compared to the baseline methods.

5.5. Qualitative analysis of prediction results

In addition to quantitative analysis, in this section, scatter plots are used to describe
the prediction performance of the D-TGNM model qualitatively. Figure 13 visually
shows the difference between the prediction and actual values under the four missing

Table 3. Comparison results (in MAE/RMSE/MAPE) of D-TGNM and baseline methods on random miss-
ing data.

Models

Missing rate: 15% Missing rate: 30%

1-step (5-min) 3-steps (15-min) 1-step (5-min) 3-steps (15-min)

TCN 7.89/12.23/101.52% 9.29/13.66/132.54% 9.32/15.45/107.86% 10.65/16.32/140.2%
ST-KNN 10.97/19.95/33.24% 11.69/20.84/33.40% 16.80/29.57/42.13% 17.07/30.82/42.70%
T-GCN 7.32/13.17/27.38% 8.87/16.72/31.60% 9.15/16.89/32.10% 10.39/19.58/37.44%
ST-GCN 7.43/13.37/34.76% 8.73/16.38/38.86% 8.96/16.46/39.52% 10.16/19.25/45.21%
TRMF 5.67/9.23/24.95% 7.35/12.04/30.31% 6.01/9.95/26.26% 8.39/13.87/32.06%
BTMF 5.49/8.60/26.33% 6.39/10.55/30.84% 5.60/9.11/27.27% 6.24/9.88/28.35%
BTTF 5.41/8.52/25.64% 5.70/9.28/29.06% 5.47/8.76/26.80% 5.89/9.58/29.10%
GRU-D 5.46/11.70/21.75% 5.91/12.38/23.70% 5.65/11.93/23.67% 6.11/12.60/25.75%
LSTM-M 5.47/11.64/21.29% 5.90/12.27/23.10% 5.68/11.89/22.52% 6.12/12.53/24.19%
SGMN 5.99/9.18/33.54% 6.41/10.12/34.86% 6.07/9.49/33.16% 6.47/10.41/34.41%
D-TGNM 4.84/7.99/20.25% 5.29/8.98/21.80% 5.06/8.42/21.27% 5.52/9.42/22.88%

Bold indicates best results.

Table 4. Comparison results (in MAE/RMSE/MAPE) of D-TGNM and baseline methods on block
missing data.

Models

Missing rate: 15% Missing rate: 30%

1-step (5-min) 3-steps (15-min) 1-step (5-min) 3-steps (15-min)

TCN 9.78/20.17/103.15% 10.82/19.88/133.4% 13.11/28.43/109.5% 14.07/27.99/140.8%
ST-KNN 14.32/27.27/41.59% 15.62/30.28/43.00% 22.17/39.32/54.82% 24.02/42.62/56.61%
T-GCN 9.43/17.07/43.25% 11.34/25.38/49.34% 12.61/23.62/44.19% 13.51/25.12/49.29%
ST-GCN 9.27/16.85/41.25% 11.18/24.12/47.13% 12.36/23.11/52.92% 13.17/24.55/58.06%
TRMF 6.84/10.73/30.50% 8.18/13.35/32.69% 6.55/11.55/28.93% 8.60/14.13/32.16%
BTMF 5.93/10.02/26.66% 7.30/11.82/36.15% 6.79/10.55/31.12% 7.77/13.15/36.99%
BTTF 5.67/9.01/26.14% 5.86/9.28/28.60% 6.34/10.24/29.31% 7.12/11.26/33.16%
GRU-D 5.84/12.31/24.10% 6.30/12.98/26.40% 6.37/13.29/27.46% 6.89/14.05/30.39%
LSTM-M 5.87/12.30/23.21% 6.35/12.98/25.33% 6.45/13.39/25.86% 7.01/14.17/28.22%
SGMN 7.26/12.45/41.43% 7.61/12.97/42.81% 8.96/17.32/46.68% 9.32/17.86/47.77%
D-TGNM 5.24/9.02/22.68% 5.71/9.99/24.44% 5.95/11.00/26.03% 6.45/11.88/27.85%

Bold indicates best results.
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data scenarios. Combined with the quantitative analysis in Tables 3 and 4, it can be
found that although there are differences in the prediction performance under the
four different missing data scenarios, the actual values are always close to the predic-
tion values, i.e., the D-TGNM model can accurately predict changes in traffic flow over
time. The results further prove that the D-TGNM model still has good predictive per-
formance under missing scenarios.

Figure 13. Difference between prediction values and actual values: (a) 15% random missing, (b)
30% random missing, (c) 15% block missing, and (d) 30% block missing.

Table 5. Impact of dynamic association matrix on prediction results (in MAE/RMSE/MAPE).

Models

Missing rate: 15% Missing rate: 30%

1-step (5-min) 3-steps (15-min) 1-step (5-min) 3-steps (15-min)

TGNM (R) 5.09/8.80/23.69% 5.59/9.74/26.12% 5.30/9.20/24.67% 5.78/10.09/26.66%
TGNM (B) 5.58/9.87/26.59% 6.07/10.74/29.04% 6.24/11.21/32.16% 6.75/12.01/34.77%
D-TGNM (R) 4.84/7.99/20.25% 5.29/8.98/21.80% 5.06/8.42/21.27% 5.52/9.42/22.88%
D-TGNM (B) 5.24/9.02/22.68% 5.71/9.99/24.44% 5.95/11.00/26.03% 6.45/11.88/27.85%

Bold indicates best results.
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5.6. Impact of dynamic association matrix

In the D-TGNM model, we use the dynamic matrix instead of the static matrix to
describe the implicit spatial association in traffic flow. Therefore, we analyze the
impact of the dynamic association matrix on the prediction performance. Table 5
shows the impact of the dynamic spatial matrix on prediction performance, where
TGNM represents the model using the static spatial matrix, (R) represents the random
missing data, and (B) represents the block missing data. The results show that the
introduction of the dynamic spatial matrix improves the prediction ability of the
model. Figure 14 further shows the correlation coefficient of the dynamic spatial asso-
ciation estimated from the missing and non-missing data. The results show that the
spatial associations estimated at different times change dynamically with time, proving
the rationality of modeling dynamic spatial associations in the proposed method. In
addition, the results show that the ability of Traffic BERT to identify spatial associations

Figure 14. Correlation coefficient of the dynamic spatial relationship estimated from the missing
data and the non-missing data.

Table 6. Impact of loss function on prediction results (in MAE/RMSE/MAPE).

Models

Missing rate: 15% Missing rate: 30%

1-step (5-min) 3-steps (15-min) 1-step (5-min) 3-steps (15-min)

D-TGNM-I (R) 5.07/9.25/20.88% 5.50/10.05/22.57% 5.29/9.61/23.50% 5.72/10.41/25.50%
D-TGNM-I (B) 5.55/10.18/25.76% 6.02/11.01/28.39% 6.45/12.29/34.71% 6.97/13.09/38.49%
D-TGNM-P (R) 7.36/18.92/33.75% 7.88/19.37/39.13% 7.92/19.27/44.63% 8.45/19.74/49.78%
D-TGNM-P (B) 8.07/19.73/37.67% 8.65/20.27/43.46% 9.38/21.39/48.60% 9.97/22.00/53.32%
D-TGNM (R) 4.84/7.99/20.25% 5.29/8.98/21.80% 5.06/8.42/21.27% 5.52/9.42/22.88%
D-TGNM (B) 5.24/9.02/22.68% 5.71/9.99/24.44% 5.95/11.00/26.03% 6.45/11.88/27.85%

D-TGNM-I represents the model optimized only by imputation task loss, D-TGNM-P represents the model optimized
only by predicting task loss, (R) represents the random missing data, and (B) represents the block missing data.
Bold indicates best results.
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declines under block missing, which is also the reason that explains the low prediction
performance of the model under block missing.

5.7. Impact of loss function

In the optimization process, the loss function consists of imputation task loss and predict-
ing task loss. Therefore, in this section, we analyze the impact of the loss function on the
prediction performance of the model. Table 6 shows the impact of the loss function on
the prediction results. The results show that the prediction performance of the D-TGNM-P
model is lower than that of the D-TGNM-I model, and the prediction performance of the
D-TGNM-I model is lower than that of D-TGNM. That is, the D-TGNM model integrating
multiple loss tasks has the optimal prediction ability, which further proves the necessity of
introducing multiple loss tasks. In addition, the results show that if the impact of missing
values on the prediction results is not considered, i.e., only the loss of the prediction task
is optimized, the worst prediction result will be obtained.

5.8. Analysis of incremental learning

In real-world applications, the spatial structure of sensors on urban road networks is
not static. In general, the number of sensors on urban road networks tends to increase
gradually over time. When the number of sensors increases, the GCNs based on prede-
fined matrix often need to be re-trained, which greatly wastes the computing resour-
ces. Compared with GCNs based on predefined matrix, the D-TGNM model does not
need to be re-trained, but can be fine-tuned to regain the optimal prediction ability.
This is, the D-TGNM model has the ability of incremental learning. Figure 15 shows
the results of incremental learning for the D-TGNM model. As shown in Figure 15(a),
the Whole Study Area is divided into Study Area A and Study Area A. Fine-tune means
that the optimal model in Study Area A is used to learn the traffic flow pattern of the
Whole Study Area, and re-train means that an initial model is used to directly learn the
traffic flow pattern of the Whole Study Area. Figure 15(b,c) show the results of fine-
tune and re-train the Traffic BERT and TGNM components, respectively. The result
proves that the D-TGNM model has good incremental learning ability.

6. Conclusions and future work

In this study, a dynamic temporal graph network considering missing values (D-TGNM)
was proposed for traffic flow prediction under missing scenarios. In the experimental

Figure 15. Illustration of incremental learning of D-TGNM model: (a) regional division, (b) Traffic
BERT component, and (c) TGNM component.
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section, the actual traffic dataset collected in Wuhan, China, was used to verify the
prediction performance of D-TGNM. Experimental results showed that D-TGNM still
had good prediction results under four missing data scenarios (15% random missing,
15% block missing, 30% random missing, and 30% block missing), and outperformed
ten existing baselines. Second, we tested the impact of dynamic matrix and loss func-
tion on the prediction accuracy of D-TGNM, further proving that the proposed method
is suitable for traffic flow prediction with missing values.

The limitations of this study are as follows: (1) We only verified the prediction per-
formance of the D-TGNM model under two missing rates (15% and 30%), and did not
analyze the upper and lower bounds of the missing rate when the model performance
was within an acceptable range; (2) The D-TGNM model needs to calculate the
dynamic matrix for each forward propagation, which is computationally expensive; (3)
The D-TGNM model is essentially a general prediction model considering missing val-
ues, but we only use traffic datasets to verify the imputation performance of the pro-
posed model. Given the above problems, future work will focus on two aspects. First,
we will try to determine the missing rate bounds when the D-TGNM model perform-
ance is within an acceptable range. Second, the dynamic matrix in the time window
can be calculated in advance to reduce the computational complexity of the model.
Finally, multi-source data, such as air quality data and meteorological data, will be fur-
ther collected to improve the imputation performance of the D-TGNM model.
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