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ABSTRACT ARTICLE HISTORY
Most mobility modeling methods are designed to solve specific Received 25 July 2023
tasks, leading to questions regarding their deficiency in generaliz- Accepted 25 January 2024

ability. Inspired by the bloom of foundation models, we proposed
a Trajectory Generation framework based on the Diffusion Model
(TrajGDM) to capture the universal mobility pattern in a trajectory
dataset by learning the trajectory generation process. The process
is modeled as a step-by-step uncertainty-reducing process, in
which a deep learning network with a novel training method is
proposed to learn from the process. We compared the proposed
trajectory generation method with six baselines on two public tra-
jectory datasets. The results showed that the similarity between
the generated and real trajectory movements measured by the
Jensen-Shannon Divergence improved significantly on both data-
sets. Moreover, we applied zero-shot inferences on two basic tra-
jectory tasks: trajectory prediction and trajectory reconstruction.
The accuracy improved by a maximum of 25.6% on two tasks.
The universal mobility pattern that is suitable for solving multiple
trajectory tasks is verified, inferring the strong generalizability of
our model. Finally, the study provides insights into artificial intelli-
gence’s understanding of human mobility by exploring the way
the model maps the trajectory in the latent space into reality.

KEYWORDS

Human mobility; trajectory
generation; diffusion model;
geo-foundation model

1. Introduction

Human mobility simulation plays a central role in a wide range of applications, includ-
ing transportation management (Song et al. 2016), trajectory prediction (Li et al. 2020),
human mobility pattern mining (Ji et al. 2023), urban planning (Li et al. 2021), epi-
demic spread simulation (Feng et al. 2020), privacy protection (Rao et al. 2020), etc.
Currently, the most common approach for solving different human mobility tasks is to
build multiple corresponding models with each model learn a part of the movement
pattern. For example, a trajectory prediction model aims to capture the mobility pat-
tern between the observed trajectory and the predicted point. However, it cannot
reconstruct the missing points in a trajectory because of the limitation of its learning
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objective. The generalization ability of a model is restricted by the specific mobility pat-
tern the model has learned. Therefore, learning the universal mobility pattern in a tra-
jectory dataset is a necessary step towards achieving Artificial General Intelligence for
human mobility. In this study, we defined the universal mobility pattern in a trajectory
dataset as the movement pattern followed by all trajectory points of any trajectory in
the dataset (Noulas et al. 2012, Schlapfer et al. 2021). Models succeed in learning the
universal pattern should be able to solve multiple relevant trajectory tasks.

Simulating the generation process of trajectories is one way to learn the universal
mobility pattern from the dataset. Mobility simulation, also known as trajectory gener-
ation, aims to generate a synthesized mobility dataset based on the mobility pattern
shown in the real one (Jiao et al. 2022). Classic mobility simulation methods simulate
human mobility using mechanistic methods (Isaacman et al. 2012, Jiang et al. 2016,
Simini et al. 2021). These studies model human mobility based on researchers’ prior
knowledge of human mobility patterns and assume that every movement of individu-
als has an explicit purpose. The strong assumptions limit the ability of the models to
generate detailed trajectories. Moreover, most mechanistic models employ external
location features, such as land use, points of interest, etc. (Yin et al. 2018). The intro-
duction of external features also constrains the transfer ability of mechanistic models.

With deep generative models achieving great success in many generation tasks,
models such as the Variational Autoencoder (VAE) (Kingma and Welling 2013),
Generative Adversarial Network (GAN) (Goodfellow et al. 2020), and Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al. 2020) have been used in human mobil-
ity simulation. The generative model raises the concept of latent space (Doersch
2016). In a generative model, the latent space refers to a feature space that composes
all possible samples. A generative model learns to map a latent distribution to an
actual data distribution. After learning this generation process, as the latent distribu-
tion is manually defined and continuous, the model can sample numerous vector rep-
resentations and generate numerous different trajectories. Therefore, the existence of
a latent space promises generation diversity, which is of vital importance for human
mobility simulation because the movement activity of each human being is unique
and inherently stochastic (Song et al. 2010).

However, most of current generative models have limitations in terms of trajectory
generation. The VAE failed to generate qualified trajectories because the noise-adding
operation was fuzzy for a trajectory with an explicit meaning (Chen et al. 2021). As the
most well-known structure for deep generative models, GAN is notoriously difficult to
train (Karnewar and Wang 2020, Kodali et al. 2017). Moreover, instead of sampling
from the latent space to obtain the latent representation and then generating a trajec-
tory according to the meaning of the vector, most GAN-based trajectory generation
models abandon the use of latent space (Feng et al. 2020, Jiang et al. 2023, Yu et al.
2017). Their learning objective is no longer to learn how to map the latent distribution
to the real distribution. Therefore, they lose the ability to generate diverse trajectories.
In order to distinguish them, we only name models that aim at learning to bridge two
distributions as ‘real’ generative models.

To learn the universal mobility pattern in a trajectory dataset, generate high-quality
trajectories with great diversity and understand how artificial intelligence understands
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the human mobility, we proposed a Trajectory Generation Framework based on the
Diffusion Model (TrajGDM), which aims to learn the universal human mobility pattern
by simulating the generation process of trajectories. Inspired by the natural uncer-
tainty of human mobility (Liu et al. 2022, Yu et al. 2023), we modeled the generation
process of a trajectory as a process in which the uncertainty in the trajectory was
gradually removed. The basic concept of the proposed model is illustrated in Figure 1.

As shown in Figure 1, the trajectory generation process is modeled as an uncertainty-
reducing process. X; denotes the trajectory representation at step t of the trajectory gen-
eration process p, and diffusion process q. We employed a deep learning network with
parameter 0 to estimate the uncertainty in X; based on X;_;. A detailed trajectory is gen-
erated after T steps of the uncertainty reduction. To generate a realistic trajectory, the
model is trained to capture the universal mobility pattern in the dataset through learning
to estimate the uncertainty in a trajectory, which trains the model to generate a trajectory
from a latent representation Xr. The universal mobility pattern is learned by the entire tra-
jectory generation process, which includes network with parameter 6 and other fixed
parameters in p and g. After the model learned the universal pattern through the process,
we conducted zero-shot trajectory prediction and reconstruction to evaluate the general-
ization ability of the model. Our contributions can be summarized as follows:

e We proposed a novel human mobility simulation method named TrajGDM, which
models trajectory generation as an uncertainty-reducing process. A trajectory
encoder, decoder and generator network was proposed to learn the universal mobil-
ity pattern from the generation process of trajectories. Moreover, we define the tra-
jectory diffusion process and trajectory generation process with a novel training
method to train the model and generate trajectories in discrete representation.

e We compared the trajectory generation performance of our method with those of
six strong baselines using two datasets. Our model achieves significant improve-
ment in simulating individual mobility and other metrics while promising the diver-
sity of generated trajectories. Furthermore, by visualizing the trajectory generation
process and interpreting the latent space of the model, a new perspective on artifi-
cial intelligence’s understanding of human mobility was provided.

e We conducted zero-shot inferences on two basic trajectory tasks: trajectory predic-
tion and trajectory reconstruction. The zero-shot inferring ability of our model veri-
fies the utility of the universal mobility pattern captured by learning the trajectory
generation process. This demonstrates the strong generalizability of our model and
its potential of serving as a foundation model in human mobility modeling.

Real World Latent Space

po (Xe—11X,)

q(Xe|Xe-1)

. Low Probability AOI D High Probability AOI e Generated Trajectory <= Generation Process == = Diffusion Process

Figure 1. The intuition of TrajGDM.
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The remainder of this paper is organized as follows. Section 2 introduces
related studies in modeling human mobility. In Section 3, we define the trajectory, tra-
jectory dataset, and the target of trajectory generation, prediction and reconstruction.
In Section 4, the TrajGDM framework is proposed. In Section 5, we provide detailed
information regarding the experiment datasets and model implementation. We intro-
duce six baselines used for comparison. In Section 6, we analyze the experimental
results of trajectory generation, prediction, and reconstruction, and then interpret
the latent space of the trajectory. Finally, we discuss and conclude the paper in
Sections 7, 8.

2. Related work

Simulating human mobility has always been the most challenging task in trajectory
data mining. Although most human mobility models have been built to solve
specific problems, such as human movement prediction (Bao et al. 2021) and trajec-
tory reconstruction (Li et al. 2019, Liu et al. 2018, Qi et al. 2020), they have failed to
capture the universal mobility pattern applied to the entire trajectory. Only a few stud-
ies have attempted to solve this problem based on a general structure (Musleh 2022).
In this study, we proposed a new human mobility simulation model based on a gen-
erative model. The model could simultaneously generate, predict, and reconstruct
trajectories.

Most existing methods learn human mobility patterns by using sequential models.
Recurrent neural networks and attention mechanisms are often used to model the
temporal relationships within a trajectory (Bao et al. 2021, Feng et al. 2020, Li et al.
2022a). Regarding the spatial relationships between locations, a classic embedding
function is employed in most models (Kang et al. 2017, Feng et al. 2018). Because it is
well-adapted to all task scenarios. Furthermore, spatial information must be provided
to the models as prior knowledge to achieve better performance. Graph structures are
often used (Salzmann et al. 2020). Location encoding is another way to represent spa-
tial relationships (Mai et al. 2022). Representing a location using its neighbor fuzzy
locations (Li et al. 2020) or a Markov transition matrix (Wang et al. 2019) can be
regarded as a type of fixed-location encoding method. In contrast, methods such as
Space2Vec (Mai et al. 2020) and Sphere2Vec (Mai et al. 2023) focus on preserving the
distance relationship between locations while making the vectors trainable based on
different downstream tasks. In this study, we introduce a location encoding method
that suits discrete location representation methods.

Current generation methods are primarily based on a GAN structure with a trajec-
tory prediction model. SeqGAN employs a gated recurrent unit (GRU) network as its
generator and starts generating with a trainable start token. It designed a discrimin-
ator that uses the reward signal in reinforcement learning to guide the generator (Yu
et al. 2017). MoveSim follows the combination of GAN and reinforcement learning. It
starts generating by sampling from a historical origin matrix, and a trajectory predic-
tion model is employed as its generator to generate the remaining trajectory. A dis-
criminator was designed to return rewards (Feng et al. 2020). TS-TrajGen is also based
on the GAN structure; it matches trajectory points with the road network and starts
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generating by sampling a pair of origin and destination (OD) from the historical
matrix. It trained a generator to output the parameters of the A* algorithm between
the OD. It can then output a continuous trajectory using a path search algorithm
(Jiang et al. 2023). However, these GAN-based trajectory-generating methods aban-
doned the use of latent space, which is important for a generative model to generate
a diverse sample. Only a few trajectory-generation models have been designed to gen-
erate trajectories from latent vectors. TrajGAN converts trajectory points into pixels in
a picture of an entire region and employs a standard CNN-based GAN structure to
generate a trajectory (Ouyang et al. 2018). The SVAE combines the VAE and a
sequence-to-sequence model and generates a trajectory by sampling from the
designed latent space (Huang et al. 2019). The latest research Act2Loc combines
machine learning and mechanistic models (Kang et al. 2023).

Recently, a novel generative model, the diffusion model, has bloomed in many
realms, including image generation (Dhariwal and Nichol 2021, Ho et al. 2020), text
generation (Gong et al. 2022, Li et al. 2022b), time-series modeling (Tashiro et al.
2021) and trajectory prediction (Gu et al. 2022, Mao et al. 2023), etc. The diffusion
model aims to model the generation process of a sample step-by-step, starting from
a latent representation sampled from the latent space. Currently, the vast majority of
diffusion-based trajectory generation models aim to generate trajectories recorded as
numerical coordinates (Gu et al. 2022, Mao et al. 2023). Because the coordinates
are numerical, these methods can directly employ the original structure and training
method of the classic diffusion model. However, the adaptability and applicability
of these methods are limited. Many human mobility datasets are not recorded in the
format of numerical coordinates, such as Call Detail Record data (CDR), in which loca-
tions are represented by location indexes. In contrast to other diffusion model-based
trajectory generation methods, we proposed a novel training method that allows the
model to generate trajectories recoded in location indexes to make the model more
extensible and adaptive to more geographic datasets. Moreover, most of these studies
focused only on generating trajectories at small scales, such as streets or courts
(Gu et al. 2022, Mao et al. 2023), and rarely extended to generate trajectories for an
entire city.

In this study, we proposed a trajectory generation model with a manually con-
structed latent space, the model can generate diverse and realistic trajectories.
Moreover, we explore how the model learns to map the latent space to the real-world
space. This is important to understand how neural networks learn the physical world.

3. Preliminary

In this section, we define the formation of the trajectory and the trajectory dataset.
We also defined trajectory generation and other related tasks.

Definition 1. Trajectory
Trajectory X is formed by a serial of trajectory points, which are recoded in location
indexes loc. n denotes the trajectory length.

X = [locy, locy, . .., locy) (M
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Definition 2. Trajectory dataset

The number of trajectories that record the human mobility activity in a region forms
the human mobility dataset D. Num denotes the number of trajectories recorded in
the dataset.

D= {X", X2 ..., xNm} 2)

Definition 3. Trajectory latent space

The latent space of a trajectory dataset is a high-dimension feature space Z, where
each trajectory in dataset D has a corresponding representation. In general, we must
define a mapping function M to map all trajectories in D to their corresponding loca-
tions in Z. The function can be defined as

Zp = M(D) (3)

where Zp, denotes the latent representation of dataset D.

Definition 4. Trajectory generation

The objective of trajectory generation is to generate a realistic dataset D=
{)?1,)?2, ...,)? um}, by sampling the trajectories from latent space Zp. This can be for-
mulated as follows:.

D = Fo(Zp) (4)

where the trajectory generation model F learns the mobility pattern in the trajectory
dataset D by its trainable parameter 6. It then generates a synthesized dataset D,
which is expected to similar to the real dataset D from all aspects. The basic measure-

ment formula is as follows:

min JSDIM(D)||M(D)] (5)

JSD is the Jensen-Shannon Divergence (JSD), which is generally used to measure the
difference between two distributions. M can be a different metric used to measure the
characteristics of trajectories in a dataset. This similarity can be evaluated from many
aspects, such as the similarity of individual movements or geographical distributions
of all trajectory points. We introduce the evaluation method more specifically in the
evaluation metrics section.

Definition 5. Trajectory prediction
Trajectory prediction aims to predict future movements of moving objects. This is
defined as follows:

locn_y, ..., loc, = Pre(locy, .. .,loc,)) (6)

where the trajectory points locy.,_; are the previous location points from time 1 to
time n —/ that have been observed at the moment. loc,_., denotes the future trajec-
tory points, and [ is the length of the points to be predicted. Pre is the model used for
the prediction.



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 7

Definition 6. Trajectory reconstruction
Trajectory reconstruction aims to fill up the missing points in a trajectory. The defin-
ition of trajectory reconstruction can be formulated as follows:

Ui, ... ,E,’+1 = Rec(. ey IOC,'_1, Ui, ..., Uy, /OC,'+[+1, .. ) (7)

where u; denotes the missing trajectory point i and u; denotes the corresponding tra-
jectory points reconstructed by model Rec. | denotes the length of the missing trajec-
tory points to be reconstructed.

4. Trajectory generation framework

We modeled the generation of a trajectory as a process in which the uncertainty in
the trajectory was gradually removed. A trajectory diffusion process was constructed
to simulate the uncertainty-adding process to train a model with the ability to predict
and remove uncertainty in a trajectory. The general architecture of the TrajGDM frame-
work is shown in Figure 2.

In Figure 2, there are two important parts of the framework: the diffusion process
and the generation process. The generation process assumes that the generation of a
trajectory is an uncertainty-removing process. More specifically, in the initial stages of
human mobility, only a few essential factors are formed by a person, such as its travel
purpose, destination and origin. These factors were represented by a latent vector. At
this stage, the entire trajectory is full of uncertainty, which means that the detailed
route that satisfies all key factors is unknown. Based on these key factors, the person
gradually decides on each movement. We designed a deep learning network, called a
trajectory generator, to estimate the uncertainty in trajectory X; the network is

Gradient
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Real Generated )
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Figure 2. Structure of the TrajGDM framework.
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denoted as G. The trajectory generator predicts and eliminates the uncertainty in the
current trajectory. Through T iterations in the trajectory generation process, the uncer-
tainty in the trajectory is removed, and a detailed trajectory corresponding to the key
factors in the representation is generated. To train trajectory generator G, we con-
structed a diffusion process based on a Markov chain. In the diffusion process,
Gaussian noise is added step by step in T steps in total to simulate the uncertainty
added in a trajectory. The latent representation of all the trajectories in the dataset fol-
lows a normal distribution after T steps. During the diffusion process, we made our
trajectory generator learn to estimate the added noise and recover the original real
trajectory Xo.

In the remainder of this section, we first introduce how we encode a trajectory into
a hidden representation using the location-encoding function P and trajectory
encoder £. We then introduce specific definitions of the trajectory diffusion and trajec-
tory generation processes. In addition, we introduce our training process, which com-
bines diffusion and generation to train the trajectory generator. Subsequently, a
sampling process is proposed to generate trajectory data by sampling the latent vec-
tors from the latent space. Finally, the structure of the trajectory decoder D and trajec-
tory generator network G are presented.

4.1. Trajectory encoder

In this study, the model is designed to be applicable to large-scale trajectory datasets,
most of which record a trajectory as a sequence of location indexes, such as indexes
of CDR grids, road segments, blocks, towns, or Thiessen polygons. Therefore, the aim
of the research is to generate trajectories recorded in location indexes, which are dis-
cretely represented. To encode discrete trajectory data representation into a continu-
ous feature space X,, we proposed a trajectory encoder & The formula of the
trajectory encoding function £ is as follows:

Xo = E[P(X)] (8)
EP(X)] = LSTM[P(loc,), P(locy), ..., P(loc,)] (9)

where we encode the trajectory with an LSTM network and take the output of the
LSTM network as the representation of the trajectory, which promises the serial rela-
tionship between trajectory points is also encoded into the feature space X, of the
corresponding trajectory. We also proposed a trainable location-encoding function P
to provide the model with an awareness of the spatial relationship between locations.
The location-encoding function to map point loc is formulated as follows:

P(loc) = WpxConcat{E(loc)*y, E[Adj(loc, 1)), ..., E[Adj(loc, )]} (10)
E(loc) = Encoder gpenot (l0c)xWe (11)

where Wp is the parameter of the location encoding function, Concat is the concaten-
ate function, vy is the hyperparameter of the location encoding function. Adj(loc, i) is
the adjacent query function, which returns loc' the ith adjacent location with the loca-
tion loc. E is a general embedding function that embeds the locations into a feature
space. Encoder,nenor is @ one-hot sorting function that converts each location index loc
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into a one-hot vector. W € R/ is the trainable weights of the function E, where |
and h respectively represent the number of locations and the dimension of the
embedded vector. Considering that the movement of a trajectory is continuous in
real-world space, it is important to provide an adjacent relationship to the model so
that the model learns from people’s prior knowledge of the spatial relationship rather
than starting to learn the relationship between locations from nothing. Therefore,
instead of simply representing a location using its embedding vector, the proposed
location-embedding function combines adjacent locations of the location loc. The
function employs a hyperparameter y to emphasize the actual location loc and
employs a trainable weight matrix Wp to learn complex spatial information from the
adjacent relationship. After encoding each location in a trajectory into a feature space,
the trajectory encoder £ is employed to construct representation Xy of the entire tra-
jectory X. A trajectory encoder is vital for generating a continuous trajectory because
it integrates the representation of points into the representation of a trajectory.

4.2. Trajectory diffusion process

We construct the trajectory diffusion process to gradually add uncertainty to a trajec-
tory. To ensure that the trajectory can be reconstructed after adding uncertainty, we
built a T steps Markov chain. At each step, uncertainty is added in the form of random
Gaussian noise, which is very small. After T times of diffusion, the encoded trajectory
representation X, is mapped onto a latent representation X7, that follows the latent
distribution g(X1.7|Xo). The stepwise diffusion process from X, to X7 is formulated as
follows:

.
q(Xrr|Xo) = [ a(XelXe-n) (12)
=1

~

q(Xe|Xe=1) Normal(Xt; 1- BtX,BtI) (13)

where q(X;|X;—1) is one step in diffusion process, Normal(X; , o?) is a sample function,
which samples a vector X from a normal distribution with mean p and variance c?,
scheduler B, € (0,1) is variance of the sample distribution and it is used to control the
scale of the uncertainty added, it is a varied schedule differed from B, to B;. To sim-
plify the calculation, according to the notable property of the diffusion process, we

can sample the trajectory X; at an arbitrary timestamp t in a closed form as follows:

q(Xe|Xo) = Normal(Xr; \/&ixo, (1- at)l) (14)

where oy = 1 — B, and 9, = H;:1 os. According to this formula, we can directly get the
noised trajectory representation X; by sampling from an Xo-based Gaussian distribu-
tion. The formula for sampling is as follows:

Xe = /3:Xo + (1 = Br)e (15)

where € is a random Gaussian noise, and it is regarded as the uncertainty added on
the trajectory Xo. Considering o < 1, when the diffusion step t is large enough, the &
will be sufficiently close to 0, which leads to the q(X;|Xo) converging to a standard
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Gaussian distribution. This property ensures that all trajectory representations in the
training dataset I are projected onto the same latent distribution. The good property
of the normal distribution also ensures that we can easily sample from it in a control-
lable manner. This attribute is important for many downstream tasks in human mobil-
ity modeling.

4.3. Trajectory generation process

After the uncertainty was added, all trajectories were mapped into a latent distribution
following a normal distribution. The trajectory generation process was employed
to generate a trajectory from a latent vector representation sampled from the latent
distribution. Considering the diffusion process is a parameter-fixed Markov process
that adds a small bit of uncertainty to the trajectory at each step, the trajectory gener-
ator only needs to learn to estimate the uncertainty added at each step. The gener-
ation process was also built as a T steps process; therefore, the model only needed to
estimate a small portion of the uncertainty in each step. And after T times of itera-
tions, the model distribution py(Xp) is formed. The generation process is formulated as
follows:

.
po(Xo.T) = H (Xe_1|Xp) (16)

po(Xe_1|Xe) = Normal (xt_1 (X0, Dy (X)) (17)

where p(Xr) = N(0,1) is the latent distribution of all trajectories in the training dataset,
N(u, o2) refers to a normal distribution with mean p and variance c2. pg(X;_1|X;) is the
estimation of x;_; given x; by model G with the parameter 6. The variance term of the
Gaussian transition is manually set as ) (X, t) =B, and B, = 11‘_“&‘;1 B:, which has
been proved to have good performance in practice (Ho et al. 2020).

4.4. Training process

We defined the trajectory diffusion process to add uncertainty to a trajectory, and the
trajectory generation process to remove it. For the next step, we need to know how
to combine the two processes and define a training objective so that a trajectory gen-
erator can learn from the added noise in the diffusion process and use the learned
pattern to generate a trajectory through the generating process. To ensure the gener-
ated trajectory follows the real human mobility pattern in the real dataset, the training
objective is defined to minimize the difference between the trajectory generated from
the model distribution pg(Xp) and the data distribution g(Xp) reflected by real trajec-
tory data. Therefore, our training objective was to maximize the variational lower
bound as follows:

max Eqxo) [log po(x0)| < max Eqxo,....xr) [109 Po(Xor) — log q(x1.7|x0)] (18)

E refers to the mathematical expectation of a variable under a given
condition. Because we modeled the trajectory generation process as Gaussians
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with trainable mean functions and fixed variances, the objective above can be
simplified as follows:

mein Ex, e

2
P e—go(Vaxe+ /i —&re,t)HZ] (19)
2B,0¢(1 — i)
where Gy(X;, t) is the uncertainty predicted by trajectory generator G, at generation
step t to approximate €. The objective can be simply interpreted as minimizing the
difference between the uncertainty e added to the observed trajectory X; in each step
of the trajectory diffusion process with the uncertainty Gy estimated by the trajectory
generator G.

However, unlike the color of the pixels in a picture, which is naturally distributed in
a continuous feature space, the representation of geographic locations is generally dis-
crete (such as AOI (Area of Interests), cellular network, grids, etc.). In a discrete feature
space, it is more important to model the relationships and differences between the
locations rather than their absolute positions in feature space. The original training
loss of the diffusion model derives gradient from minimizing the difference between
the estimation of the added noise €y in each step with the truly add one €, which has
been proved to be efficient in modeling the continuous feature space (Rombach et al.
2022). The discrete state space requires a more distinct training loss to direct the opti-
mization of the relationship between locations in the feature space. Therefore, in add-
ition to using location encoding to map the discrete location representation into a
continuous feature space, we modified the training process such that the model could
focus on learning the relationship of locations through the trajectory. Another differ-
ence with the classical latent diffusion model is that the trajectory encoder &, decoder
D and generator Gy are trained simultaneously. Different trajectory datasets have
totally different mobility patterns and geographic scales, so the relationship between
locations is totally different, which makes it meaningless to pre-train a location
encoder or decoder across different datasets. On the other hand, the current training
method makes the model easy to converge, which makes the pretrained encoder and
decoder become unnecessary. Specifically, we directly calculate the estimation of X
according to the g(X;|Xo) formula for the trajectory diffusion process; the function can
be formulated as follows:

— 1 1
Xo=—=X;— < r—1>ge(xnt) (20)
Ot Ot

We then decode the estimated X, using a trajectory decoder D, so that the hidden
representation is decoded to the probabilistic of each discrete location. We then used
the gradient from a SoftMax Cross-Entropy loss to train the network; the function can
be formulated as follows:

mein ]EX,ENN(OIUI,[—X*Iog D(Xo)] (21)

Therefore, our training algorithm can be summarized as Algorithm 1.
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Algorithm 1 Training algorithm

1: repeat:

2: X ~ q(X|EPX)])

3: t ~ Uniform({1,2, ...,T})
4: e ~ N(O,I)

5: Take gradient from
Vel| = X «logD ;EXt - (1 [o-— 1>Qe(Xt,t)>||

6: until converged”

4.5. Sampling process

As the requirement of the optimization function ming Ey ., po(X:, t) in the trajectory
generation process has to predict under the following form:

1 Pe
Xy t) = — | X¢ — X, t 22
“’9( t ) \/&_t< t mge( t )) ( )

Based on the formula, we can sample from pg(X;_1|X;) with the optimization goal
that after t times of denoising the model distribution pg(Xp) is approximate to the

data distribution q(Xp). The formula for the trajectory generation process used to infer
X:_q from X; is as follows:

1 B, _
Xeo1 = —= | Xt ———=Go (X, 1) | + Bz (23)
o1 = (K- i ) +
where z denotes a random variable sampled from a standard Gaussian distribution.
According to the formula, once all the parameterized models were trained through
the training process, we can estimate Gy(X;, t) as the estimation of the uncertainty in
Xt and generate a trajectory through the generation algorithm in Algorithm 2.

Algorithm 2 Generating algorithm
1: Xr ~ N(O,1)
2:fort=T,...,1do
3:z~NOIift>1, elsez=0

4: X = —= <Xr - P _gy(x, t)) + Bz
5: end for’ o

6: X = D(Xo)
7: return X

4.6. Trajectory generator

We defined the diffusion and generation processes and proposed a training process to
point out an optimization objective to train the trajectory generator and a sampling
process to use the trajectory generator to generate a new trajectory. The key structure
of the human mobility modeling framework is the trajectory generator network, which
is proposed to generate a trajectory by reducing its uncertainty. We designed a
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Figure 3. Structure of the trajectory generator and the trajectory decoder.

Transformer-based trajectory generation network to capture the spatial-temporal rela-
tionships in a trajectory. The structure of the trajectory generator is shown in Figure 3.
Trajectory generation has strict requirements for serial patterns in the generated
trajectory. The generated trajectory must be continuous and must follow the mobility
pattern in a real dataset. Therefore, we proposed a trajectory generator based on the
sequence-to-sequence structure. As shown in Figure 3, the trajectory generator takes
Xt as the input, which denotes the latent representation of trajectory X at generation
step t. A step-encoding function SE is used to encode the current step t into the
latent feature X;. The step encoding function is a variation of the positional encoding
function in the Transformer (Vaswani et al. 2017) and is formulated as follows:

sin ( 2i>,if i%2 =0

SE(Xe t) = X; + 10000¢ (24)
cos (g),if i%2 # 0

100004

where d is the dimension of X; and i is the dimension. Considering that the amount of
added uncertainty in different steps of the diffusion process varies, step encoding injects
step information into X; such that the model can learn to estimate the strength of the
uncertainty in the current step. Subsequently, an LSTM network and a transformer encoder
are employed to model the serial relationship in the trajectory. Through experiments, we
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found that the LSTM network is very important for generating a continuous trajectory and
that the transformer module plays an important role in capturing the long-range depend-
ency and accelerating the converging process. The encoded representation is passed to
the transformer decoder by the memory of the encoder. The decoder then decodes the
uncertainty sequence step-by-step and takes the output of the last moment as the input.
The decoding process begins by embedding a start token, which ensures that the gener-
ated series will perform well in the serial relationship.

4.7. Trajectory decoder

The uncertainty predicted by the trajectory generator is used to generate X;_; by sam-
pling from pg(X;—1|X;), which is represented as a minus symbol in Figure 3. Through T
steps of iterations following the sampling process, X is predicted. Trajectory decoder D is
used to decode the hidden representation of a trajectory into the probability distribution
of all candidate locations. We employed a transformer encoder and decoder structure.
The input of the decoder was X;, the decoder decoded a trajectory from the memory of
the encoder, and another series of the embedding of the output token. We designed the
trajectory decoder to be as simple as possible so that the model mostly relies on the tra-
jectory generator to model human mobility by estimating its uncertainty.

5. Experiment
5.1. Datasets

We evaluated our method on two public trajectory datasets. The two datasets are
from different geographic scales and have distinct human mobility patterns. The dens-
ity distribution of all the trajectory points is shown in Figure 4.

T-Drive:This dataset contains real taxi GPS trajectories in Beijing, China. It contains
the trajectory of 10,357 taxis from Feb. 2 to Feb. 8, 2008. The average sample fre-
guency was 2.95 minutes. Considering the problem of missing data, we resampled the
location of every taxi every 5min such that all trajectories in the dataset had a fixed
time interval. We extracted the positioning points on the six-ring road, which
accounted for 98.2% of all the points in the dataset. Then, the region in the six-ring
road was divided into 27*27 grids by a square with a 2000 meters edge length, which
was determined by the mobility frequency and average moving distance in the data-
set. A total of 169,984 trajectories were recorded.

Geo-life: This dataset was collected from 182 individuals. GPS trajectories record
their mobility activities over five years. We also resampled all trajectories into a 5 min
time interval and extracted points on the six-ring road. Considering that mobility activ-
ity was relatively weak, the division was set to 500m, so there were 110*110 grids in
total. At last, there are 79,360 trajectories left.

All trajectories in each dataset were resampled to a 5 min time interval. The model
was trained using human mobility trajectories for 1 hour, which included 12 trajectory
points for every trajectory. The principle of selecting a proper grid scale for a dataset
is to ensure that two temporally adjacent trajectory points are divided into spatially
adjacent grids. For the T-Drive dataset, the average driving speed for a taxi is 30
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Figure 4. Geographical distribution of trajectory points in (a) T-Drive,(b) Geo-life.

kilometers per hour, which is 2500 meters per 5minutes. The current 2000-meters
scale makes 78.4% of adjacent trajectory points in T-Drive located in spatially adjacent
grids. Similarly, for the Geo-life dataset, the average moving speed for pedestrians is
400 meters per 5minutes, considering there are other traveling modes besides walk-
ing. The current 500-meters grid scale ensures that 73.6% of adjacent trajectory points
in T-Drive located in adjacent or secondary adjacent grids.

The dimension of location embedding is set to 512. The number of layers for trajec-
tory encoder £ was set to 2. The number of hidden units in all layers in the model
was set to 512. The number of diffusion steps in the model was 1,000. The model was
implemented using PyTorch and trained on an Nvidia Titan V GPU.

5.2. Evaluation metrics

We employed five different evaluation metrics to quantitatively evaluate the quality of
the generation performance and used Jensen-Shannon Divergence (JSD) to measure the
similarity of the distribution of these metrics between the generated dataset with the
real validation dataset. JSD is commonly used to evaluate the generation quality of a
generative model (Feng et al. 2020, Theis et al. 2016). The JSD is defined as follows:

JsD(D||D) = —KL<]D)||M> ;KL(ID)HM) (25)

where D and D are two different distributions, and KL measures the Kullback-Leibler
divergence between two distributions. It can be formulated as follows:

)
KL(D|D) = > D(x) ( (X>> (26)

xeX
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where x denotes a sample point in the discrete sample space X. The smaller the JSD,
the more similar the two datasets. We measured the JSD between the generated and
real datasets of the following five metrics.

5.2.1. Moving distance (moving)

The mobility of a moving object is an important characteristic in evaluating the gener-
ation quality of an individual trajectory. This metric measures the distance between
two adjacent moments in a trajectory. It reflects the individual mobility patterns of all
the trajectories in a dataset.

5.2.2. Geographical distribution (distribution)

In addition to simulating the mobility of every single person, it is important to gener-
ate a dataset that follows the same geographical distribution as the real one. This met-
ric evaluates the geographical distribution of the trajectory points in all generated
trajectories. A geographical distribution similar to a real distribution promises the basic
utility of the generated dataset for downstream tasks.

5.2.3. Origin distribution (O-Dis) and destination distribution (D-Dis)
Origin-Destination (OD) flow pattern mining is an important research task of trajectory
data mining. Therefore, evaluation metrics were developed to measure the usability of
the generated trajectory in OD flow pattern mining. O-Dis measures the location distri-
bution of the start locations in all trajectories in a dataset. D-Dis measures the distribu-
tion of the end locations of all trajectories.

5.2.4. Diversity

The diversity of the generated trajectories is also very important from the perspective of
the utility of a forged dataset. The diversity of the trajectory dataset was measured by
counting the ratio of trajectories appearing more than twice in the dataset. If two trajecto-
ries had the same sequence of location indexes, we defined them as the same. The lower
the ratio, the more diverse the dataset. The quality of the generated dataset can be deter-
mined based on whether the value of the metric is close to that of the real dataset.

5.3. Baselines

We compared the performance of our method with those of six strong baseline meth-
ods. To conduct a fair comparison, the dimension of the location embedding and the
number of hidden units in all networks were set to be the same as those in our model,
which ensured that all models had the same learning capability. We also fine-tuned
some of the default settings in these baselines to achieve the best performance.

FC-LSTM (Sutskever et al. 2014): The FC-LSTM is a well-known discriminative model
for dealing with sequence-to-sequence tasks. It starts generating a trajectory by sam-
pling a point from the density distribution of all trajectory points, and the remaining
trajectory is generated using a step-by-step process. The dimension of the location
embedding and the number of hidden units in the LSTM were set to be the same as
that in our model.
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MoveSim (Feng et al. 2020): This is a state-of-the-art method used for human
mobility simulations. This discriminative model is based on a GAN structure. This
method samples the starting point of a trajectory from the population density distri-
bution. The remaining trajectory was then output from a specifically modified trajec-
tory prediction model called SeqNet. The model was trained using a discriminator
with a reinforcement-learning technique. The dimension of the location embedding
and the number of hidden units in all networks were set to 512, which are the same
as ours.

SeqGAN (Yu et al. 2017): SeqGAN is a benchmark model for sequence generation. It
combines GAN with reinforcement learning to provide the generator with a policy gra-
dient. Two GRU networks were employed as its generator and discriminator. Unlike
the original GAN, which starts generating a representation randomly sampled from
the latent space, the model starts generating a trajectory with the trainable embed-
ding of a start token. Therefore, the model can only be regarded as a discriminative
model.

TrajVAE (Chen et al. 2021): TrajVAE is one of the few existing real generative mod-
els with a latent space for trajectory generation. A variational autoencoder is a typical
generative model. The model employs two LSTM networks as its encoder and decoder
for the VAE. It generated a trajectory by decoding a sampled vector from a Gaussian
latent space.

Generative SeqGAN (Yu et al. 2017): This model is a generative version modified
from the seqGAN. As mentioned previously, seqGAN is regarded as a discriminative
model owing to its deficiency in the latent space. We modified the seqGAN by chang-
ing its start token using a latent representation sample from a normal distribution.
Thus, the model generates a trajectory by mapping the latent distribution to reality.

TrajSynVAE (Wang et al. 2024): TrajSynVAE is a novel trajectory generation model
that combines the classical temporal point process with a novel neural variational
inference framework, leading to a strong ability to model human trajectories with a
continuous temporal distribution. The model begins generating a trajectory by sam-
pling from the latent space; therefore, it is a generative model.

6. Results
6.1. Trajectory generation

We compared our trajectory generation model with six baseline methods on two data-
sets. To evaluate the quality of the generated trajectory, we calculated the distribu-
tions of the five metrics in each generated dataset and compared them with their
distribution in a real dataset. We also calculated the performance of the metrics for a
test dataset that was randomly sampled from a real trajectory dataset. Considering the
variation and complexity of human mobility, differences can be observed between the
two subsets sampled from the same dataset. A test dataset was used to evaluate this
part of the difference. We can evaluate the quality of the trajectory data by comparing
with the training dataset. A comparison of the results is presented in Table 1.

The models in Table 1 can be divided into discriminative and generative models
according to whether they generate data by sampling from a latent space. Models
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Table 1. Performance comparison of all models on two datasets.

T-Drive
Metrics (JSD) Moving Distribution 0-Dis D-Dis Diversity
Test Dataset 0.02949 0.04773 0.05466 0.04458 0.04655
FC-LSTM 0.2227 0.2307 0.1603 0.27594 0.98228
MoveSim 0.3361 0.1763 0.05449 0.24498 0.22914
SeqGAN 0.1106 0.1418 0.1398 0.1732 0.1085
TrajVAE 0.3009 0.4557 0.3713 0.4831 0.0
Generative SeqGAN 0.3194 0.1890 0.4932 0.1701 0.0
TrajSynVAE 0.3922 0.1234 0.1467 0.1426 0.0
TrajGDM 0.05490 0.1171 0.1358 0.1326 0.01367
Geo-life

Metrics (JSD) Moving Distribution 0-Dis D-Dis Diversity
Test Dataset 0.04491 0.08189 0.08631 0.09278 0.08621
FC-LSTM 0.2871 0.3565 0.2711 0.3436 0.4597
MoveSim 0.4487 0.1656 0.06720 0.2274 0.4225
SeqGAN 0.2640 0.2672 0.2627 0.2787 0.2782
TrajVAE 0.7283 0.2609 0.3804 0.2642 0.0
Generative SeqGAN 0.3812 0.4092 0.4504 0.3759 0.0
TrajSynVAE 0.5824 0.3006 0.3212 0.3098 0.0
TrajGDM 0.1142 0.1226 0.1231 0.1386 0.02226

such as FC-LSTM, seqGAN, and MoveSim are regarded as discriminative. Although
MoveSim and seqGAN are based on a GAN structure and output data using a so-called
generator, the generator does not learn to map a trajectory from a latent distribution.
They employed discriminative trajectory-prediction networks to generate trajectories
by repeating the prediction process. The trajectory prediction network was trained to
model the conditional distribution given the observed part of the trajectory, which
can be denoted as P(locj|locy, locy, ..., loci-1), where the emerging probability of a
point loc; is determined by its previous i — 1 trajectory points. This distribution is the-
oretically different from the true learning objective for a trajectory generation model,
which is P(locy, locy, .. ., loc;) denotes the emerging probability of an entire trajectory.
However, when the dataset is sufficiently large and the division of the predicted tra-
jectory points loc; and the observed trajectory points loc;,locy, .. .,loci—y is randomly
sufficient, these two distributions overlap to some extent. Therefore, a discriminative
model can output a set of trajectories that are likely to fit the distribution of a real tra-
jectory dataset. This was the result of the overlap of the two different distributions.
Moreover, it benefits from directly maximizing the probabilistic that each trajectory
point emerges by Py(locj|locy, loc,, ..., loci—1). The discriminative models can perform
well in fitting the general geographical distribution. This explains why most discrimina-
tive models show better performance in terms of the Distribution, O-Dis, and D-Dis
metrics. To start the predicting iteration, models such as FC-LSTM and MoveSim start
generating a trajectory by sampling a point from the density distribution of all trajec-
tory points. This nonparametric starting method leads to good performance on the O-
Dis metric and further improves their performance on other metrics that evaluate the
general distribution of trajectory points.

However, outputting the next trajectory point based on the maximized likelihood of
the current observation limited the diversity of the outputs. Theoretically, once a dis-
criminative model completes training, its output probability under every circumstance is
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fixed. Considering that the starting method is also fixed, the model is very likely to out-
put highly repetitive trajectories. This is reflected in the poor performance of all discrim-
inative models in terms of the diversity metric.

In contrast to discriminative models, generative models, such as TrajVAE, Generative
SeqGAN, TrajSynVAE, and TrajGDM, model trajectories with a continuous latent space.
Generation begins by sampling a representation vector from the latent space, and dif-
ferent sample points in the latent space represent different trajectories. Generative
models generate trajectories by mapping a representation vector from a latent space
to a trajectory through a generation process. Theoretically, considering that the latent
space is continuous, a generative model can generate numerous variations of a trajec-
tory. This explains why all the generative models showed very low repetition rates in
the diversity metric. In particular, our method exhibited outstanding performance on
the diversity metric, which was closest to the repetition rate of the validation trajec-
tory dataset. For TrajVAE, TrajSynVAE, and Generative SeqGAN, the repetition rate was
zero because of their poor performance in simulating the individual trajectory. Their
generated trajectories are not continuous in space; therefore, generated trajectories
have a lower chance of being similar to each other.

While other generative models show poor performance on the moving distance
metric, our method performs remarkably well and is better than all baseline methods
on both datasets. In the Geo-life dataset, the decline ratio of the Moving metric is at
least 57.2%. The ratio comes to 50.3% in T-Drive. This implies that the generated tra-
jectories are more similar to trajectories in the real world. Moreover, benefitting from
directly modeling the trajectory distribution Py(locy,locs, ..., loc;), our method also
shows a great improvement in the geographical distribution metric. As for the OD dis-
tribution, except for MoveSim, which generates trajectory origins by sampling from
the real distribution, our method still shows better performance than all other para-
metric methods. The difference in generation performances of two datasets is mainly
caused by the data variation in two datasets. This could be reflected by similarity
between the training dataset and the Test Dataset (Line 1 in Table 1). The similarity is
higher in the Geo-life dataset than the T-Drive dataset, which means that the data
variation between different trajectories in the Geo-life dataset is higher. The variation
may be caused by several reasons, including the scale of the grids, variation of the tra-
jectory points distribution density, etc. Therefore, a model’s best simulation performan-
ces of different datasets are correlated with the data variation, and this variation could
be reflected by the similarity between the training dataset and test dataset.

To understand how a trajectory was generated, we visualized the trajectories at dif-
ferent steps of the generation process. We also selected several real trajectories that
were similar to the generated trajectories for comparison. The results are shown in
Figure 5. The background color represents the average generating probability of all
the points in the trajectory.

As it shown in Figure 5, the generated trajectories are located in both downtown
area and suburban area, and various mobility intensities are shown in different trajec-
tories. An interesting phenomenon that occurred in all trajectories was that the origin
and destination were determined in the first place. Even though in the trajectory
decoder, the generation of a trajectory’s destination is partially based on its previous
points because of its sequence-to-sequence structure, and the location points before
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Figure 5. Generated trajectories in different steps of the generation process with similar real trajec-
tories for demonstration.

the destination still vary, destinations in most of the generated trajectories remain
unchanged after the first few steps. This phenomenon demonstrates that the impor-
tant factors are determined in the first place in human movement, which means that
important factors, such as the purpose of travel, are included in the latent representa-
tion of a trajectory. The details of the trajectory are specified later based on these key
factors using our trajectory generator. This uncertainty-reducing generation process is
similar to the route-planning process for humans. This also illustrates that the trajec-
tory generator in the generation process plays a more important role in determining
the performance of a generated trajectory than the trajectory decoder.

Although the number of diffusion steps was set to 1000, the generated trajectories
did not change significantly after the first 300 steps. This is because our optimization
target was set to directly estimate X, from X; and the trajectory points were nomi-
nated according to the output probability distribution of the model. The probability
distribution was fixed after hundreds of steps.

6.2. Trajectory general intelligence

To generate a realistic trajectory, a trajectory generator is required to capture the uni-
versal human mobility patterns that suit the entire trajectory dataset. Human mobility
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patterns play an important role in almost all related trajectory tasks, including trajec-
tory prediction, trajectory reconstruction, etc. It would be helpful if we could directly
solve these problems with the universal mobility pattern captured by our trajectory
generation model, rather than building a number of different models, with each of
them only capturing part of the pattern mobility and being able to handle a related
problem. Zero-shot trajectory prediction and reconstruction experiments were per-
formed using the proposed model. The experiment tested whether our model cap-
tured universal mobility patterns by learning the generation process of a trajectory.
The target is similar to the basic task of the Large Language Model (LLM), which learns
knowledge (corresponding to the universal mobility pattern) from a language dataset
(corresponding to the human mobility dataset) of human beings. The success of the
LLM has shown that it is possible to achieve this. Zero-shot learning is widely used to
evaluate the LLM performance on different unseen tasks to illustrate the knowledge
learned by the LLM (Bommarito et al. 2023, Kojima et al. 2022, Liu et al. 2023, Wei
et al. 2021). The zero-shot inference result is expected to verify the possibility of
achieving trajectory general intelligence through modeling the universal human mobil-
ity pattern in a trajectory dataset. To the best of our knowledge, few trajectory model-
ing methods can conduct zero-shot inference on multiple tasks.

6.2.1. Trajectory prediction

Trajectory prediction is one of the most important tasks in trajectory data mining
(Zheng 2015). A model is required to capture the mobility patterns between the
observed and predicted trajectories. We employed a finished trained trajectory-gener-
ation network. To achieve this, instead of putting the latent representation of the
entire trajectory to the trajectory generator, the input to the generation network is
changed to a concatenation of the location encoding the observed part of the trajec-
tory and the latent representation of the trajectory point to be predicted. The predic-
tion process is formulated as follows:

X7 = sampler[N(0,1)] (27)
Xe = G(concat{E[P(locy), P(locy), ..., P(locn;)], X1 }) =1 <] (28)
Y = D(Xo) (29)

where X; € R4, | is the length of trajectory points to be predicted, and d is the
dimension of location encoding. sampler is a controllable sampler used to sample
from the latent normal distribution N. For trajectory prediction, the sampler sample at
0. This is further explained in the latent space interpretation section. Considering that
the generation model had not been previously trained for the prediction task, it was
believed to be a zero-shot prediction. The trajectory generator was trained to generate
a trajectory sequence according to its spatial-temporal relationship. Therefore, by pro-
viding the generator with exact information on the observed part of the trajectory,
the model is expected to generate the remaining part accordingly. The accuracy of
the prediction was calculated by the ratio of trajectories in which the predicted loca-
tion indexes were the same as the real indexes. When predicting more than one
future location, only trajectories with all predicted indexes are correct and regarded as
successful predictions.



22 (&) C CHUETAL

Table 2. Comparison of the prediction accuracy in different predicting lengths between
Deepmove and the zero-shot prediction result of TrajGDM.

T-Drive Geo-life
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Methods @Length 1 @Length 2 @Length 3 @Length 1 @Length 2 @Length 3
DeepMove 34.86% 16.14% 10.11% 43.75% 25.26% 17.41%
TrajGDM 43.03% 21.13% 14.66% 34.11% 19.98% 14.63%

Moreover, we employed an improved sampling method named Denoising Diffusion
Implicit Models (DDIM) to accelerate generating by reducing the sampling process to
50 steps (Song et al. 2020). We compared the prediction accuracy with that of
DeepMove (Feng et al. 2018), which is a benchmark deep-learning human mobility
prediction method. For a fair comparison, we abandoned the use of other features
such as user ID. We then compared the prediction accuracies for different prediction
lengths. A comparison of the results is presented in Table 2.

As shown in Table 2, the zero-shot prediction accuracy of our model surpassed the
accuracy of DeepMove in the T-Drive dataset by up to 23.4%; however, the accuracy
was lower than that of DeepMove in the Geo-life dataset. This can be explained by
the difference in learning objective between the two models, DeepMove is trained to
maximize the likelihood of P(loc,_in|loci.n—), while the objective of our generative
model is to maximize P(locy.n—;, locy—1.n). The difference can be regarded as DeepMove
tending to output, where the moving object is most likely to go when it has passed
by loc,_;.n, whereas our model was trained to output all suitable positions locy.,—; that
make the complemented trajectory (locy.n—y, loC,—1.n) most similar to a real one. As the
predicted length [ increased, the observed locy.,; played a less important role and the
difference between the two distributions decreased. This explains why the two predic-
tion accuracies become closer with the growth of prediction length /. To better under-
stand how a trajectory is generated, we visualized the predicting process in Figure 6.

Figure 6 shows the uncertainty reducing process in prediction. TrajGDM gradually
reduced the high probability space. Taking the trajectory in the first column as an
example, at the beginning, the cab was predicted to move downtown in the center of
the area according to the general mobility pattern, followed by most of the trajectory.
In the next step, the model adjusts its prediction results based on the historical trajec-
tory and predicts that it will return to its former route. However, the output appears
unreasonable because the trajectory moves too far in a step. With the uncertainty
gradually removed, the model generated later predictions based mostly on the current
observations, and was predicted to move along its way. It also shows the spatial
awareness that only nearby locations were predicted to be the high-probability region.
A similar pattern can be observed in all the generation processes: the output high-
probability region is transferred from a global high-trajectory density region to one
that is primarily based on individual movement characteristics.

6.2.2. Trajectory reconstruction

Trajectory reconstruction or imputation is another difficult problem in human mobility
modeling. In reality, limited by the cost of data transmission and storage space, most
human mobility datasets are collected in a discontinuity form, and the problem of



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 23

15 20 10 15
Column Column

2

%1

10 15 20 15 15 10
Column Column Column

7 50

15
Column

10 15
Column

10 15 5 10 15
Column Column

15 10

15 20 25
Column Column

High Low History Ground e
probability - probability *® trajectory * truth @ Prediction

Figure 6. Trajectories in different prediction steps of the generation process of our method.

missing data is common (Wang et al. 2022, Zhao et al. 2016). Trajectory reconstruction
is a key pre-processing step in many trajectory tasks. Accurate reconstruction requires
a model to capture the mobility pattern from both prior and subsequent trajectory
points of the missing data. We also employed a trained trajectory TrajGDM model to
conduct a zero-shot trajectory-reconstruction experiment. The reconstruction process
was formulated as follows:

X7 = sampler[N(0,1)] (30)
Xe = G(concat{&]. .., P(loci_1)], Xer1, E[P(locisy), ... ) })li i+ 1] (31)
Y = D(Xo) (32)
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Table 3. Comparison of the reconstruction accuracy in different reconstruction lengths between
baselines and the zero-shot reconstruction result of TrajGDM.

T-Drive Geo-life
Methods Accuracy @Length 1 Accuracy @Length 2 Accuracy @Length 1 Accuracy @Length 2
MDP-TR 69.10% - 37.20% -
Interpolation 50.27% 17.83% 43.82% 19.77%
TrajGDM 59.12% 25.16% 46.75% 23.67%

where X; € R*9, | is the length of trajectory points to be reconstructed. i is the index
of the first missing point in the trajectory. We randomly masked parts of the points in
a trajectory. The reconstruction follows the formula above. The evaluation method is
the same as the prediction, and the accuracy of the reconstruction is also calculated
by the ratio of the reconstructed location indexes that are the same as the real one.
The reconstruction accuracy was compared with those of several baseline methods.
The MDP-TR combines multiple machine learning methods and exhibits excellent per-
formance in reconstructing CDR trajectory data (Li et al. 2019). Spatial interpolation,
which reconstructs a trajectory by joining each pair of existing points, is one of the
most common baseline methods for trajectory reconstruction (Hoteit et al. 2014). A
comparison of the results is presented in Table 3. MDP-TR cannot handle continuous
missing points; therefore, the corresponding positions in the table are masked.

As shown in Table 3, our method achieved the best reconstruction performance in
the Geo-life dataset, surpassing both the mechanism and learning methods. The
improvement in accuracy was as high as 25.6%. Another advantage of our model is
that it is more flexible, can reconstruct continuous missing points, and can reconstruct
a trajectory with multiple discrete missing points simultaneously.

The data variation of the two datasets and the different learning strategies of the
models are considered to be the main reasons for the difference in models’ perform-
ance in these two tasks. The similarity between the test and training dataset shows
that the data variation of Geo-life is much higher than that of T-Drive, which explains
why most models perform worse in Geo-life in prediction and reconstruction. While
T-Drive records trajectories of 10,357 taxis, Geo-life records the movement of 182 indi-
viduals. DeepMove’s Historical Attention module allows the model to focus on the his-
torical pattern of each specific individual, making it more likely to perform well on
datasets with few individuals.

The zero-shot prediction and reconstruction abilities prove that the human mobility
patterns captured by our model are universal. Learning human mobility from trajec-
tory generation and applying it to other trajectory tasks is a possible way to achieve
artificial general intelligence in a trajectory.

6.3. Latent space interpretation

Understanding the relationship between latent and real-world spaces can help inter-
pret how the model learns human mobility. In this section, this relationship is explored
by controlling the sampler during the sampling process for trajectory prediction. The
basic settings were the same as those described in the previous section. It is still a
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zero-shot prediction based on a trained model. We changed the latent representations
of the points to be predicted using different sampling points in the latent space. It is
worth noting that the embedding representations of locations can also be regarded as
distributed in latent space (better known as feature space). While, in this research, we
only utilize the definition of latent space in generative models, which refers to the fea-
ture space contains all the latent trajectory representations.

TrajGDM models human mobility with a Gaussian distribution, which means that in
prediction, all appropriate positions loc; that make the trajectory (locy—1,loc;) like a
real one are assumed to follow a normal distribution in the latent space. Therefore, by
sampling from different places in the latent space and analyzing their generation
results, we can obtain a brief interpretation of how the model builds a connection
between the latent and real-world spaces.

We sampled from 5 different places in the latent space N(u,5%), where p denotes
the mean of the Gaussian distribution and o is its standard deviation. Point p owns
the highest probability density in the entire latent space. While the probability density
decreases as the sampled points move away from p. We conducted an experiment by
sampling from different positions in the latent space and compared the prediction
accuracy, probability distribution, and distance from the predicted point to the last
point of the observed trajectory. A comparison of the prediction accuracy and output
distance is presented in Table 4.

In Table 4, the prediction accuracy is the highest at point p and decreases with the
probability density reduced in other sampled points. This implies that the high prob-
ability density region in the latent space is mapped to the trajectory points with the
highest emergence frequency using the trajectory generator. More specifically, when
we sampled at point p, which owns the highest probability density in the latent
space, the generated trajectory point also appears most frequently in the circumstance
that locy.i_; is observed. For the sampled points with a lower probability density, their
corresponding generated trajectory points have a lower emerging probability.
Therefore, the prediction accuracy is relatively low when sampled in these regions.
Spatially, this correlation was also reflected in distance metrics. In reality, the average
moving distance between every two trajectory points is 0.96 grid. Obviously, the mov-
ing distance predicted by sampling at p is the closest to the real average moving dis-
tance. With other sample points showing a much larger moving distance, their
generated points are positioned in locations where it is less likely to move under con-
dition Jlocy.;_1. It is worth noting that even though the emerging frequency is relatively
low at these low-probability-density places, they are still sampled in the range of the
latent distribution, and the outputs are generated under the guidance of condition
locy.i_1. Therefore, their emergence should still be reasonable under condition locy._4

Table 4. Comparison of prediction accuracy and predicted distance between the prediction results
sampled from points with different probability density values and positions in the latent space.

T-Drive
Sampled points p—2c L—oc n p+o n+ 20
Probability density 0.0540 0.2420 0.3989 0.2420 0.0540
Accuracy 31.25% 37.55% 43.03% 40.42% 36.52%

Distance 3.83 1.61 0.88 1.92 4.61
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Figure 7. Predicted probability distribution when sampled from different points in the latent space.

to some extent. To comprehend the relationship between the latent space and
real-world space with different sampled points, we visualized the probability distribu-
tion in geography. The results of several typical trajectories are shown in Figure 7.

In Figure 7, by comparing the variation of high probability region generated by
sampling from different sample points, it is found that sampling at point p generates
the most suitable probability distribution for the current trajectory. As mentioned pre-
viously, points with high probability density values in the latent space correspond to
places with a high emergence frequency. The high probability region generated by
sampling at p contains most of the common locations that the trajectory might move
to under current observation. Moreover, when sampled points are smaller than p, the
high probability region covers a wider area. Interestingly, it is found that the distribu-
tion is overlapped with the global high point density region of the whole dataset.
While sampling at points greater than p, locations with high probability are discrete
from each other, and they are more likely to be the high probability locations that are
only suitable with the current trajectory. That is, it generates more personal predic-
tions. As the sampled point leaves p further, this tendency becomes more obvious.
This can be explained from the perspective that the model is seeking for a balance
between the crowd and individual human mobility patterns. When modeling human
mobility, most of the time, trajectories follow a general mobility pattern. Each individ-
ual trajectory also contains unique mobility features. The trajectory generation model
looks for a way to balance general patterns and personal features. It maps two oppos-
ing human mobility characteristics in opposite directions to the latent space. Balance
is achieved through random sampling in the latent space.

7. Discussion

We interpreted the relationship between the latent space and real-world space by
controlling the sampler sampling at different points in the latent space. Surprisingly, it
was found that the latent space was not mapped symmetrically. The model was found
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to seek a balance between the crowd and individual mobility patterns. The finding
has both theoretical and practical implications. From theoretical perspective, exploring
the latent representation of trajectories could reveal how Al bridges latent space with
the real-world physical space, this is important for the development of explainable Al.
From practical perspective, the finding could help the model diversify and customize
generation. By controlling the sampler to sample from the latent space, the generation
could to be more general (follow crowd pattern) or customized (follow individual pat-
tern). This quality would be useful when the prediction results are used for location
recommendation, as the diversity of recommendations is an important evaluation met-
ric for a recommendation system. The asymmetry mapping pattern could be explained
from both the mathematical aspect of deep learning and the geographic aspect of the
law of human mobility. More future works are expected to further explore this inter-
esting pattern in the future.

Considering the trajectory generation process is a multiple-step Markov chain, it could
take more time for TrajGDM to generate a trajectory than other methods. By generating
trajectories in a large batch, the average generation consumption for each trajectory can
be reduced. Additionally, methods like DDIM (Song et al. 2020) could be used to minimize
the generation process into 50 steps, which would significantly reduce the generating
time, as long as a little drop down of the generation quality could be tolerated.

To some extent, the scale of the grids may influence the generation quality. The
selection of the scale of grids should be decided by many factors, such as the average
moving distance between two trajectory points, the traveling mode of the moving
object, the total area of the study region, etc. Moreover, instead of using grids to rep-
resent locations, other more customized location division methods, such as road seg-
ments, blocks, or Thiessen polygons, can also be employed and may significantly
boost the model’s performance in specific circumstances.

The influence of time is also an important factor in human mobility, which was not
considered in the model. We have to admit that time has a significant influence on
human mobility. While for mobility simulation, the significance of temporal effects
depends on the characteristics of the dataset. For example, for the T-Drive dataset,
which records taxi trajectories, as long as we cannot have the travel destination of
each passenger who gets on the taxi, it is impossible and meaningless to predict or
simulate the long-term movement of a taxi. By focusing on a relatively short term, the
model aims at modeling the spatial relationship between locations and the short-term
spatial-temporal mobility patterns of trajectories. We minimized the influence of time
by only simulating the human mobility pattern in one hour, which is a relatively short
period. For datasets like Geo-life, introducing temporal aspects into the model would
benefit the model in simulation. In future work, we will further explore the influence
of time on human mobility by modeling trajectories over a wider time span.

8. Conclusions

In this study, we proposed a generative human mobility simulation method called
TrajGDM. This method models trajectory generation as an uncertainty-reducing pro-
cess. We proposed a trajectory generator network, which aims to predict the existing
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uncertainty in a trajectory. We defined a trajectory diffusion process to model the
uncertainty adding process in a trajectory such that our trajectory generator could be
trained by learning from the relationship between the original trajectory and the
uncertainty added trajectory after the diffusion process. Based on the diffusion and
generation processes, we introduced our training method, which was designed to
train the trajectory generator to learn from a trajectory dataset recorded using a dis-
crete representation method. Finally, we introduced the sampling process for the tra-
jectory generation model. The model can generate a synthesized trajectory dataset
that is diverse and realistic through the sampling process.

By comparing the performance of our method with six strong baselines in two pub-
lic datasets, our model achieved a great improvement in simulating the individual
mobility and diversity of the generated trajectories. Moreover, by visualizing the trajec-
tory generation process, we found that the uncertainty-reducing process is similar to
the route planning process of a human, indicating that the model learned the gener-
ation correctly. After a generation model is trained, zero-shot experiments were con-
ducted on two basic trajectory tasks: trajectory prediction and reconstruction. The
generalizability of the model verifies the universal mobility pattern captured by learn-
ing the trajectory generation process. This demonstrates that it is feasible to build a
trajectory foundation model based on a trajectory generation model. Finally, we
explored how our model learns human mobility. The model was found to seek a bal-
ance between the crowd and individual mobility patterns.

For our future work, on the one hand, we expect to further improve the generaliz-
ability of mobility models. Training the model to learn the mobility pattern from mul-
tiple mobility datasets could be the next step towards the realization of mobility AGI.
On the other hand, we also expect to further explore Al's understanding of human
mobility to support the development of explainable spatial Al. Latent space interpol-
ation would be the earliest and most direct way. Another interesting direction is to
learn the internal and external factors that drive human mobility separately. We hope
that the development of mobility simulation could lead to the development of the
theory of human mobility.
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