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ABSTRACT 
Accurate and efficient air quality prediction is crucial for public 
health protection and environmental sustainability. While numer
ous grid-based and graph-based prediction models have been 
developed, they encounter challenges in large-scale scenarios: (1) 
Grid-based models, though computationally efficient, have limited 
prediction accuracy in large-scale sparse scenarios; (2) Graph- 
based models, despite higher prediction accuracy, suffer from sig
nificant computational inefficiencies when dealing with a large 
number of sensors, i.e. graph nodes. To address these issues, we 
propose a Lightweight Ensemble Predictor (LiEnPred) for efficient 
air quality prediction in large-scale sparse scenarios. First, we pre
sent a data structure transformation algorithm that converts 
sparse monitoring sensors from graph structures to compact grid 
structures, preserving the connections between graph nodes. 
Next, we present a lightweight parameter-shared spatio-temporal 
dilation convolution network that efficiently captures spatio-tem
poral dependencies in air quality data without significantly 
increasing computation time or parameter scale. In our experi
ments, we collected air quality data from over 2000 sensors 
across China over the past three years and evaluated LiEnPred’s 
prediction performance in large-scale scenarios using PM2.5 and 
NO2 concentration data. The experimental results demonstrate 
that the proposed LiEnPred model matches or exceeds the pre
dictive accuracy of eight baselines with faster time efficiency and 
fewer model parameters.
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1. Introduction

With the advancement of urbanization, air pollution issues, such as PM2.5, sulfur dioxide 
(SO2), and nitrogen dioxide (NO2), have become increasingly severe, posing significant 
challenges to the sustainable development of cities (Amato et al. 2020, Cheng et al. 
2021). Studies have shown that prolonged exposure to highly polluted environments 
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may increase the risk of respiratory diseases and cancer (Yang et al. 2020, Cheng et al. 
2023). In this context, accurate and efficient air quality prediction techniques have 
become essential tools for reducing human exposure to air pollution (Zhang and Zhang 
2023, Guan et al. 2024). These technologies can forecast changes in pollutant concentra
tions, providing valuable insights and guidance for the public and government to imple
ment targeted protective measure (Mengfan et al. 2022, Saad et al. 2024).

The key to air quality prediction lies in mining the complex spatio-temporal relation
ships within historical data to accurately and efficiently forecast future air quality. In 
recent years, deep learning models have become the predominant choice for air quality 
prediction, owing to their exceptional ability to capture complex spatio-temporal rela
tionships (Zhang et al. 2021). From deep grid-based to deep graph-based prediction 
models, the diversity and performance of air quality prediction models have improved 
across various scenarios (Zhang et al. 2021, Guan et al. 2024). Although existing models 
have achieved satisfactory results in many scenarios, they still face challenges in large- 
scale scenarios with high real-time requirements (Le et al. 2020, Huang et al. 2021). As 
shown in Figure 1, monitoring sensors in large-scale scenarios are often sparsely distrib
uted. The classical grid-based models for large-scale prediction are difficult to capture 
the spatiotemporal dependence in such sparse scenarios, significantly affecting their pre
diction accuracy (Asif et al. 2014, Guo et al. 2023). Moreover, grid-based models typically 
focus on modeling individual grid cells rather than specific sensors, making it difficult to 
accurately predict air quality changes at the sensor level. While graph-based models can 
offer high prediction accuracy for individual sensors, they often face computational inef
ficiencies due to the large number of sensors (graph nodes) (Li et al. 2023, Wang et al. 
2024a). Overall, existing models face difficulties in balancing computational efficiency 
and prediction accuracy in large-scale scenarios (Cheng et al. 2020).

To address these challenges, we propose a Lightweight Ensemble Predictor 
(LiEnPred), which enables efficient air quality prediction in large-scale scenarios by 
combining the advantages of graph-based and grid-based models. The specific contri
butions of this study are as follows:

1. We present a data structure transformation (DST) algorithm that converts sparse 
monitoring sensors from graph structures to compact grid structures. 

Figure 1. Large-scale air quality prediction scenarios: (a) sparse distributed sensors, (b) air quality 
data under grid structures, and (c) air quality data under graph structure.
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The adjacency of pixels in these images implicitly reflects the connections 
between nodes in the original graph structure. This DST algorithm not only pre
serves essential graph information but also enables the LiEnPred model to 
develop a large-scale air quality prediction model based on grid structures.

2. We propose a lightweight parameter-shared spatio-temporal dilation convolution 
network (STP-DCN) that enables the LiEnPred model to swiftly capture spatio- 
temporal dependencies in air quality data without significantly increasing compu
tation time or parameter scale.

3. We open-sourced an air quality dataset encompassing over 2,000 monitoring sen
sors across China from the past three years, and evaluated the LiEnPred’s predic
tion performance (including prediction accuracy, inference speed, and parameter 
scale) using PM2.5 and NO2 concentrations. Additionally, we opened the source 
code for the LiEnPred model to ensure the reproducibility of the experimental 
results.

2. Related works

Air quality prediction is fundamentally a spatiotemporal forecasting task. Consequently, 
we reviewed more general spatiotemporal prediction models, categorizing them into 
grid-based and graph-based models.

2.1. Grid-based spatio-temporal prediction models

Grid-based spatiotemporal prediction models originated from convolutional neural 
networks (CNNs) in computer vision (Voulodimos et al. 2018, Ibrahim et al. 2020). 
Numerous studies have demonstrated that CNNs can efficiently mine the nonlinear 
relationships between adjacent grid cells (or pixels) in images (Oprea et al. 2022). 
Given that most spatiotemporal data can be gridded, many scholars have leveraged 
CNNs to mine temporal relationships within images, enabling the prediction of future 
spatiotemporal data (Shi et al. 2015, 2017, Casagli et al. 2023). The large coverage of 
images makes grid-based models particularly suitable for large-scale prediction tasks, 
such as global-scale extreme rainfall prediction (Bi et al. 2023, Zhang et al. 2023), 
national-scale land use change prediction (Corner et al. 2014, Aburas et al. 2019), and 
city-scale travel demand prediction (Zheng et al. 2021, Noursalehi et al. 2022). Classical 
large-scale spatiotemporal prediction models include spatio-temporal residual net
works (ST-ResNet) (Zhang et al. 2017), spatial–temporal 3D convolutional neural net
works (ST-3DNet) (Guo et al. 2019b), spatio-temporal 3D multi-scale dilated dense 
networks (ST-3DMDDN) (He et al. 2024), hybrid integrated-DL model for spatio- 
temporal prediction (HIDLST) (Zhang et al. 2020), and spatio-temporal memory net
works (STMN) (Li et al. 2022). Although many large-scale spatiotemporal prediction 
models have been proposed, they still face challenges, especially in scenarios that 
require highly accurate predictions for specific sensors. Specifically, grid-based models 
typically focus on modeling individual grid cells rather than specific sensors. Since 
each grid cell is equipped with multiple sensors, these models are unable to predict 
the future state of individual sensors. Furthermore, grid-based models often assume 
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that pixels in images are densely distributed and exhibit strong correlations with 
neighboring pixels (Bao et al. 2021, He et al. 2021). However, images converted from 
sparse monitoring stations often do not meet these assumptions in air quality predic
tion (Zhang and Zhang 2023).

2.2. Graph-based spatio-temporal prediction models

Graph-based spatiotemporal prediction models utilize graph structures to represent 
the connections or dependencies between monitoring stations, enabling the predic
tion of future spatiotemporal data (Kipf and Welling 2017, Schlichtkrull et al. 2017). 
Unlike grid structures, graph structures explicitly define relationships or dependencies 
between monitoring stations, thereby enhancing the model’s predictive capability 
(Rossi et al. 2020, Wang et al. 2022). Classical graph-based spatiotemporal prediction 
models include graph neural networks and their variants, such as temporal graph con
volutional networks (T-GCN) (Zhao et al. 2020), dynamic spatio-temporal aware graph 
neural network (DSTAGNN) (Lan et al. 2022), and Gaussian-based spatiotemporal graph 
convolutional network (RT-GCN) (Liu et al. 2024). Moreover, some scholars have estab
lished spatio-temporal prediction models based on the attention mechanism, such as 
Airformer (Liang et al. 2023), and Spatial-Temporal Transformer Networks (STTNs) (Xu 
et al. 2021). Essentially, the attention mechanism can be viewed as a special case of 
graph-based models, in particular the graph attention model (Veli�ckovi�c et al. 2018, 
Zhang et al. 2024b). For instance, Xu et al. (2023) referred to attention in the temporal 
dimension as temporal graph attention and in the spatial dimension as spatial graph 
attention. Overall, extensive studies indicate that graph-based spatiotemporal predic
tion models have broad application prospects in fields such as intelligent transporta
tion, smart meteorology, urban planning, and environmental monitoring (Wang et al. 
2023, Zhang et al. 2024). Despite achieving satisfactory prediction accuracy, graph- 
based spatiotemporal models still face challenges. Specifically, these models have pri
marily been tested on small-scale datasets and have not been validated on large-scale 
datasets with numerous graph nodes. The reason is the exponential growth in compu
tational complexity of graph-based models with increasing node numbers, making 
most models unsuitable for real-time applications (Do et al. 2019, Dai et al. 2023, Li 
et al. 2023). Although some scholars have proposed lightweight spatiotemporal graph 
dilation neural networks (STGDN), these have only been validated on small-scale data
sets (Wang et al. 2024a).

2.3. Strategy

In general, both grid-based and graph-based spatio-temporal prediction models 
exhibit mutual advantages and disadvantages. Grid-based models are particularly 
effective in terms of computational efficiency for large-scale spatiotemporal prediction 
tasks. However, they often struggle to achieve optimal accuracy when dealing with 
sparsely distributed datasets, owing to the constraints of their regular data structures. 
In contrast, graph-based models are well-suited for small-scale, high-precision 
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spatiotemporal predictions. However, their high complexity makes it challenging to 
meet real-time requirements in large-scale scenarios with numerous graph nodes.

To address these issues, we propose the LiEnPred model for efficient air quality pre
diction in large-scale scenarios. Specifically, we present a data structure transformation 
algorithm that converts sparse monitoring sensors from graph structures to compact 
grid structures, preserving the connections between graph nodes. Then, we present a 
parameter-sharing spatiotemporal dilated convolutional network to efficiently infer 
future spatiotemporal data using this compact grid representation.

3. Preliminaries

Before describing the LiEnPred model, Table 1 provides a brief overview of the naming 
conventions for mathematical notation used in this study.

Based on mathematical notation, we provide the relevant definition for LiEnPred 
model and the mathematical description of air quality prediction. Specifically, the sen
sors in the study area form a graph structure G ¼< vif g

N
i¼1, A > , where vi 2 V repre

sents the i-th sensor, A 2 RN�N denotes the connections or dependencies between 
sensors, and N is the total number of sensors. As illustrated in Figure 2, the LiEnPred 
model uses the graph structure of the sensors to generate a compact grid image M 2
RP�Q, where mpq > 0 indicates that the pixel at p-th row and q-th column corresponds 
to a sensor, mpq ¼ 0 denotes that the pixel at p-th row and q-th does not correspond 
to any sensor. In this representation, P denotes the height and Q denotes the width of 
the compact grid image.

In the compact grid image, air pollutants (e.g. PM2.5 concentration, NO2 concentra
tion, CO concentration) collected over T time windows form a three-dimensional ten
sor X 2 RP�Q�T , where Xt 2 RP�Q represents the air pollutants recorded by all sensors 
within the t-th time window and xpqt 2 R1�1 denotes the air pollutant levels recorded 
by sensor mpq within the t-th time window. For any t 2 ½1, T �, the LiEnPred model 
aims to efficiently infer future air quality X̂

tþF
tþ1 based on the compact grid image M 

and the historical three-dimensional tensor X t
t−Bþ1, as detailed in Equation (1).

M ¼ LiEnPred G
X̂

tþF
tþ1 ¼ LiEnPred < X t

t−Bþ1jM >

�

(1) 

where LiEnPred G denotes the generation of the compact grid image, < X t
t−Bþ1jM >

represents the construction of the three-dimensional tensor based on the compact grid 
image; X t

t−Bþ1 ¼ Xt−bþ1f g
B
b¼1 2 RP�Q�B indicates the historically collected air quality data 

with B being historical dependency step, X̂
tþF
tþ1 ¼ X̂tþf

� �F
f¼1 2 RP�Q�F refers to the pre

diction air quality with F being prediction step.

Table 1. Naming rules for mathematical symbols.
Symbol Symbol type Symbol meaning Shape

N, P, Q, T , B, F, E, L, D, and K italic capital letter constants with fixed values one-dimension
i, j, s, p, q, t, b, f , e, and l italic lowercase letter variables for iteration one-dimension
A, M, and X bold capital letter matrix for storing data two-dimension
X ,H, and W handwritten letter tensor for storing data three-dimension
x, h, m, and w lowercase letter elements in matrix/tensor one-dimension
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4. Methodology

In this section, we provide a detailed overview of the proposed LiEnPred model. 
As shown in Figure 3, the LiEnPred model consists of two main modules: the Data 
Structure Transformation (DST) module and the Parameter-Shared Spatio-Temporal 
Dilation Convolution Network (STP-DCN) module. Among them, the DST module is 
responsible for mapping the relationships between graph nodes and compact grid 
pixels, and the STP-DCN module is designed to mine the spatio-temporal dependen
cies between compact grid pixels. Specifically, the DST module first converts air quality 
data from graph structures into compact grid structures, serving as input for the STP- 
DCN module. Then, the STP-DCN module establishes the relationship between the 
input and output data within compact grid structure to complete the prediction. 
Finally, the DST module converts the grid structures back to graph structures for dis
playing the prediction results. Notably, in the STP-DCN module, L neurons share the 

Figure 2. Data structure transformation: the closer the distance between two pixels, the stronger 
the dependency between the graph nodes.

Figure 3. Workflow of the LiEnPred.
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same set of convolutional kernels and use dilation factors to reduce both computation 
time and parameter scale.

4.1. Construction of the LiEnPred

4.1.1. Data structure transformation
In large-scale scenarios, achieving both accuracy and speed in air quality predictions 
remains challenging. For instance, although grid structures can be used for efficient 
predictions in large-scale scenarios, the sparse distribution of sensors can significantly 
impact the prediction accuracy of grid-based models. On the other hand, graph struc
tures can accurately capture complex relationships between sensors, but the large 
number of graph nodes can significantly impact computational efficiency of graph- 
based models. To address these challenges, we propose the DST module, which cre
ates a compact grid structure incorporating graph node connections, facilitating air 
quality prediction in large-scale scenarios.

To streamline the DST module, we define the compact grid image as a square 
structure, specifying its length and width as outlined in Equation (2).

P ¼ minp p2 � N
� �

Q ¼ minq q2 � N
� �

(

(2) 

where P and Q represent the length and width of the compact grid image, respect
ively; N denotes the total number of graph nodes; min is the minimum function used 
to find the smallest values of p2 � N and q2 � N: Note: The compact grid image will 
be fully filled with graph nodes only when p2 ¼ P and q2 ¼ Q; otherwise, a few pixels 
will remain unfilled.

After defining the length and width of the compact grid image, we can establish a 
mapping between the graph nodes and the grid pixels based on the graph structure. 
In real-world scenarios, the graph structure can be represented either by an 
unweighted adjacency matrix, a weighted distance matrix, or even a hybrid matrix 

Figure 4. Generation of compact grid image: (a) neighbors of v4, (b) neighbors of v2, (c) neigh
bors of v6, and (d) neighbors of v8:
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combining both distance and adjacency. Each matrix is used to measure the correl
ation or similarity between graph nodes. Therefore, we established this mapping using 
the graph structure matrix, as shown in Algorithm 1. In line 2, we identify two 
unmapped graph nodes with the highest similarity and select one of them as vi: In 
line 6, we determine the graph node most similar to vi among the already mapped 
nodes and position vi within the neighborhood of this most similar graph node. In 
line 12, we determine the coordinates of vj’s neighbors in a clockwise manner, such as 
v4 and its neighbors v2, v5, v6, and v8 in Figure 4(a). If the first-order eight neighbor
ing pixels around vj cannot accommodate additional graph nodes, we will search a 
suitable position from the second-order sixteen neighboring pixels of vj, such as v6 

and its neighbors v11 and v12 in Figure 4(c).

Figure 5 presents three examples of small graphs to clearly illustrate the process of 
graph structure transformation. These examples emphasize the core concept of the 
DST module: clustering a graph node and its neighboring nodes as closely as possible 
within a grid structure. This arrangement enables convolutional kernels to detect all 
neighboring nodes of a target graph node within a limited receptive field, allowing 
them to effectively model the spatial relationships between the target graph node 
and its neighboring nodes. Even if neighboring pixels are not directly adjacent in the 
graph structure, the model can optimize the corresponding weights in the convolu
tional kernel to 0, thereby diminishing the contribution of those neighboring pixels to 
the target node. Furthermore, we observe that the process of the DST module closely 
resembles that of the breadth-first search (BFS) algorithm, as both methods involve 
‘first visiting all neighboring nodes of a specific node’. This principle serves as the 
foundation for ‘ensuring that a target graph node and its neighbors are as close as 
possible’.

After applying the DST module, we obtain a compact grid image M 2 RP�Q, where 
mpq > 0 indicates that the pixel at p-th row and q-th column contains a graph node, 
mpq ¼ 0 indicates that it does not. The compact grid image not only addresses the 
sparse issue of monitoring sensors in large-scale scenarios, but also preserves the 

Algorithm 1. Process of DST module

Input: Number of graph nodes: N   
Matrix for storing graph node relationships: A   
Length of the compact grid image: P   
Width of the compact grid image: Q 

Output: mapping relations: X 

1: while existence of unmapped graph nodes do 
2: obtain one unmapped graph nodes vi via highest similarity 
3: if all graph nodes are unmapped: 
4: obtain central position pi , qið Þ ¼ ðintðP=2Þ, intðQ=2ÞÞ of compact grid image 
5: else: 
6: obtain mapping position ðpi , qiÞ by similarity of mapped nodes to vi 
7: add vi into Seeds and add (i, pi , qi) into X 

8: while existence of graph nodes in Seeds do 
9: pop a graph node vj from the Seeds 
10: search unmapped neighbor nodes fvsg of vj from the matrix A 
11: get mapping position ðpj , qjÞ of vj from X 

12: get multiple mapping positions f ps , qsð Þg of fvsg with ðpj , qjÞ as the center 
13: add collection fvsg into Seeds and add collection fðs, ps , qsÞg into X 

14: output mapping relations X

8 P. WANG ET AL.



dependencies among graph nodes. Specifically, target graph nodes and their neigh
bors often display clustered distributions within the compact grid, making the model
ing of adjacent pixels analogous to modeling adjacent graph nodes.

4.1.2. Parameter-shared spatio-temporal dilation convolution network
After applying the DST module, air quality data over T time windows will be com
posed into a three-dimensional tensor X 2 RP�Q�T : In large-scale scenarios with high 
real-time requirements, it is crucial to quickly and accurately mine spatiotemporal 
dependencies from the tensor X : However, most existing prediction models struggle 
to balance prediction accuracy with computational efficiency. High-accuracy models 
often suffer from overly complex designs and inefficient computations, making them 
inadequate for real-time applications. To address these challenges, we propose a light
weight parameter-shared spatio-temporal dilation convolution network (STP-DCN).

As illustrated in Figure 6, the STP-DCN module extends the classic 3D convolutional 
network. Unlike traditional 3D convolutional networks, our approach enforces a tem
poral dependency constraint, ensuring that the convolutional kernel only processes 
time windows prior to the current moment. Additionally, we incorporate dilation fac
tors to significantly reduce the network depth while preserving prediction accuracy. 
Finally, by sharing convolutional kernels across different hidden layers, we ensure that 
the model’s parameter size remains constant despite an increase in network depth.

Compared to classic 3D convolutional networks, the lightweight STP-DCN module 
offers three main advantages. First, it adheres to the basic constraints of temporal 
order in the time dimension, making its convolution operations more reasonable than 
those in classic 3D convolutional networks. Second, by controlling the depth of the 
neural network through dilation factors, the STP-DCN module achieves higher compu
tational efficiency. Lastly, the STP-DCN module shares convolutional kernels 
between different layers, reducing the parameter size compared to classic 3D convolu
tional networks. Taking the three-dimensional tensor X t

t−Bþ1 2 RP�Q�B as an example, 

Figure 5. Example of graph structure transformation for a small graph: (a) five graph nodes, (b) 
eight graph nodes, and (c) nine graph nodes.
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Equations (3) and (4) illustrate the forward propagation process of the STP-DCN 
module.

STPDCN ¼

He:1f g
E
e¼1 ¼ STDCP Conv X t

t−Bþ1

� �
jD1

Q, D1
P, D1

T , Wef g
E
e¼1

� �

l ¼ 1

He:lf g
E
e¼1 ¼ STDCP He:l−1f g

E
e¼1jD

l
Q, Dl

P, Dl
T , Wef g

E
e¼1

� �

1 < l < L

X̂
tþF
tþ1 ¼ Conv STDCP He:L−1f g

E
e¼1jD

L
Q, DL

P, DL
T , Wef g

E
e¼1

� �� �

l ¼ L

8
>>>><

>>>>:

(3) 

STDCP He:l−1f g
E
e¼1jD

l
Q, Dl

P, Dl
T , Wef g

E
e¼1

� �

¼

he:l
pqt 2 H

e:l

he:l
pqt ¼

XKP

i¼1

XKQ

j¼1

XKT

s¼1

he:l
p0q0t0 �w

e
ijs

p
0

¼ pþ
2i − KP − 1ð ÞDl

P

2

q
0

¼ qþ
2j − KQ − 1ð ÞDl

Q

2
t
0

¼ t − KT − sð ÞDl
T

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(4) 

where X t
t−Bþ1 2 RP�Q�B represents the historical air quality data; X̂

tþF
tþ1 2 RP�Q�F repre

sents the predicted air quality data; Dl
Q, Dl

P, and Dl
T denote the dilation factors in the 

Q-dimension, P-dimension, and T-dimension, respectively, at the l-th hidden layer; 
We 2 RkP�kQ�kT represents the shared convolutional kernels in the hidden layer, with 
KQ, KP and KT indicating the kernel sizes in the Q-dimension, P-dimension, and 
T-dimension, respectively; He:lf g

E
e¼1 2 RP�Q�T�E represents the hidden states at the l-th 

hidden layer, with E indicating the dimension of the hidden layer and the number of 
convolutional kernels; He:l 2 RP�Q�F denotes the computed three-dimensional tensor 
using the e-th convolutional kernel; he:l

pqt 2 R1�1 represents an element in the three- 
dimensional tensor He

l , with p, q, and t representing coordinates in the Q-dimension, 

Figure 6. Forward propagation of parameter-shared spatio-temporal dilation convolution: (a) tem
poral dimension, (b) spatial dimension, and (c) spatio-temporal dimension.
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P-dimension, and T-dimension, respectively; we
ijs 2 R1�1 is an element in the three- 

dimensional tensor, with i, j, and s as coordinates in the Q-dimension, P-dimension, 
and T-dimension, respectively; and Conv denotes a standard convolution operation 
used for dimensional alignment.

4.2. Optimization of the LiEnPred

During the forward propagation process, the LiEnPred model predicts future air quality 
data X̂

tþf
� �F

f¼1 using historical air quality data Xt−bþ1f g
B
b¼1: Typically, a trained predic

tion model is achieved by minimizing the squared loss between the ground truth 
Xtþff g

F
f¼1 and prediction values X̂

tþf
� �F

f¼1: However, as the compact grid matrix M 
may not be fully populated by graph nodes, we only incorporate the loss from specific 
positions into the loss function, as outlined in Equation (5).

L Wð Þ ¼ min
W

XB

b¼1

XP

p¼1

XQ

q¼1

xpqðt−bÞ − x̂pqðt−bÞjmpq > 0
� �2 (5) 

where xpqðt−bÞ 2 R
1�1 represents the ground truth from sensor mpq within (t − b)-th 

time window; x̂pqðt−bÞ 2 R
1�1 represents the prediction value from sensor mpq within 

(t − b)-th time window; B is historical dependency step; xpqðt−bÞ − x̂pqðt−bÞjmpq > 0
� �

indicates that the loss xpqðt−bÞ − x̂pqðt−bÞ is computed only if mpq > 0; W denotes the 
learnable parameters in the LiEnPred model.

5. Experiments

5.1. Air quality datasets

5.1.1. Data sources
In this study, we evaluate the prediction performance of the LiEnPred model using 
real large-scale air quality data. As illustrated in Figure 7, the data is sourced from 
2014 monitoring sensors across China, covering seven indicators: PM2.5, CO, NO2, 
PM10, SO2, O3, and AQI. All indicators are sampled at 60-minute intervals, with the 
data covering the period from January 1, 2021, to December 31, 2023.

5.1.2. Data characteristics and preprocessing
As shown in Figure 8, images generated with traditional grid partitioning methods are 
extremely sparse, with sparsity increasing as the spatial resolution becomes finer. For 
instance, when Q ¼ P ¼ 50, approximately 85.16% of the grid pixels lack monitoring 
sensors, whereas at Q ¼ P ¼ 200, 97.96% of the grid pixels are without sensors. In 
contrast, the compact grid image has a sparsity rate of just 0.54% (11/2025), signifi
cantly enhancing pixel utilization and improving the efficiency of subsequent model
ing. Note: The generation of compact grid images leverages the underlying graph 
structure among monitoring sensors. In practical applications, users can define more 
complex graph structures as needed. For the purposes of this study, we simplify the 
graph by connecting each node to four adjacent nodes, representing the four sensors 
most similar to the target sensor.
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Table 2 displays the distribution characteristics of the air quality data. The results 
reveal that the data includes not only outliers (such as extreme values) but also vary
ing degrees of missing data. To support this study, we treat data between the 1st and 
99th percentiles as valid and use the HA and IDW algorithms to re-estimate missing 
and outlier values in the original dataset. In addition, although we open-sourced seven 
types of air quality data, we verified the performance of the LiEnPred model exclu
sively using PM2.5 and NO2 concentrations, given its general applicability for air quality 
prediction.

Figure 7. Spatial distribution of air quality monitoring sensors: It is IJGIS policy to remain strictly 
neutral with respect to jurisdictional claims on disputed territories in published maps, and the 
naming conventions used in maps are left to the discretion of authors.

Figure 8. Proportion of grids without monitoring sensors: (a) 85.16% at Q ¼ P ¼ 50, (b) 94.27% 
at Q ¼ P ¼ 100, and (c) 97.96% at Q ¼ P ¼ 200:
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P1, P5, P50, P95, and P99 represent the 1st, 5th, 50th, 95th, and 99th percentiles of 
the data, respectively.

5.2. Evaluation metrics

For large-scale air quality prediction models, accuracy, computational efficiency, and 
parameter scale are crucial performance metrics. In this study, we use Root Mean 
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) to assess the pre
diction accuracy of the proposed model. The runtime of forward and backward propa
gation evaluates computational efficiency, while the number of learnable parameters 
measures parameter scale. As the calculations for runtime and parameter number are 
relatively straightforward, we provide detailed calculation methods only for the accur
acy metrics, as outlined in Equations (6) and (7).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
F � P � Q

XF

f¼1

XP

p¼1

XQ

q¼1

xpqðtþfÞ − x̂pqðtþfÞjmpq > 0
� �2

v
u
u
t (6) 

MAPE ¼
100%

F � P � Q

XF

f¼1

XP

p¼1

XQ

q¼1

xpqðtþfÞ − x̂pqðtþfÞ

x̂pqðtþfÞ
mpq > 0
�
�

�
�

�
�
�
� (7) 

where xpqðtþfÞ represents the ground truth from sensor mpq in (t þ f )-th time window; 
x̂pqðtþfÞ represents the prediction value from sensor mpq in (t þ f )-th time window; F is 
prediction step; P denotes the height of the compact grid image; Q denotes the width 
of the compact grid image. Similar to Equation (5), evaluation metrics for the predic
tion model are calculated only when mpq > 0:

5.3. Settings

In this subsection, we describe the experimental environment (hardware and software 
environment) and hyperparameter setting information.

5.3.1. Environment settings
In this study, the spatiotemporal data is processed on a PC (Intel(R) Core(TM) i7-11700 
CPU @ 2.50 GHz, memory: 48.0GB). Moreover, we built our model based on PyTorch 
and Python3.7 on a Graphics Processing Unit (GPU) platform with 24GB of GPU 
memory.

Table 2. Spatial distribution of air quality monitoring sensors.
Data type Min P1 P5 P50 P95 P99 Max Missing rate

PM2.5 1 2 5 23 91 158 200000 17.96%
O3 1 2 6 59 145 190 1200 17.68%
CO 0.1 0.1 0.3 0.6 1.3 2.1 90 17.54%
NO2 1 2 5 18 63 89 1028 17.31%
PM10 1 5 11 44 156 284 100000 17.82%
SO2 1 1 2 7 20 40 1284 17.15%
AQI 1 12 18 48 132 234 500 19.78%
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5.3.2. Hyper-parameter setting
In this subsection, we present the calibration process of the LiEnPred model using 
PM2.5 concentration data. The hyperparameters of the LiEnPred model include the his
torical dependency step B, the number of neurons L, the number of convolution ker
nels E, and the kernel sizes (KP, KQ, KT ) in the P-dimension, Q-dimension, and 
T-dimension, respectively, as well as the dilation factors (DP, DQ, DT ) for these 
dimensions.

In the time dimension, we apply the concept of hyper-parameter dependency from 
Wang et al. (2024b) to determine the optimal combination of hyper-parameters. First, 
we set the historical dependency step B¼8 and the kernel size KT ¼ 2 in T-dimension. 
Then, we determined the number of neurons L ¼ 3 via the formula L ¼
minl Kl−1

T � B
� �

− 1: Finally, the dilation factors for the three neurons were set to 
D1

T ¼ 1, D2
T ¼ 2, and D3

T ¼ 4:
In the spatial dimension, we determine the kernel size and dilation factor based on 

the coordinates (positions in the compact grid image) of the target graph nodes and 
their graph neighbors. As shown in Figure 9(a), most target graph nodes differ from 
their graph neighbors by 1–4 index in the grid structure. Therefore, we only need to 
set KP and KQ to 3 to simulate the process of graph convolution for most graph nodes 
in the grid structure, and the corresponding dilation factors for the three neurons are 
D1

P ¼ D1
Q ¼ 1, D2

P ¼ D2
Q ¼ 3, and D3

P ¼ D3
Q ¼ 9:

For the number of convolution kernels E, we used the control variable method to 
determine the optimal value. As shown in Figure 9(b), the model’s prediction accuracy 
initially increases with the number of convolution kernels and then stabilizes. 
Considering that computational efficiency also improves with more kernels, we ultim
ately set E to 64.

5.4. Comparison with baselines

In this study, we compare the proposed LiEnPred model with two categories of base
lines. The first category is grid-based spatiotemporal prediction models, including the 

Figure 9. Determination of hyper-parameters on PM2.5 concentration data: (a) index difference 
between target graph node and its adjacent graph nodes under grid structure, and (b) prediction 
accuracy varies with the number of convolution kernels.
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ConvLSTM model (Shi et al. 2017), the ST-3DNet model (Guo et al. 2019b), and the ST- 
3DMDDN model (He et al. 2024). The second category is graph-based spatiotemporal 
prediction models, including the ST-GCN model (Yu et al. 2018), the ASTGCN model 
(Guo et al. 2019a), the DSTAGNN model (Lan et al. 2022), the GDGCN model (Xu et al. 
2023), and the STGDN model (Wang et al. 2024a).

5.4.1. Comparison of prediction precision
To fairly compare the prediction accuracy of grid-based and graph-based models, we 
address the correspondence between pixels and sensors in a sparse image. 
Specifically, we divided the study area into a 200� 200 grid, ensuring that each pixel 
corresponded to a single sensor (If multiple sensors corresponded to the same pixel, 
we reassigned them to neighboring pixels). Table 3 shows the prediction accuracies of 
the LiEnPred model and baselines on the PM2.5 dataset and NO2 dataset. The results 
demonstrate that graph-based models outperform grid-based models in prediction 
accuracy. The reason is that graph-based models explicitly define the spatial depend
encies between sensors, enhancing their predictive capabilities. In contrast, grid-based 
models struggle to capture these dependencies in a sparse grid, resulting in reduced 
prediction accuracy. Moreover, the prediction accuracy of the LiEnPred model not only 
surpasses that of the first category of models but also matches or exceeds the per
formance of the second category in multi-step predictions. The reason is that although 
the LiEnPred model is a grid-based model, it embeds graph structure within its grid 
structure, enabling it to approximate the prediction accuracy of graph-based models. 
The results also indicate that the prediction accuracy of the LiEnPred model is slightly 
lower than that of the STGDN model in single-step predictions. This is because the 
LiEnPred model struggles to capture dynamic spatiotemporal correlations within its 
static grid structure, an area that requires further improvement in the future. Overall, 
the prediction accuracy of the LiEnPred model is superior to or comparable with the 
baselines, excluding considerations of operational efficiency and parameter scale. 
Additionally, Figure 10 illustrates the stability of the LiEnPred model, showing that it 
maintains relatively consistent prediction accuracy across different random seeds, fur
ther validating its ability to match the accuracy of current state-of-the-art models.

5.4.2. Comparison of computational efficiency
In this subsection, we further analyze the computational efficiency of the LiEnPred 
model. As there is no significant difference in its efficiency between the PM2.5 and 

Table 3. Evaluation metrics (RMSE/MAPE) of LiEnPred and baselines.

Models

PM2.5 concentration data NO2 concentration data

1-step 7-steps 1-step 7-steps

ConvLSTM 6.75/24.17% 12.68/54.37% 6.61/26.59% 11.65/56.52%
ST-3DNet 6.63/21.30% 12.28/49.29% 6.49/24.34% 11.31/55.40%
ST-3DMDDN 6.64/21.54% 12.14/48.84% 6.53/24.76% 11.34/55.78%
ST-GCN 6.65/23.17% 12.67/52.39% 6.41/23.42% 11.57/57.64%
ASTGCN 6.51/22.68% 12.14/49.31% 6.28/23.19% 10.94/53.34%
DSTAGNN 6.48/22.04% 12.08/48.38% 6.24/22.94% 10.45/49.87%
GDGCN 6.50/21.17% 11.84/48.14% 6.18/21.79% 10.34/48.91%
STGDN 6.44/21.12% 11.80/47.97% 6.15/20.87% 10.27/46.74%
LiEnPred 6.48/20.84% 11.79/47.88% 6.18/20.62% 10.23/46.21%
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NO2 datasets, we present only the results for the PM2.5 dataset, as shown in Table 4. 
Among them, the time for one inference reflects the online prediction speed of the 
LiEnPred model, while the time for one optimization indicates the offline training 
speed. The results indicate that with 2,014 graph nodes, the LiEnPred model achieves 
a 2 to 4 times faster computation time compared to graph-based models. The reason 
is that the LiEnPred model is essentially grid-based model, resulting in significantly 
lower computational complexity compared to the graph-based models. Figure 11
presents a scatter plot of computational efficiency versus prediction accuracy. In this 
plot, points closer to the center indicate superior balance between computational effi
ciency and prediction accuracy. The results demonstrate that the LiEnPred model 
effectively balances prediction accuracy and computational efficiency. Additionally, we 
assessed the difference in computational efficiency between the LiEnPred model and 
the lightweight STGDN using simulated datasets, with the results illustrated in 
Figure 12. The findings indicate that the computational efficiency of the LiEnPred 
model is comparable to that of the lightweight STGDN model for small graph struc
tures (fewer than 512 nodes). However, significant differences in their computational 
efficiencies emerge for larger graph structures, particularly when the number of nodes 
exceeds 1,024. This result demonstrates that LiEnPred is well-suited for prediction tasks 
in large-scale scenarios.

Figure 10. Stability of the LiEnPred model and baselines using different random seeds: (a) one- 
step prediction on PM2.5 concentration data, and (b) one-step prediction on NO2 concentration 
data.

Table 4. Running time (milliseconds) of LiEnPred and baselines with 
batch size being 8.
Models Time for one inference Time for one optimization

ConvLSTM 8.79 ± 1.24 37.91 ± 2.18
ST-3DNet 68.56 ± 7.13 99.64 ± 9.12
ST-3DMDDN 69.13 ± 8.42 108.24 ± 11.38
ST-GCN 150.86 ± 14.04 357.63 ± 41.16
ASTGCN 285.54 ± 28.34 303.43 ± 31.16
DSTAGNN 310.24 ± 32.16 340.15 ± 33.18
GDGCN 261.15 ± 27.34 618.35 ± 54.72
STGDN 183.30 ± 16.35 459.59 ± 38.29
LiEnPred 70.98 ± 8.43 102.19 ± 6.71
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5.4.3. Comparison of parameter scale
Following the analysis of computational efficiency, we assessed the parameter scales 
of the learnable weights in the LiEnPred model for the PM2.5 dataset, as shown in 
Table 5. The results indicate that LiEnPred significantly outperforms the ConvLSTM, ST- 
3DNet, ST-3DMDDN, ASTGCN, DSTAGNN and GDGCN models in terms of parameter 
scales. Specifically, the parameter scale of the LiEnPred model is only one-seventh to 
one-half that of existing grid-based models and one-fifteenth to one-fifth that of exist
ing graph-based models. Moreover, compared to the lightweight STGDN model, 
LiEnPred does not introduce a significant number of additional learnable parameters. 
The LiEnPred model’s advantage in parameter size stems from its use of parameter 
sharing, which effectively reduces the overall number of model parameters. 
Additionally, Figure 13 displays a scatter plot of parameter size versus prediction 
accuracy. In this plot, points closer to the center represent better prediction accuracy 

Figure 11. Prediction accuracy vs. computational efficiency on PM2.5 concentration data: (a) time 
for one inference, and (b) time for one optimization.

Figure 12. Computational efficiency comparison between STGDN and LiEnPred on simulated data
sets: (a) when the number of graph nodes is fewer than 2048, and (b) when the number of graph 
nodes exceeds 2048.
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and lower parameter scales. The results show that LiEnPred model achieves acceptable 
prediction accuracy while maintaining a relatively low parameter scale.

5.4.4. Summary of comparative results
First, the LiEnPred model is fundamentally a grid-based prediction model that 
improves upon the prediction accuracy of existing grid-based models, achieving pre
diction accuracy that can be superior to or comparable with that of graph-based mod
els. Second, the LiEnPred model demonstrates remarkable computational efficiency, 
operating 2 to 4 times faster than graph-based models in a scenario with 2014 graph 
nodes, with this efficiency advantage becoming even more pronounced when the 
number of graph nodes exceeds 2000. Finally, the LiEnPred model have fewer learn
able parameters compared to baselines, possessing only one-seventh to one-half of 
the parameters found in existing grid-based models and one-fifteenth to one-fifth of 
those in current graph-based models. Overall, experimental results demonstrate that 
the proposed LiEnPred model matches or exceeds the predictive accuracy of eight 
baselines while offering faster computational efficiency and requiring fewer 

Table 5. Parameter scale (kilobyte) of learnable weights for 
LiEnPred and baselines.
Models Parameter scale

ConvLSTM 216.56
ST-3DNet 680.63
ST-3DMDDN 718.92
ST-GCN 620.00
ASTGCN 15849.42
DSTAGNN 15854.54
GDGCN 576.23
STGDN 37.89
LiEnPred 104.25

Figure 13. Prediction accuracy vs. parameter scale of learnable weights on PM2.5 concentration 
data.
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parameters. Additionally, the findings indicate that the LiEnPred model is highly suit
able for air quality prediction tasks in large-scale sparse environments.

5.5. Spatio-temporal visualization of prediction results

In this subsection, lines and maps are used to qualitatively assess the prediction per
formance of the LiEnPred model. Figure 14(a,c) illustrates the temporal differences 
between prediction values and ground truth, while Figure 14(b,d) shows the spatial 
differences. The results demonstrate that the LiEnPred model generally predicts the 
trend of air quality data accurately over time and the spatial distribution effectively. 
Additionally, we identified two scenarios where the model’s prediction accuracy 
decreases. The first occurs when the trend of air quality data changes abruptly within 
a short period, as indicated by the blue areas in Figure 14(a,c). The second 
situation involves regions with severe air pollution, highlighted by the blue areas 

Figure 14. Prediction results of the LiEnPred model: (a) temporal dimension of the PM2.5 dataset, 
(b) spatial dimension of the PM2.5 dataset, (c) temporal dimension of the NO2.5 dataset, and (d) 
spatial dimension of the NO2.5 dataset. It is IJGIS policy to remain strictly neutral with respect to 
jurisdictional claims on disputed territories in published maps, and the naming conventions used in 
maps are left to the discretion of authors.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 19



in Figure 14(b,d). Severely polluted areas are primarily concentrated in North China, 
closely tied to the region’s advanced industry, dry climate, and extensive transporta
tion infrastructure. Energy-intensive sectors like steel and coal emit large quantities of 
pollutants. The dry climate and low wind speeds trap these emissions, limiting their 
dispersion. Furthermore, heavy vehicle traffic adds to the concentration of pollutants, 
exacerbating the issue. To predict air quality accurately in these contexts, it is essential 
to incorporate external variables that influence air quality changes, such as meteoro
logical factors, seasonal variations, and industrial activities.

5.6. Ablation study

In this section, we analyze the effects of various design choices in the LiEnPred model 
on prediction performance, with results shown in Table 6. In the DST module, the 
compact grid image enhances prediction accuracy by leveraging implicit graph infor
mation, and improves computational efficiency by reducing the number of pixels. In 
the STP-DCN module, the dilatated factor enhances computational efficiency, while 
parameter sharing decreases the model’s parameter scale. Although parameter sharing 
may slightly reduce prediction accuracy, the significant reduction in parameter size 
justifies this trade-off. Additionally, users can decide whether to implement parameter 
sharing depending on the scenario. Overall, Table 6 confirms the effectiveness of these 
design choices.

6. Conclusions

Accurate and efficient air quality prediction is crucial for public health protection and 
environmental sustainability. While numerous grid-based and graph-based prediction 
models have been developed, they encounter challenges in large-scale scenarios: (1) 
Grid-based models, though computationally efficient, have limited prediction accuracy 
under large-scale sparse distributions; (2) Graph-based models, despite higher predic
tion accuracy, suffer from significant computational inefficiencies when dealing with a 
large number of sensors, i.e. graph nodes

To address the above issues, we proposed a novel LiEnPred model for efficient air 
quality prediction in large-scale scenarios. More specifically, we presented a data struc
ture transformation algorithm and generated a compact grid structure with an 
embedded graph structure, combining the high prediction accuracy of graph-based 
models with the high computational efficiency of grid-based models. In addition, we 
presented a lightweight parameter-shared spatio-temporal dilation convolution 

Table 6. Impact of design on prediction performance in LiEnPred model.

Designs Accuracy (PM2.5jNO2: RMSE/MAPE)
Efficiency 

(inference/optimization) Scale (kilobyte)

Compact Grid Image Y 6.48/20.84%j6.18/20.62% 171.1/572.6 –
N 6.64/21.61%j6.32/22.18% 1124.11/3124.92 –

Dilatated Factor Y – 171.1/572.6 –
N – 508.2/1328.8 –

Parameter Sharing Y 6.48/20.84%j6.18/20.62% – 104.25
N 6.41/20.47%j6.12/20.13% – 356.44

Y represents ‘Yes’ and N represents ‘No’.
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network that efficiently captures spatio-temporal dependencies in air quality data 
without significantly increasing computation time or the parameter scale. In our 
experiments, we collected air quality data from over 2000 sensors across China over 
the past three years and evaluated LiEnPred’s prediction performance in large-scale 
scenarios using PM2.5 and NO2 concentration data. The experimental results demon
strated that LiEnPred offered several distinct advantages. First, the proposed LiEnPred 
model significantly enhanced prediction accuracy in large-scale sparse scenarios com
pared to classical grid-based models. Moreover, the proposed LiEnPred model 
achieved comparable accuracy to graph-based models while reducing parameter 
scales and increasing computational efficiency. Overall, we introduced new methods 
for spatio-temporal prediction in large-scale sparse scenarios. More specifically, the 
proposed LiEnPred model excels as a versatile spatio-temporal prediction model for 
large-scale sparse scenarios, particularly in applications that demand high training and 
inference speeds.

This study has limitations: First, the proposed LiEnPred model completes the predic
tion task using a static grid structure, limiting its ability to capture dynamic spatio-tem
poral relationships. In future work, we aim to integrate a lightweight attention 
mechanism to enhance the prediction accuracy of the LiEnPred model while maintain
ing its high computational efficiency. Second, the LiEnPred model was primarily vali
dated on the PM2.5 dataset, not other datasets. Future works will aim to evaluate the 
model’s performance on a broader range of datasets and assess its applicability to vari
ous applications.
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