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ABSTRACT 
Modeling population-level human mobility has been attracting 
multidisciplinary research attention due to its profound implica-
tions for sustainable urban development. However, previous studies 
have often neglected the explicit consideration of spatial hetero-
geneity of travel demand, which limits their abilities to accurately 
estimate mobility flows. In this study, we introduce a prior-guided, 
data-driven human mobility model that integrates the position of 
origins and destinations, spatial travel patterns, and physical mod-
els as priors to capture spatial heterogeneity of human mobility. 
Specifically, we introduce the concept of ‘relative attractiveness’ to 
emulate the underlying driving force for the formation of spatial 
heterogeneity in human mobility. To learn the embeddings of 
‘relative attractiveness’, we propose a suite of methods that inte-
grate prior knowledge and graph neural networks, mainly including 
a relative position encoding module to encode the position of dif-
ferent origin-destination (OD) pairs relative to the entire geograph-
ical space and a message-passing method inspired by the classical 
physical models to simulate the mechanisms of mobility flow gen-
eration. Finally, a gradient boosting regression tree is trained to 
generate the mobility flow based on the learned embeddings. 
Extensive experiments on two real-world datasets have showed our 
model outperforms state-of-the-art data-driven mobility models in 
terms of accuracy and generalization.
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1. Introduction

For more than a century, population-level human mobility modeling has long been 
attracting multi-disciplinary efforts in physics, geography, transportation, and com-
puter science, aiming at building universal models for travel flow generation and pre-
diction (Barbosa et al. 2018). The travel flow generation problem focuses on 
generating the mobility flows using only the information of node attributes, such as 
population and land use information, as illustrated in Figure 1.
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In order to describe human mobility dynamics, several well-known physical mobility 
models have been developed, including the traditional gravity model (Zipf 1946, 
Wilson 1969), the intervening opportunities model (Stouffer 1940), and the radiation 
model (Simini et al. 2012). With parsimonious and intuitive forms, physical mobility 
models have been widely used to underpin many real-world applications, such as 
transportation planning (de Dios Ort�uzar 2011), economic geography (Duenas et al. 
2013), business geography (Reilly 1931). However, these physical models oversimplify 
the real mechanisms of how travel flows are generated, and therefore often fail to 
recover empirically observed travel demand patterns (Masucci et al. 2013, Barbosa 
et al. 2018).

Recently, deep learning-driven human mobility models have gained momentum 
due to their ability to generalize collective spatio-temporal movement patterns, such 
as population migration characteristics and traffic flow patterns, from massive observa-
tional mobility data (Luca et al. 2021, Gu et al. 2024). Since deep learning-driven mod-
els are typically trained on sufficient data samples collected from a specific city, they 
often perform better than traditional physical models in flow generation and predic-
tion for that city (Yin et al. 2023, Shi et al. 2024). However, when trained deep learning 
models are applied to other cities, significant performance degradation would be 
observed. Transfer learning can help improve generalization by extracting abstract 
mobility knowledge from a source city and transferring it to target cities (Wang et al. 
2019). Transfer learning methods rely heavily on the data from the source cities, and 
the transferred knowledge is typically represented as neural embeddings, which are 
difficult to understand, validate, and reuse. Given that traditional physical models and 
deep learning-driven methods have their own strengths and weaknesses, the integration 
of them may complement each other and become a possible solution towards a univer-
sal and rigorous mobility model. This idea has been explored by integrating traditional 
physical models with nonlinear neural networks to better describe the nonlinear relation-
ship between mobility flows and different geographic features (Simini et al. 2021). 

Figure 1. Using the Western Region of New York State as a geographic background to explain the 
travel flow generation problem.
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This idea coincides with the recently emerging research paradigm of ‘physics-informed 
machine learning (PIML)’, which encourages the learned model to produce more physic-
ally consistent results, with higher training efficiency and better generalizability than 
regular machine learning models (Karniadakis et al. 2021). However, the existing relevant 
studies often build their models based on off-the-shelf deep neural networks and have 
not devoted much effort to developing generalizable network architectures to embed 
necessary and comprehensive prior knowledge. Therefore, there is still much room for 
improvement in terms of accuracy and generalizability in developing physics-informed 
data-driven human mobility models.

Despite considerable efforts in developing physical and data-driven models, the 
goal of building a universal population-level mobility model remains elusive. The chal-
lenge in building such an accurate, universal, and robust mobility model lies in the 
complexity of human travel behavior, which is influenced by many geographic, demo-
graphic, social and economic factors as well as individual preferences (Mwale et al. 
2022). This complexity results in heterogeneous spatial patterns of aggregated travel 
demand. For instance, With the roughly the same population distribution and travel 
distance, two origin-destination pairs usually have different travel flows because they 
are located in different geographic areas of the city. Intuitively, flow generation 
between origins and destinations is driven by the features of origins and destinations, 
their geographical locations, external factors (e.g., weather) as well as the complex 
interactions between these factors. As these factors and interactions are location 
dependent, spatial heterogeneity of human mobility is inevitable. This hard-to-quantify 
spatial heterogeneity may explain the poor performance of traditional physical models 
(Masucci et al. 2013) and the poor generalization performance of deep learning-driven 
models. We argue that in order to build a universal mobility model that yields satisfac-
tory performance at different spatial scales, across different cities and zoning schemes, 
the spatial heterogeneity of travel demand should be well accounted for.

Although a few studies have attempted to address the heterogeneity issue in 
human mobility (Zhou et al. 2023, Tang et al. 2024), most of them still fall short in 
modeling the spatial heterogeneity of human mobility from two perspectives: 1) They 
are still not spatially explicit models. The spatial heterogeneity of travel demand is 
essentially related to geographic positions of origins and destinations (Fotheringham 
et al. 1996). Nevertheless, there are almost no studies that have explicitly modeled the 
effects of positions on the performance of human flow generation. 2) prior knowledge, 
such as classical physical models, geographic positions and travel expenses, is not suf-
ficiently leveraged and incorporated into the current data-driven human mobility mod-
els. Therefore, the optimization of these model cannot be correctly constrained by 
prior knowledge. Trained models usually fail to generalize the spatial heterogeneity of 
travel demand in space, thereby leading to poor performance when being used for 
flow generation.

Aiming to address the above two research gaps and better capture the spatial het-
erogeneity in human mobility, this study introduces a prior-guided data-driven human 
mobility model based on the popular graph neural network (GNN) architecture 
(Battaglia et al. 2018, Wu et al. 2021), which is named Prior-Guided Mobility Flow 
Generation Network (PG-MFG). Three types of priors are incorporated into the model: 
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the positions of origins and destinations, average travel expenses, and physical models 
(the gravity model and radiation model) (Zipf 1946, Simini et al. 2012). The main con-
tributions of this study can be summarized as follows:

� We propose a prior-guided, data-driven human mobility model, PG-MFG, designed 
to capture the spatial heterogeneity of human mobility. To the best of our know-
ledge, we are the first to explicitly account for spatial heterogeneity in human 
mobility modeling by combining comprehensive prior knowledge with data-driven 
GNNs;

� We develop a suite of deep learning methods that effectively integrate comprehen-
sive prior knowledge to correctly constrain the optimization of the proposed 
models;

� Within the framework of PG-MFG, based on the concept of ‘relative attractiveness’, 
we extend the vanilla GNN with a message-passing method to learn the embed-
dings of ‘relative attractiveness’, simulating the mechanisms underlying mobility 
flow generation as reflected in physical models;

� Extensive experiments show that, compared to state-of-the-art baselines, the pro-
posed models require far fewer training samples to achieve state-of-the-art per-
formance. It also excels in performing well when tested on datasets with different 
mobility patterns and geographical contexts from the datasets they are trained on.

2. Motivation and problem formulation

2.1. Spatial heterogeneity of human mobility

We illustrate spatial heterogeneity of human mobility through an example. As 
depicted in Figure 2, a city exhibits a relatively severe segregation between employ-
ment and housing, with work and entertainment opportunities predominantly clus-
tered in the central business district. As shown in Figure 2(a), three OD pairs, which 
have similar populations and travel distances, exhibit different travel flows due to their 
distinct geographical locations within the city. Figure 2(b) illustrates that the average 
travel expenses for each origin are often heterogeneous as the distributions of travel 
distances and locations of destinations are considerably diverse. As shown in Figure 
2(c), O1!D1 and O2!D2 are two overlapping OD pairs with reverse directions. Since 
D1 is located in the most objectively attractive location in the city, the attractiveness 
of D1 to O1 is greater than that of D2 to O2, resulting in a significant disparity in the 
flow of the two OD pairs.

Based on the above analysis, we argue that the key to capture the spatial hetero-
geneity of human mobility lies in the accurate measurement of the attractiveness of 
destinations for the origins, which is a comprehensive assessment of the factors influ-
encing human travel demand. Unlike objective attractiveness, which can be expressed 
in terms of the number of opportunities (e.g., job opportunities) available in a location 
to satisfy an individual’s travel purposes (Simini et al. 2012), the attractiveness we refer 
to describes the relative relationship between origins and destinations. Thus, we 
define it as ‘relative attractiveness’. Drawing from a review of existing research on the 
factors influencing travel demand (Boyce and Williams 2015, Sharma 2019, Schl€apfer 
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et al. 2021, Mwale et al. 2022), and focusing solely on demographic and positional 
attributes, we identify four types of key factors that influence travel demand and are 
essential for a comprehensive measurement of ‘relative attractiveness’: position, aver-
age travel expense, opportunities and distance. To reflect these factors, we select four 
types of prior knowledge and integrate them into a GNN architecture to learn the 
embeddings of ‘relative attractiveness’, as illustrated in Figure 3. The specific integra-
tion method is detailed in the Methodology Section. Ultimately, the integrated prior 
GNN model generates embeddings that represent ‘relative attractiveness’, which are 
used to generate mobility flows.

2.2. Definitions and problem formulation

Definition 1. Geographical region. A large geographical space is partitioned into 
non-overlapping geographical regions denote as R ¼ fr1, r2, :::, rng: In this study, we 
use census tracts as geographic regions, and consider them to be the basic geo-
graphic units of generating human mobility.

Figure 2. Examples highlighting the spatial heterogeneity of human mobility. (a) The impact of 
location on spatial heterogeneity of human mobility. (b) Heterogeneous travel expenses due to the 
travel distance from origins. (c) The impact of attractiveness on spatial heterogeneity of human 
mobility.
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Definition 2. Mobility flow. The mobility flow Fij is the total number of population 
movements between origin region ri and destination region rj: In addition, the out- 
flow from an origin, denote as Oi; represents the total number of population move-
ments originating from region ri:

Definition 3. Mobility flow network. The mobility flow network is a weighted 
directed graph G ¼ ðV , E, AÞ where nodes V of the graph represent regions R; The 
directed links E ¼ feijj1 � i, j � ng describe potential travel demand from origin nodes 
to destination nodes, A ¼ fa1, a2, :::, ang is the set of geographical features (e.g. socio- 
economic, demographic, point of interest) of geographical regions that serve as the 
node attributes. In this study, we only use demographic data as the node attributes, 
posing minimum data requirement of mobility modeling.

Problem
Given G ¼ ðV , E, AÞ of a specific geographical space R1;our goal is to develop a data- 
driven model to generate mobility flow Fij between all origin nodes and all destination 
nodes in R1: The trained model developed in R1 can be applied to generate mobility 
flow in another geographical space R2:

3. Methodology

3.1. A Prior-guided population-level flow generation framework

Figure 4 illustrates the proposed model framework named PG-MFG, which is com-
posed of six main components and converts the task of mobility flow generation 
between origins and destinations into two sub-tasks: one is to generate the total out- 
flow from origins, and the other is to allocate the total out-flow of the origin to each 
of its destinations.

� Initially, in component 1, a weighted directed mobility flow network graph is con-
structed, with each geographic region as a node, the population of the region as 
node attribute, and the potential travel demand between two regions as edge.

� For the former sub-task: a multilayer perceptron uses population and distance data 
to generate the total out-flow of all origins in component 2 (Section 3.3).

Figure 3. An overall process that describes the spatial heterogeneity of human mobility.
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� For the latter sub-task: a prior-guided graph encoder is designed to integrate the 
physical model priors with a GNN, as well as fuse the encoded priors to learn the 
embedding of ‘relative attractiveness’ in component 3 (Section 3.4). The results 
obtained in component 2 provide an initialization embedding of the origin for the 
message-passing process in component 3.

� In component 4, in order to encode positional priors, multiple sets of anchors S ¼
fS1, S2, . . . , Skg are selected among the most objectively attractive locations in the 
study region.

� In component 5, preferential random walks are performed on the mobility flow net-
work to measure the reachability between nodes and anchor sets, thereby encod-
ing the relative positions of origin-destination pairs to the anchor sets (Section 
3.2.2). Moreover, node attribute augmentation is used to encode average travel 
expense priors (Section 3.2.3). To encode physical model priors, a message-passing 
method that simulates the generation mechanism of flow allocation is designed 
(Section 3.4).

� Finally, in component 6, a gradient boosting regression tree (GBRT) (Fredman 2001, 
Prettenhofer and Louppe 2014) is trained to generate mobility flows between all 
origins and destinations (section 3.5). The final loss function is composed of two 
sub-task losses and a positional encoding loss (Section 3.6).

3.2. Encoding priors

3.2.1. Physical model priors
The physical model priors used in this study are the singly-constrained gravity model 
(Zipf 1946, Wilson 1969) and the radiation model (Simini et al. 2012), as shown in 
Equations (1) and (2) respectively.

Yij ¼ OiPij ¼ Oi
mb1

j f Dijð Þ
P

kmb1
k f Dikð Þ

(1) 

Figure 4. The framework of the proposed prior-guided data-driven human mobility model.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



Yij ¼ OiPij ¼ Oi
ninj

ni þ sijð Þ ni þ nj þ sijð Þ
(2) 

where Oi means the total out-flow of region ri; mj and nj is the number of population 
and opportunities in region rj; respectively. b1 is a learnable parameter, fðDijÞ is a dis-
tance-dependent decreasing function, sij is the number of opportunities in a range 
centered on ri with radius Dij (Excluding ni and nj).

In order to better integrate the radiation model in this study, Eq. (2) is transformed 
into the following form:

Yij ¼ Oini
1

ni þ sij
−

1
ni þ nj þ sij

� �

(3) 

The above two physical models both reflect the allocation idea of the total out- 
flow flow into destination. We use this flow allocation idea to design the proposed 
models, ensuring that the optimization of the model can be correctly constrained by 
physical model priors.

3.2.2. Encoding relative position priors
In this study, the ‘relative positions’ refers to the positions of OD pairs in relation to 
the most objectively attractive locations within the study region. The variation in rela-
tive positions is a crucial factor contributing to spatial heterogeneity of human 
mobility.

(1) the architecture of RPE. Figure 5 illustrates an overview of the RPE module’s gen-
eral architecture. The module consists of two layers, each involving a distinct selection 
of k anchor sets S ¼ fS1, S2, :::, Skg; which represent the sets of the most objectively 
attractive locations within the study region (Section 3.2.2-(2)). In each layer, we first 
compute the comprehensive reachability Mei

l between node v and each anchor in the 
anchor set Si by the comprehensive reachability computation function F v, u, hl

v , hl
u

� �

(Sections 3.2.2-(3) and (4)). To further measure the comprehensive reachability 
between node v and the entire anchor-set Si; we employ a comprehensive reachability 

Figure 5. The architecture of the RPE module. S0 means the initial selection of the entire anchor 
set S ¼ fSig at the first layer of the module.

8 Z. WANG ET AL.



aggregation function A1 to generate message Mv½i�
l
: The message Mv½i�

l in Mv
l means 

the comprehensive reachability computed by node v with respect to the i-th anchor 
set Si in the entire anchor set S: Subsequently, to measure the overall comprehensive 
reachability between node v and the entire anchor set S; we utilize another aggrega-
tion function A2 to aggregate the messages Mv½i�

l (Section 3.2.2-(4)), and these aggre-
gated messages serve as inputs to the subsequent hidden layer. In the final layer, a 
non-linear transformation is applied to derive the relative position encoding pv 2 R

k ;

using trainable weights w 2 Rr and a non-linearity function r:

(2) Anchor set selection. We use the most objectively attractive locations in the study 
region as anchors, which are reference points for relative position encoding. 
Specifically, we first calculate the sum of total in-flow and the population of each 
node, which serve as proxies to reflect the number of opportunities and objective 
attractiveness of the node. We observe that a small number of nodes attract a large 
proportion of travels. We select these attractive nodes as the most objectively attract-
ive locations in the study region. Finally, we randomly sample k anchor sets S ¼
fS1, S2, :::, Skg (S denotes the entire anchor set) from these most objectively attractive 
locations for each layer of the PRE module.

(3) a reachability measure based on preferential random walks. To capture the posi-
tions of various nodes in relation to the anchors, it is necessary to establish the con-
nection between nodes and anchors in the network to manifest the positional 
disparities of different nodes. In this study, we represent this connection by measuring 
the reachability between nodes and anchors. We estimate the reachability of all nodes 
by means of preferential random walks, which are deemed capable of approximating 
population-level human mobility (Yan et al. 2017).

‘Preference’ refers to the transition probability during the random walks process. 
Concretely, a random walk with walk length WalkL; which start from node vi and 
transfer to adjacent node u through an edge e ¼ ðvi, uÞ based on a transition probabil-
ity p eð Þ: The calculation equation for the transition probability is as follows:

p eð Þ ¼
we

P
8e0 2N við Þ

we0
(4) 

where we means the weight of edge e; NðviÞ means the all-outgoing edges from vi: In 
this study, a physical model is used to generate an initial flow network with the gener-
ated flow intensity as the weight of edge.

We introduce a reachability measure from v to u; denoted as m v, uð Þ; defined as 
follows:

m v, uð Þ ¼

PWalkN
i¼1 counti v, uð Þ

WalkL �WalkN
(5) 

where countiðv, uÞ represents the number of times a random walker accesses node u 
in the i-th random walk starting from node v; and WalkN represents the number of 
random walks start from node v:
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(4) Computing comprehensive reachability. The comprehensive reachability computa-
tion function F combines the reachability in both directions. The equation is written as 
follows:

F v, u, hl
v , hl

u

� �

¼ m v, uð Þhl
v

� �

jj m u, vð Þhl
u

� �� �

(6) 

where jj is the concatenation operation, hl
v is attributes of node v:

We use the MEAN aggregation function, which is permutation invariant, to instanti-
ate two comprehensive reachability aggregation functions, A1 and A2; as shown in 
Figure 5. The equations are as follows:

A1 Mei
l

� �
¼

1
ai

Xai

i¼1

Mei
l (7) 

A2 Mv
l

� �
¼

1
k

Xk

i¼1

Mv i½ �l (8) 

where ai is the number of anchors in the i-th anchor set Si; and k is the total number 
of anchor sets.

3.2.3. Encoding average travel expense priors by node attribute augmentation
The model we proposed is built upon the GNN architecture (Battaglia et al. 2018). 
However, the traditional message-passing based GNNs may struggle to effectively use 
node attribute (i.e., population), edge attribute (i.e., distance), and graph structure to 
capture the underlying average travel expenses. To address this, we need to incorpor-
ate average travel expense priors into GNN. We apply a simple and efficient node attri-
bute augmentation to model the node level travel pattern by defining a quantitative 
indicator that can measure average travel expenses as an attribute of origin nodes.

The definition of average travel expenses ki for origin node ri is as follows:

ki ¼

P
j2N ið Þ popi � popj � dij

D ið Þ
(9) 

where popi is the population of ri; dij is the Euclidean distance between ri and rj; DðiÞ
means the degree of the node ri; NðiÞ represents the neighborhoods of node ri: ki is 
utilized in the subsequent computation of ‘relative attractiveness’ embeddings.

3.3. Generating total out-flow for each origin

In this section, we generate the total out-flow for each origin, which lays the ground-
work for the subsequent flow allocation among various destinations.

We select six factors that empirically contribute to the total out-flow of origin, i.e., 
the population of origin O; popO; average travel expenses for origin O; kO; the total 
population of all destination from O; popfDg; the sum of the distances between O and 
each destination from O; dO, fDg; the sum of the ratio of the population of each destin-
ation to the distance between it and the corresponding origin O; RO, fDg; and compre-
hensive out-flow direction of the origin O; FO

�!
¼
P

D2N Oð Þ pD
�! − pO

�!
: NðOÞ represents 

the neighborhood of origin O; pO
�! means the relative position encoding of origin O:

10 Z. WANG ET AL.



Then, the above six factors are used to train a multilayer perceptron to generate 
the total out-flow Ô for each origin, the equation is as follows:

Ôo ¼ MLP popOjjkOjjpop Df gjjdO, Df gjjRO, Df gj FO
�!
�
�
�

��

(10) 

where MLP represents a multilayer perceptron, jj is the concatenation operation.

3.4. Prior-guided graph encoder for learning ‘relative attractiveness’ 
embeddings

As shown in Figure 6, the graph encoder is based on the mobility flow network and 
consists of multiple layers. In each layer, we design a message-passing method to 
learn the ‘relative attractiveness’ embeddings for the edges in the mobility flow net-
work. Then, the final ‘relative attractiveness’ embeddings are obtained by weighting 
the sum of the learned embeddings of each layer with learnable weights W:

3.4.1. Initialization of embeddings within the mobility flow network
We initialize the embeddings of the origin and destination nodes separately. The spe-
cific initialization of embeddings within the mobility flow network is as follows:

a0
O ¼ Ôo; a0

D ¼ popD; a0
D
¼ popD (11) 

E0
O!D ¼ dOD; E0

O!D
¼ dOD (12) 

where D is all destinations node within the neighborhood of O; a0
O means the attrib-

utes of O; Ôo is the generated total out-flow, popD means the population of D; E0
O!D 

denotes the attribute of edge between O and D; dOD denotes the Euclidean distance 
between O and D:

3.4.2. Simulating mobility flow generation through message-passing
The message-passing process primarily involves node aggregation, node update, edge 
update and position update. The first three computations are guided by physical mod-
els, with the computation proceeding from the node level to the edge level. As shown 
in Figure 7, the core approach involves decomposing the equations of physical models 
(gravity model or radiation model) to reflect the flow generation mechanisms embod-
ied in these models. This decomposition is designed to ensure that the resulting equa-
tions progressively emulate the flow generation process. The decomposed equations 

Figure 6. The architecture of the prior-guided graph encoder.
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are then utilized to guide the computation of message aggregation and update func-
tions, which take advantage of the powerful nonlinear fitting capabilities of deep net-
works. Consequently, the message-passing process we have designed is capable of 
simulating mobility flow generation.

Specifically, Figure 8 provides a visual representation of the elements within an 
exemplar mobility flow network graph that participates in each of these computational 
steps in the message-passing process. For instance, the node aggregation process 
involves the embedding of destination nodes and the edge embedding between ori-
gin node and different destination nodes. Note the steps of node aggregation and 
update have two versions since they are guided by two different physical models.

(1) Node aggregation. The purpose of node aggregation is to aggregate the node 
embeddings and edge embeddings in the node’s neighborhood. In this study, for ori-
gin nodes, we use node aggregation to emulate the aggregation of ‘relative 

Figure 7. The overview of message-passing process guided by physical model priors.

Figure 8. The message-passing process that emulates the generation of mobility flow. There is a 
competitive relationship among the destinations of the same origin. The variables used in Figure 
are from Equations (13) to (20).

12 Z. WANG ET AL.



opportunity’ factors that contribute to the generation of travel demand. For destin-
ation nodes, we do not perform node aggregation operations.

We believe that the impact of the number of opportunities and distance at the des-
tination on the origin should be comprehensively considered. For example, although 
the numerous opportunities at destination a can be attractive to origin b; the long dis-
tance between a and b can reduce this attractiveness. We propose a simple concept 
of ‘relative opportunity’ RO to describe this phenomenon, and the calculation equation 
is as follows:

ROO!D ¼
a0

D

E0
O!D

(13) 

Since the RO is a simplified concept of ‘relative opportunity’, we further integrate it 
into the message-passing process to construct a nonlinear representation of nodes 
and edges within the mobility flow network.

Then, two specific node aggregation methods are developed based on two physical 
models. The physical meaning of node aggregation is to aggregate the relative oppor-
tunities of all destination node within the neighborhood of origin node and measure 
the total ‘relative opportunities’ available to the origin from all competing destina-
tions, as shown in Figure 8(a). These destination nodes are in competition with each 
other, i.e., the greater the ‘relative opportunities’ of the destination, the stronger its 
competitiveness.
� Node aggregation guided by the gravity model. According to the ‘

P
kmb1

k fðDikÞ’ part 
of Equation (1), the equation for aggregation is as follows:

al
O ¼ q al−1

D
, El−1

O!D

� �
¼ MLP1

X

k2D

al−1
k

El−1
O!k

 !

¼ MLP1

X

k2D

ROl−1
O!k

� �
(14) 

where al
O denotes the aggregated message of the origin node at l-th layer, MLP1 is a 

multilayer perceptron.
� Node aggregation guided by the radiation model. According to the ‘ni þ sij’ and 
0ni þ nj þ sij’ part of Equation (3), each node ri needs to aggregate ‘relative opportun-
ity’ messages within its two neighborhoods, where one neighborhood (Nei1) is a 
range centered on O with a radius of the distance between O and D and does not 
contain destination D; the other neighborhood (Nei2) is based on neighbourhood1 
containing destination D: The equation for aggregation is as follows:

al
O1 ¼ q al−1

Nei1, El−1
O!Nei1

� �

¼ MLP1

X

k2Nei1

al−1
k

El−1
O!k

 !

¼ MLP1

X

k2Nei1

ROl−1
O!k

� �
(15) 

al
O2 ¼ q al−1

Nei2, El−1
O!Nei2

� �

¼ MLP1

X

k2Nei2

al−1
k

El−1
O!k

 !

¼ MLP1

X

k2Nei2

ROl−1
O!k

� �
(16) 

where q is a node aggregation operation, al
O1 and al

O2 denotes the aggregated mes-
sage of the origin node in the two neighborhoods, respectively.

(2) Node update. We employ initial node embeddings and message derived from 
node aggregation to perform node updates, as shown in Figure 8(b). The updated 
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node embeddings are utilized to represent the travel demand of the O for the unit 
‘relative opportunity’ (1/ALL RO) (guided by the gravity model) or a traveler originating 
from O (guided by the radiation model), after the O perceives the all ‘relative opportu-
nities’ ALL RO that may be available.
� Node update guided by the gravity model. When guided by the gravity model, the 
physical meaning of node update is to estimate travel demand resulting from a unit 
relative opportunity (1/ALL RO), which reflects the influence that each unit of relative 
opportunity has on shaping travel choices.

According to the “Oi
1P

k
m

b1
k fðDikÞ

” part of equation (1), the equation for node update 
is as follows:

al
O ¼ /a al−1

O , al
O

� �

¼ MLP2 al−1
O �

1

al
O

 !

(17) 

where al
O is the updated node embedding, /a is a node update operation that acts 

on each origin node in graph, � denotes Hadamard product operation.
� Node update guided by the radiation model. When guided by the radiation model, 
the physical meaning of node update is to estimate travel demand of a traveler origi-
nating from O who selecting the opportunity at D instead of opportunities available in 
other neighborhood.

According to the “Oi
1

niþsij
− 1

niþnjþsij

h i
” part of equation (3), the equation for node 

update is as follows:

al
O ¼ /a al−1

O , al
O1, al

O2

� �

¼ MLP2 al−1
O �

1

al
O1

−
1

al
O2

 ! !

(18) 

(3) Edge update. As shown in Figure 8(c), the edge update process involves the 
updated embedding of the O node, the embedding of the D node and the pre-update 
edge embedding. The physical meaning of edge update is to update the overall travel 
demand estimate from O to D when only ‘relative opportunities’ are considered.
� Edge update guided by the gravity model. According to the complete equation (1), 
the equation for edge update is as follows:

El
O!D ¼ /E al

O, al−1
D , El−1

O!D

� �

¼ MLP3 MLP1
al−1

D

El−1
O!D

 !

� al
O

 !

(19) 

where al−1
D

El−1
O!D
¼ ROl−1

O!D:

The above equation expresses the selection of relative opportunities from O to D:
� Edge update guided by the radiation model. According to the complete Equation (3)
and in order to maintain a consistent understanding and application of ni with Equations 
(15) and (16), the equation for edge update is a special form of Equation (19).

El
O!D ¼ /E al

O, al−1
D Oð Þ, El−1

O!D Oð Þ

� �
¼ MLP3 MLP1

al−1
D Oð Þ

El−1
O!D Oð Þ

0

@

1

A� al
O

0

@

1

A (20) 

where DðOÞ denotes that O is acting as destination at this time.

14 Z. WANG ET AL.



The equation mentioned above expresses the travel demand of all travelers from O 
who select the opportunities at D rather than those in other neighborhood.

(4) Updating positional embeddings. To integrate the positional embedding informa-
tion from neighboring nodes into the positional embedding of a given node, we 
update the positional embedding of each region node ri by the weighted sum of all 
relative differences ðpi − pjÞ8j; which indicates the relative position relationship 
between OD pair (i! j) and the entire anchor set. The weights are obtained through 
the transformation of edge embedding mij; which carry the information of the whole 
graph. The equations for positional embedding update are as follows and are based 
on the work of Satorras et al. (2021).

pl
ij ¼ /p pl−1

i , pl−1
j

� �
¼ pl−1

i − pl−1
j (21) 

mij ¼ /e al−1
i , al−1

j , jjpl
ijjj

2, el−1
ij

� �
(22) 

pl
i ¼ /x pl−1

i , pl−1
j , mij

� �
¼ pl−1

i þ C
X

j6¼i

pl
ij·/m mijð Þ (23) 

where pi is the relative position encoding of ri; eij is the Euclidean distance between O 
and D; C equals 1=ðM − 1Þ and M is the number of nodes in the graph, /e is edge 
operation, and /m : RN ! R1 can transform the mij into a scalar value.
(5) Computation of ‘relative attractiveness’ embeddings. We argue that the core driven 
factor of human travel demand within a region is the attractiveness of other regions 
to that region. The spatial heterogeneity in travel demand is due to differences in the 
attractiveness that depends on both origin and destination. Therefore, to further 
describe the spatial heterogeneity in human travel demand, we propose the concept 
of ‘relative attractiveness’, which describes the attractiveness of a destination for its 
origins based on a comprehensive measurement of factors that affect human travel 
choices, including position, average travel expense, opportunities (popO and popD) and 
distance (dOD). After the integration of priors with GNN, the position is represented as 
pl

OD; the average travel expenses is represented as kO; and the combined influence of 
opportunities and distance is represented as El

O!D: The equation for calculating 
‘relative attractiveness’ is as follows:

pl
OD ¼ /p pl−1

O , pl−1
D

� �

¼ pl−1
O − pl−1

D (24) 

Attl
O!D ¼ u El

O!D , pl
OD, kO

� �

¼ MLP4 popOjjpopDjjdODjjEl
O!Djjp

l
ODjjkO

� �

(25) 

AttO!D ¼
X

l2L

Wl·Attl
O!D (26) 

where pl
OD means the position of the OD pair relative to the entire study region, 

Attl
O!D denotes the ‘relative attractiveness’ embeddings computed in l-th layer, AttO!D 

denotes the final ‘relative attractiveness’ embeddings, W is learnable weights, jj is the 
concatenation operation.
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3.5. Generator using GBRT for estimating mobility flow

We use the learned ‘relative attractiveness’ embedding in the encoder between any 
origin node O and destination node D; concatenate the generated total outflow from 
O; as input to a GBRT, and finally generate the mobility flow between O and D: The 
generator is formularized as follow:

F̂ OD ¼ GBRT AttO!DjjÔo

� �
(27) 

where jj is the concatenation operation. GBRT is an ensemble learning algorithm that 
combines the optimization strategy of gradient descent with the robust modeling 
power of decision trees (Safavian and Landgrebe 1991).

3.6. Loss function

We acquire structural embeddings through message passing method and position 
embeddings via relative location encoding. As the learning of these two types of 
embeddings is separate, the final loss function needs to integrate the losses of two 
embedding tasks: a task loss (LTask1 or LTask2) and a positional encoding loss LPos: The 
MSELoss (Mean squared Error loss) is employed for the task loss, and the positional 
encoding loss is computed using the Laplacian eigenvector loss (Belkin and Niyogi 
2003), which forces positional encoding to form a coordinate system constrained by 
the graph topology (Dwivedi et al. 2021). The equation is as follows,

LTask1 ¼
X

i

Oi − Ôi

� �2
;LTask2 ¼

X

i, j

Fij − F̂ ij

� �2
(28) 

LPos ¼ tr pT Lp
� �

¼
X

i, j

jjpi − pjjj
2· e−jjxi−xjjj

2

(29) 

Ltotal1 ¼ LTask1 þ a1LPos;Ltotal2 ¼ LTask2 þ a2LPos (30) 

where L is the Laplacian matrix, xi is the real coordinate position of the region ri; a1 

and a2 are hyper-parameters greater than 0, jj·jj2 is the Frobenius norm, Ltotal1 and 
Ltotal2 are the final loss of both tasks, respectively. Oi and Ôi denote the real and gen-
erated total out-flow from origins, Fij and F̂ ij denote the real and generated flow inten-
sity data.

4. Experiments

4.1. Datasets

We chose New York state and Pennsylvania state as the study area. Census tracts were 
taken as the basic areal unit. The data for each study area contains OD flow data, 
population and coordinates of the census tracts.

The data for New York State comes from the work by Simini et al. (2021) which pro-
posed an advanced deep gravity model for mobility flow generation. To compare with 
the deep gravity model, we conducted experiments on the New York State dataset 
using experimental settings similar to that reported in Simini et al. (2021).
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The data for Pennsylvania state were obtained from an OD flow open data (Kang 
et al. 2020). The mobility flows between census tracts provided by the open data are 
extracted from millions of anonymous cell phone users visiting various places, and has 
a high correlation with the American Commuting Survey (ACS) commuting flows pat-
terns, which indicates the high reliability of the produced data.

4.2. Baselines

We compared three categories of baseline methods to prove the effectiveness of the 
proposed models. The first category is classical physical models, including the Gravity 
Model (GM) (Zipf 1946, Wilson 1969) and the Radiation Model (RM) (Simini et al. 2012). 
The second category is traditional machine learning methods, including the Random 
Forest (RF) (Breiman et al. 2001) and the Gradient Boosting Regression Tree (GBRT) 
(Prettenhofer and Louppe 2014). The third category is deep learning models, including 
the GNN_based Model (GNNM) (Luo and Chen 2024) and the Deep Gravity (DG) 
(Simini et al. 2021).

4.3. Evaluation metrics

We used Normalized Root Mean Squared Error (NRMSE), Pearson correlation (Corr), 
Common Part of Commuters (CPC) and Jesen-Shannon Divergence (JSD) as evaluation 
metrics to compare the performance of the baselines and the proposed models. CPC 
is the most commonly used metric for mobility flow generation models (Simini et al. 
2021). JSD is used to evaluate the similarity between the overall distribution of real 
flow data and generated flow data. The higher the CPC, Corr and the lower the 
NRMSE, JSD, the better the performance.

4.4. Model settings

In this section, we introduce the parameter settings of the proposed models in the 
experiments. The number of graph encoder layers was set to 2 for all models using 
GNN and the estimators of RF and GBRT was set to 100. We used the RMSprop opti-
mizer with momentum 0.9 and learning rate 5·10−6 for all deep learning related mod-
els. Besides, we also divided the total OD pairs into nearly 1:1 as the training and test 
set. In the relative position encoder module, the number of random walks WalkN and 
the length of each random walk WalkL were set to 100/50 and 100/40 for the New 
York and Pennsylvania dataset, respectively.

4.5. Results and analysis

4.5.1. Evaluation of the performance of mobility flow generation
We develop two models for mobility flow generation: PG-MFG(GM), informed by the 
Gravity Model, and PG-MFG, informed by the Radiation Model. As depicted in Table 1, 
the evaluation results yielded the following key findings:
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The proposed models consistently outperform all baseline models across all 
evaluation metrics. Based on the mean of these metrics, the proposed models dem-
onstrated significant improvements over the best-performing baseline: the NRMSE was 
reduced by more than 25% in New York and 15% in Philadelphia, and the CPC saw an 
increase of over 10% in both states. A investigation into the role of each type of prior 
in the proposed models is provided in Appendix A. Additionally, Appendix B offers a 
comparative visualization of the generated mobility flows by both the proposed mod-
els and the baseline models.

Traditional physical models exhibited the poorest performance, with the high-
est NRMSE of 12.226 in New York and 15.307 in Philadelphia, and the lowest CPC of 
0.362 and 0.201, respectively. These models’ simplicity hinders their ability to accur-
ately capture the complex spatial heterogeneity inherent in human mobility.

Deep learning models, when not leveraging sufficient prior knowledge of 
human mobility, generally fail to outperform traditional machine learning 
models. The mean of evaluation metrics from the two study areas indicate that the 
RF and GBRT models achieve higher CPC and lower NRMSE than the GNNM and DG. 
This is likely due to the strong spatial heterogeneity of human mobility, which can 
lead to overfitting in deep learning models when addressing the problem of mobility 
flow generation.

A deep learning model that does not incorporate information from surround-
ing nodes when modeling mobility flows between origin-destination pairs is 
likely to perform poorly in terms of network statistics similarity. The comparison 
between the GNNM and DG models reveals that while the DG model has a slightly 
higher CPC than GNNM, its JSD is significantly higher. This indicates that the DG 
model is unable to sufficiently capture the spatial heterogeneity inherent in human 
mobility, thereby limiting its capacity to generate a flow distribution that closely 
resembles the real mobility flow network.

Table 1. Overall performance on real-world datasets considering training data size. The best 
results are presented in bold italics, while the top results from the baseline model are underlined.

Training data size Mean of metrics

75% 60% 50% 30% 15% CPC NRMSE Corr. JSD

New York CPC
GM 0.416 0.376 0.340 0.402 0.275 0.362 12.226 0.045 0.635
RM 0.491 0.565 0.406 0.393 0.395 0.450 11.602 0.102 0.594
RF 0.718 0.703 0.702 0.698 0.648 0.694 1.973 0.937 0.093
GBRT 0.725 0.714 0.712 0.715 0.677 0.709 1.625 0.956 0.088
GNNM 0.713 0.691 0.703 0.629 0.638 0.675 2.789 0.873 0.081
DG 0.724 0.685 0.682 0.671 0.655 0.683 2.014 0.921 0.342
PG-MFG(GM) 0.806 0.792 0.781 0.776 0.770 0.785 1.204 0.976 0.047
PG-MFG(RM) 0.798 0.794 0.788 0.787 0.785 0.790 1.196 0.977 0.045
Pennsylvania CPC
GM 0.197 0.192 0.192 0.213 0.210 0.201 15.307 0.054 0.652
RM 0.234 0.237 0.237 0.244 0.214 0.233 14.856 0.108 0.613
RF 0.686 0.673 0.667 0.659 0.639 0.665 2.207 0.969 0.115
GBRT 0.695 0.682 0.675 0.667 0.651 0.674 2.133 0.972 0.108
GNNM 0.655 0.644 0.637 0.645 0.623 0.641 3.462 0.916 0.102
DG 0.687 0.671 0.658 0.664 0.628 0.662 2.230 0.956 0.361
PG-MFG(GM) 0.753 0.747 0.744 0.745 0.727 0.743 1.809 0.978 0.082
PG-MFG(RM) 0.759 0.751 0.748 0.742 0.732 0.746 1.795 0.980 0.079

18 Z. WANG ET AL.



Although the performance of all non-physical models declines with a decrease 
in the proportion of training data, the proposed models exhibit relatively good 
stability, indicating superior generalization capabilities. GNNM and DG, being 
deep learning models, possess a larger number of parameters that require optimiza-
tion, thus necessitating more extensive training data. Consequently, their performance 
is more sensitive to the amount of training data available. The proposed models, how-
ever, takes full advantage of necessary prior knowledge, making it more adept at cap-
turing the intrinsic pattern of human mobility and allowing it to achieve better 
performance even with a reduced training dataset.

4.5.2. Evaluation of the model’s capability to capture spatial heterogeneity of 
human mobility
To test our model’s capacity to capture this spatial heterogeneity, we evaluated the 
performance of the proposed models and all baseline models on generating mobility 
flow for three distinct sets of OD pairs selected in the entire test dataset, which have 
similar population distributions and travel distances (the population difference 
between various nodes is less than 100, and the travel distance difference between 
distinct OD pairs is less than 1 km):

1. OD pairs with the same origin but different destinations (Same O & Different D);
2. OD pairs with the same destination but different origins (Different O & Same D);
3. OD pairs with the different origins and different destinations (Different O & 

Different D).

From the evaluation results in Table 2, we have the following findings:
The proposed models steadily achieve the best performance in mobility flow gener-

ation evaluation for three types of OD pairs, indicating that our models have a stron-
ger ability to capture spatial heterogeneity of human mobility than all baseline 

Table 2. The performance comparison of mobility flow generation for specific OD pairs.
Same O & Different D Different O & Same D Different O & Different D

NRMSE Corr CPC JSD NRMSE Corr CPC JSD NRMSE Corr CPC JSD

New York
GM 11.682 0.032 0.395 0.593 11.627 0.037 0.408 0.584 13.547 0.030 0.228 0.634
RM 11.467 0.096 0.452 0.559 11.398 0.102 0.471 0.548 13.498 0.046 0.238 0.605
RF 2.239 0.889 0.658 0.108 2.205 0.887 0.670 0.104 1.296 0.925 0.798 0.045
GBRT 1.981 0.907 0.673 0.095 1.921 0.903 0.686 0.091 0.967 0.953 0.819 0.039
GNNM 2.164 0.882 0.692 0.073 2.113 0.880 0.702 0.069 1.649 0.881 0.762 0.051
DG 2.316 0.875 0.652 0.365 2.264 0.879 0.668 0.358 1.208 0.921 0.796 0.132
PG-MFG(GM) 1.214 0.967 0.741 0.059 1.147 0.968 0.751 0.056 0.632 0.984 0.875 0.024
PG-MFG(RM) 1.185 0.968 0.750 0.058 1.119 0.969 0.761 0.054 0.614 0.985 0.877 0.023

Pennsylvania
GM 12.679 0.038 0.304 0.663 12.415 0.057 0.335 0.654 14.968 0.150 0.052 0.872
RM 13.942 0.026 0.266 0.645 13.883 0.051 0.274 0.641 12.594 0.275 0.307 0.623
RF 3.067 0.876 0.519 0.203 2.846 0.877 0.539 0.191 0.598 0.965 0.891 0.029
GBRT 3.046 0.877 0.530 0.196 2.838 0.877 0.546 0.186 0.572 0.968 0.898 0.028
GNNM 3.159 0.859 0.504 0.204 3.012 0.848 0.522 0.193 1.025 0.929 0.801 0.058
DG 3.280 0.834 0.495 0.206 3.156 0.830 0.496 0.201 0.563 0.968 0.901 0.029
PG-MFG(GM) 2.307 0.932 0.597 0.146 2.135 0.931 0.608 0.139 0.229 0.994 0.949 0.007
PG-MFG(RM) 1.479 0.982 0.767 0.074 1.431 0.980 0.773 0.070 0.241 0.989 0.943 0.008
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models. From an overall trend in the evaluation metrics, it is observed that our models 
perform better on the Type 3 OD pairs compared to the first two. This is primarily 
because the first two types of OD pairs share a common origin (O) or destination (D), 
leading to a high competitive or collaborative relationship between OD pairs. 
Consequently, the spatial heterogeneity in human mobility within the first two types 
is not only determined by the spatial position differences of O or D but is also influ-
enced by the complex dependencies between different OD pairs’ mobility flows. In 
contrast, the Type 3 OD pairs exhibits weaker interdependencies, and their spatial het-
erogeneity is predominantly determined by the comprehensive spatial position differ-
ences of O and D. Moreover, our models exhibit slightly improved performance on 
Type 2 OD pairs compared to Type 1. This suggests that when the D is the same, the 
variations in travel demands from different O are relatively minor. However, when the 
O is the same, the differences in the attractiveness of various D become more pro-
nounced. Consequently, the influence of the destination on the spatial heterogeneity 
of travel demand is more substantial.

The GNNM outperforms other baselines on the first two types of OD pairs. This is 
primarily because GNNM aggregates messages from neighboring OD pairs, thereby 
accounting for dependencies between them to some extent. However, for Type 3, 
GNNM does not show a performance advantage. This is attributed to the lack of spe-
cific position awareness in GNNM, which hinders its ability to capture spatial hetero-
geneity in human mobility for OD pairs with substantial spatial position differences.

We further validate the impact of our message-passing design and relative location 
encoding on capturing spatial heterogeneity of human mobility (see Appendix C for 
details).

4.5.3. Evaluation of generalization capability
To further verify the model’s generalization ability, we assessed its transferability by 
evaluating its performance when trained in one study area and applied to another.

As Table 3 indicates, models trained in New York exhibited a notable decline in per-
formance when applied in Pennsylvania. This degradation is primarily attributed to the 
differences in human mobility patterns between the two states. The proposed prior- 
guided deep learning models surpasses all others in transfer performance. It achieves 
over a 12% improvement in CPC in New York (test area) and more than a 7% improve-
ment in Pennsylvania (test area) when compared to the best-performing baseline. This 

Table 3. Mobility flow generation results on test areas.

Model

New York ! Pennsylvania Pennsylvania ! New York

NRMSE Corr CPC JSD NRMSE Corr CPC JSD

GM 15.847 0.043 0.150 0.682 13.025 0.069 0.382 0.601
RM 14.596 0.051 0.229 0.629 11.879 0.075 0.419 0.584
RF 3.133 0.942 0.559 0.186 1.636 0.954 0.655 0.089
GBRT 2.273 0.950 0.571 0.172 1.634 0.957 0.664 0.080
GNNM 4.285 0.888 0.507 0.168 3.331 0.913 0.630 0.076
DG 4.915 0.944 0.465 0.476 4.084 0.924 0.597 0.389
PG-MFG(GM) 2.179 0.979 0.612 0.155 1.521 0.967 0.743 0.062
PG-MFG(RM) 2.113 0.977 0.625 0.154 1.414 0.969 0.776 0.054
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reaffirms that our model’s ability to capture the spatial heterogeneity of human mobil-
ity is superior, thereby enhancing the model’s generalization capability.

In line with the results from Table 1, the RF and GBRT models demonstrate stronger 
generalization ability compared to the GNNM and DG models. Moreover, the GNNM 
model outperforms the DG model in generalization, with its JSD being the best 
among all baseline models. This indicates that deep learning models leveraging GNNs 
have an edge in capturing spatial heterogeneity in human mobility patterns when 
compared to non-GNN deep learning models.

5. Discussion

This study draws on the research paradigm of Physics-Informed Machine-Learning 
(Karniadakis et al. 2021) and introduces a mobility flow generation model that integra-
tes comprehensive prior guidance. The primary reason for our models’ superiority lies 
in their explicit consideration of inherent spatial heterogeneity in human mobility 
based on the integration of prior knowledge and data-driven model. In contrast, most 
existing studies neglect this critical spatial heterogeneity, that is, they overlook the 
fundamental source of errors in human mobility generation, which contributes to the 
performance bottleneck in current models.

Specifically, first, spatial heterogeneity of human mobility is inherently location- 
dependent (Lomi 1995). Traditional physical models, which ignore positional informa-
tion, often underperform in regions with strong spatial heterogeneity of human mobility. 
Data-driven models such as RF, GBRT, and DG (Simini et al. 2021) also overlook position 
information. Although these models significantly enhance their nonlinear fitting capabil-
ities leveraging ensemble learning or deep learning (Rong et al. 2023b), they are at risk 
of overfitting due to the strong spatial heterogeneity of human mobility. Compared to 
the DG model, GNN-based models excel in capturing dependencies between regional 
nodes and exhibit stronger inductive learning capabilities (Hamilton et al. 2017). 
However, most GNN-based models (Liu et al. 2020, Luo and Chen 2024) learn node 
embeddings by encoding information about their local neighborhoods (Nishad et al. 
2020). These approaches, which rely solely on neighborhood information, fail to capture 
the position of origins and destinations within the broader context of the mobility flow 
network graph structure (You et al. 2019). Compared with above studies, the relative 
position encoding developed in this study endows the proposed models with the ability 
to be spatially explicit and to capture the global positions of origins and destinations, 
thereby overcoming the limitations of existing GNN-based models. The positional aware-
ness capability assists the model in learning the nonlinear relationships between mobil-
ity flows and their driving factors (e.g., opportunity and distance), while considering 
positions.

Secondly, existing models lack a fundamental understanding of the underlying rea-
sons for the formation of spatial heterogeneity in human mobility. Traditional physical 
models cannot adequately account for the underlying mechanism of mobility flow 
generation for specific OD pairs. Most data-driven models simply leverage the features 
of OD pair (e.g., regional attributes) and real mobility flow for end-to-end learning 
(Pourebrahim et al. 2019, Simini et al. 2021, Rong et al. 2023a). Although these models 
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consider an increasing number of driving factors contributing to mobility flow, they 
do not collectedly describe these factors based on the underlying reasons for the spa-
tial heterogeneity of human mobility, making them struggle to sufficiently capture the 
spatial heterogeneity shown in Figure 2(c). This study argues that the collective influ-
ence of these driving factors ultimately forms the relative attraction of destinations to 
origins, and this differential in relative attractiveness is the underlying reason for the 
spatial heterogeneity of human mobility. Consequently, this study proposes the con-
cept of ‘relative attractiveness’ and fully integrates prior knowledge and GNN architec-
ture to obtain its embedding. This approach enables the proposed models to focus on 
learning differences in relative attractiveness to capture the spatial heterogeneity of 
complex and diverse human mobility. Furthermore, the models proposed in this study 
is a general framework and can incorporate more influencing factors to achieve a bet-
ter performance in human flow generation.

6. Conclusion

Constructing a universal population-level mobility flow generation model presents signifi-
cant challenges, primarily due to the inherent spatial heterogeneity in human mobility, 
which stems from the complexity of human travel behavior. Overly simple physical mod-
els and recently proposed data-driven machine learning models that suffer from poor 
generalization, both have limited expressive power to capture this spatial heterogeneity. 
In this study, we introduce a prior-guided, data-driven model named PG-MFG, which 
addresses these limitations through a combination of prior knowledge and GNN architec-
ture. We conducted extensive experiments using real-world human mobility datasets 
from New York and Pennsylvania. The results demonstrate that the proposed PG-MFG 
model not only achieves superior accuracy and generalization performance but also has a 
greater ability to capture spatial heterogeneity compared to all the baseline models.

There are still some limitations. This study considers a limited scope of prior know-
ledge. Future work could incorporate a wider spectrum of prior knowledge and 
explore its integration with deep learning approaches to develop more universally 
applicable human mobility generation models.
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Appendices 
A. Ablation studies

We delve into the role of each type of prior knowledge played within our models. To do this, 
we systematically removed key components: (1) the node attribute augmentation module (no 
NA), (2) the relative position encoding module (no RPE), (3) the message-passing module (no 
MP), (4) all three modules simultaneously (no ALL). For each variation, we assessed the models’ 
performance. The outcomes of these evaluations are depicted in Figure A1 and A2.

Node attribute augmentation

we first assessed the impact of incorporating the node attribute augmentation module. Based 
on the CPC and NRMSE metrics, this augmentation boosts the quality of the generated mobility 

Figure A1. Ablation study on PG-MFG(GM).
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flow data across both study areas. The introduction of the node attribute augmentation module 
alone yields a performance improvement of approximately 2% to 3%. This augmentation 
enriches the node attributes, providing a more informative embedding that enables the models 
to learn the differences in travel patterns among various origin nodes.

Relative position encoding

Previous studies have often overlooked the explicit modeling of positional effects on human 
flow generation, despite the fact that spatial positioning is crucial for capturing the heterogen-
eity in human mobility. To address this, we integrated a relative position encoding module to 
equip our models with positional awareness of both origin and destination nodes. The results 
depicted in Figure A1 and A2 indicate that this addition alone can enhance performance by 
approximately 3% to 6%. Moreover, the findings reveal that the relative position encoding mod-
ule has a more pronounced impact on the performance of PG-MFG(GM) compared to PG- 
MFG(RM). This disparity could stem from the fact that the gravity model (GM) largely disregards 
the spatial position disparities of origin and destination nodes. In contrast, the radiation model 
(RM) implicitly accounts for these spatial position differences by factoring in the number of 
opportunities present in varying neighborhoods of the origin node.

Message-passing

Experiments conducted with a model that solely incorporates the designed message-passing 
method reveal significant gains in performance. This method stands out as the most impactful 
enhancement to our models, offering performance improvements ranging from approximately 
6% to 10%. These results underscore the effectiveness of combining the strengths of physical 
models and deep learning models in generating human mobility flow.

All

The objective of this experiment was to assess the overall performance enhancement of the model 
design when compared to a variant without any prior knowledge enhancements. As illustrated in 
Figures A1 and A2, the incorporation of the model designs yields substantial benefits, achieving an 

Figure A2. Ablation study on PG-MFG(RM).
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overall performance improvement ranging from approximately 9% to 18%. This result further con-
firms the effectiveness of the prior-guided deep learning paradigm, especially in tackling the com-
plex spatial heterogeneity that is the key challenge of mobility flow generation.

B. Visual comparisons 

The visualization of generated mobility flows by both the proposed models and baseline 
models, using the New York dataset, is presented in Figure B1. Generally speaking, the pro-
posed models exhibit smaller absolute residuals between the generated and observed mobil-
ity flows compared to the baseline models, and the mobility flow network formed by the 
generated flows more closely resembles the actual network. As depicted in Figures B1(b) and 
B1(c), the proposed models are particularly skilled at accurately generating flows for longer 
distances, while the less accurate flows are predominantly found in medium to short-distance 
OD pairs. Both the proposed models and baseline models tend to perform less well in 
regions with high mobility flow intensity, such as New York City, due to the larger population 
and more complex travel behaviors present in these areas, leading to increased spatial het-
erogeneity in human mobility. However, when compared to the best-performing baseline 
model (GBRT), the proposed models show superior performance in regions with dense mobil-
ity flows, particularly near New York City (marked with green circles) (Figure B1(b)-(d)), dem-
onstrating their enhanced capability to capture the complex spatial heterogeneity of human 
mobility.

Figure B1. Mobility flow generation in New York State. (a): visualization of the observed flows. 
(b)-(f): the difference between the mobility flows generated by the proposed models/baseline 
models and the observed flows. CPC indicates the Common Part of Commuters.
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C. The performance of the model variants in generating mobility flows 
for specific OD pairs 

We developed three variants of the PG-MFG(GM) model: (1) a variant with all prior knowledge- 
based modules removed (no ALL); (2) a variant that adds only our designed message-passing 
module to the Variant1 (only MP); and (3) a variant that adds only the relative position encoding 
module to the Variant1 (only PRE). We then evaluated the flow generation performance of these 
variants on the three types of OD pairs using the New York dataset.

As Table C1 demonstrates, when compared to Variant (1), the performance of the other two 
variants showed improvement across all four evaluation metrics. This enhancement indicates 
that both of our model designs effectively augment the model’s capability to capture the spatial 
heterogeneity of human mobility. Notably, the relative position encoding module provides a 
greater enhancement to this capability. This is primarily because geographical position is a cru-
cial factor associated with spatial heterogeneity, as noted by Fotheringham et al. (1996). Our 
findings also underscore the importance of incorporating spatial position in generative models 
of human activity.

Table C1. The performance of the proposed model variants in generating mobility flows for spe-
cific OD pairs.
Evaluation metrics NRMSE Corr CPC JSD

Same O & different D
PG-MFG(GM)—no ALL 1.894 0.836 0.626 0.132
PG-MFG(GM)—only MP 1.715 0.842 0.651 0.094
PG-MFG(GM)—only PRE 1.500 0.854 0.663 0.097

Different O & same D
PG-MFG(GM)—no ALL 1.822 0.837 0.640 0.113
PG-MFG(GM)—only MP 1.589 0.846 0.656 0.088
PG-MFG(GM)—only PRE 1.453 0.851 0.675 0.092

Different O & different D
PG-MFG(GM)—no ALL 1.177 0.941 0.795 0.084
PG-MFG(GM)—only MP 1.113 0.946 0.811 0.042
PG-MFG(GM)—only PRE 0.938 0.964 0.842 0.038
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