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ABSTRACT 
Although numerous models have been proposed to predict the 
intensity of human activities in urban areas, two major issues ham
per the performance of existing models: (1) fail to incorporate 
appropriate prior knowledge instrumental for improving accuracy 
and interpretability; (2) fail to integrate probabilistic and determin
istic predictions to achieve complementary strengths, namely 
uncertainty quantification and high predictive accuracy. To address 
these challenges, we proposed a prior-enhanced dual-mode spa
tiotemporal graph neural network (PED-STGNN) to support both 
probabilistic and deterministic predictions. Specifically, we intro
duced a hypergraph node-to-vector (hypernode2vec) method to 
capture the multivariate functional similarity prior derived from 
complex and multivariate relations between urban regions. This 
functional similarity characterizes urban systems more precisely 
than existing methods relying on first-order pairwise relations. It 
improves accuracy and interpretability while enabling spatial mod
eling of higher-order multivariate relations beyond first-order pair
wise relations. We also designed a plug-and-play probabilistic 
prediction module that enables switches between probabilistic 
and deterministic modes. Experiments based on the human activ
ity intensity in Fuzhou, China, demonstrated the advantages in 
accuracy, interpretability and multi-scenario applicability.

ARTICLE HISTORY 
Received 28 March 2025 
Accepted 10 September 2025 

KEYWORDS 
Prior knowledge; dual- 
mode; human activity 
intensity; probabilistic 
prediction; deterministic 
prediction   

1. Introduction

Human activity intensity, defined as the population density within urban regions over 
specific time periods, exhibits clear diurnal and weekly variation across urban zones 
with distinct functions (Wang et al. 2022, Yang et al. 2023, Wang and Zhu 2024). These 
spatiotemporal patterns influence daily life, from the crowded subway trains during 
morning rush hours to the relative calm of parks on weekday afternoons. For urban resi
dents, accurate prediction of human activity intensity supports intelligent route plan
ning and optimizes recreational scheduling (Chen et al. 2023, Cai et al. 2024). It also 
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enhances urban development, commercial strategies and the safety management of 
potential high-density areas, which contributes to smart city advancement (Wang et al. 
2019, jia et al. 2021).

Predicting human activity intensity is a classic spatiotemporal prediction task (Li 
et al. 2022, Wang and Zhu 2024). The methods are generally divided into two catego
ries: knowledge-driven and data-driven methods (Cheng et al. 2018, Ren et al. 2020, Li 
et al. 2021, 2022). Among these methods, deep learning, a core subset of data-driven 
methods, has become dominant because of end-to-end learning and its effective mod
eling of complex spatiotemporal dependencies (Xing et al. 2020, Li et al. 2021, 2022). 
Within this domain, dynamic graph neural networks (GNNs) have received increasing 
attention for their flexibility in spatial modeling and their ability to capture time- 
varying spatial relationships (Liu et al. 2023, Wang et al. 2023, Sun et al. 2024, Wang 
et al. 2025a). Although numerous dynamic GNN models have been developed, they 
face two main challenges. First, the performance of GNNs depends heavily on how 
adjacency matrices are constructed and the construction suffers from a significant limi
tation. Fully data-driven approaches often struggle to accurately identify nodes with 
high spatial correlations, which reduces both predictive accuracy and model interpret
ability (Liu et al. 2023, Wang and Zhu 2024). In contrast, traditional priors (e.g. distance 
thresholds and topological constraints) can construct adjacency matrices and 
strengthen local focus but inevitably constrain the modeling of hidden dependencies 
(Yu et al. 2018, Li et al. 2021). Points of interest (POIs) capture the semantics of urban 
functions and offer valuable priors for refining the sparsification of adjacency matrices 
(Zhang et al. 2023). However, urban regions exhibit multivariate relations. Most current 
frameworks fail to incorporate the heterogeneous geographic knowledge in POIs into 
the construction of adjacency matrices. Second, most existing models are deterministic 
and struggle to quantify prediction uncertainty, which limits decision-makers’ ability to 
evaluate risks associated with extreme values (Kendall and Gal 2017). While some 
probabilistic models can estimate uncertainty, they often suffer from accuracy loss. 
Few models can switch seamlessly between probabilistic and deterministic modes to 
preserve high accuracy and quantify uncertainty. In practice, adaptive systems are 
essential, as they allow users to choose prediction modes according to specific 
requirements. However, creating a unified framework that supports both modes with
out degrading accuracy remains a technical challenge.

To overcome these challenges, we proposed a novel prior-enhanced dual-mode 
spatiotemporal graph neural network (PED-STGNN), which incorporates multivariate 
functional similarity embedded in POIs as a prior to enhance the accuracy and inter
pretability. It also unifies probabilistic and deterministic prediction for the urban inten
sity of human activities. The main contributions of this study are as follows:

1. Drawing on hypergraph theory, we developed a hypergraph node-to-vector 
(hypernode2vec) method to capture multivariate functional similarity from POIs, 
which extends spatial modeling from first-order pairwise relations to high-order 
multivariate relations. We employed this functional similarity as a prior to enhance 
both prediction accuracy and model interpretability.
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2. We designed a plug-and-play probabilistic prediction module that enables most 
existing deterministic models to switch flexibly between probabilistic and deter
ministic modes. This adaptability allows users to select appropriate prediction 
modes for specific scenarios.

3. We validated the proposed PED-STGNN by using the intensity of human activities 
derived from mobile location data in Fuzhou, Fujian Province, China. The results 
demonstrate that the multivariate functional similarity prior improves both accur
acy and interpretability and that the plug-and-play module enables seamless 
switches between deterministic and probabilistic prediction modes.

2. Literature review

Graph-based methods have become mainstream for predicting the urban intensity of 
human activities. Central to these methods is the construction of adjacency matrices. 
In both graph-based and other spatiotemporal models, the choice of prediction mode – 
deterministic or probabilistic – remains a key research area. This section reviews the 
development of graph-based spatiotemporal prediction models and prediction modes. 
It focuses on their methodological evolution and current challenges.

2.1. Graph-based spatiotemporal prediction models

Graph-based spatiotemporal prediction models use graph structures to represent spa
tial or functional relationships between urban regions (Wang 2023, Wang et al. 2024, 
Zeghina et al. 2024, Wang et al. 2025b). Classic models in this domain include GNNs 
and variants, such as spatiotemporal graph convolutional networks (ST-GCN) (Yu et al. 
2018), attention-based spatiotemporal graph convolutional networks (ASTGCN) (Guo 
et al. 2019), temporal graph convolutional networks (T-GCN) (Zhao et al. 2020), spatio
temporal hypergraph convolutional networks (STHGCN) (Wang et al. 2021) and 
attention-based spatiotemporal graph convolutional recurrent networks (ASTGCRN) 
(Liu et al. 2023). The adjacency matrix is central to graph-based spatiotemporal predic
tion, as its construction directly influences model performance. Early approaches typic
ally relied on data-driven techniques to construct adjacency matrices. However, such 
techniques suffer from reduced accuracy due to sampling bias and limited interpret
ability due to black-box nature (Lan et al. 2022, Zhao et al. 2023, Kong et al. 2024, 
Wang and Zhu 2024). Subsequently, prior-based methods addressed these limitations 
by incorporating spatial constraints, such as physical distances or topological relations 
between geographic entities (Li et al. 2021, Guan et al. 2024, Chen et al. 2025). 
However, distance-based approaches inherently constrain the modeling of hidden 
dependencies, as they rely on Euclidean proximity rather than semantic or functional 
similarity. To overcome this limitation, some studies explored alternative priors. Zhang 
et al. (2023) employed Pearson correlation coefficients between POI sequences to con
struct adjacency matrices. Wang et al. (2023) proposed Traffic BERT to capture implicit 
semantic associations from traffic sequences. Geng et al. (2019) constructed the adja
cency matrix by integrating spatial proximity, road-network connectivity and functional 
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similarity measured by POI sequence distance. Although prior-based methods, particu
larly those utilizing POIs, have demonstrated promising results, the full potential of 
POI-based priors remains underexplored. Urban systems are inherently complex, inter
active and often involve multivariate relations. The adjacency matrices derived from 
simple priors struggle to characterize such relations. Therefore, accurately extracting 
multivariate relations as priors is essential for improving both the accuracy and inter
pretability of GNN-based models. However, achieving this remains a significant tech
nical challenge.

2.2. Prediction modes in spatiotemporal prediction models

Spatiotemporal prediction modes can be primarily divided into deterministic and 
probabilistic ones. Deterministic prediction, which generates single-point estimates, 
has been widely used in predicting the urban intensity of human activities, traffic flow, 
air quality and movement trajectories (Wang, et al. 2025c, Hong et al. 2023, Lun et al. 
2025, Wang et al. 2024, 2023, Zhao et al. 2025). However, its inability to quantify 
uncertainty limits identification of regions at risk of extreme values. In contrast, prob
abilistic prediction offers greater flexibility. By producing both point estimates and 
uncertainty intervals, these models provide a deeper understanding of potential 
extreme values (Ryu et al. 2019, Abdar et al. 2021, Gawlikowski et al. 2023, Wen et al. 
2023). This strength has led to its widespread adoption in weather forecasting and 
groundwater estimation (Liu et al. 2020, Zhu et al. 2025). However, the flexibility often 
comes at the cost of reduced accuracy and lower efficiency. Deterministic models can 
mitigate these shortcomings by offering high precision and efficiency. Therefore, a 
dual-mode prediction framework is needed to let users choose prediction modes 
based on specific requirements. However, most existing models remain single-modal 
and provide either deterministic or probabilistic predictions exclusively. Developing an 
architecture that can transition seamlessly between the two modes remains a major 
technical challenge.

2.3. Challenges and solutions

Two key challenges persist in this domain. First, existing graph-based models struggle 
to capture multivariate relations between geographic entities in urban systems. They 
fail to incorporate this relational knowledge as priors when constructing adjacency 
matrices. Second, few studies have proposed a unified framework that combines 
deterministic and probabilistic prediction. It is difficult for users to leverage their 
respective strengths and adapt to task-specific demands.

To address these challenges, we proposed a novel PED-STGNN, which incorporates 
a hypernode2vec method to extract multivariate functional similarity from POIs and to 
use this prior for constructing adjacency matrices. In addition, we introduced a plug- 
and-play probabilistic prediction module that enables seamless switches between the 
two prediction modes within a unified architecture.
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3. Methodology

3.1. Problem definition and the framework of PED-STGNN

We represented the study area as a graph and employed a graph-based approach for 
spatiotemporal modeling, which leverages the flexibility of GNNs to capture complex 
spatial dependencies. As shown in Figure 1(a), we modeled the study area as a graph 

structure G ¼< V , E, A >, where V ¼ vif g
N
i¼1 denotes the set of N graph nodes (i.e. 

urban regions), E represents the set of edges between nodes, and A 2 RN�N is the 
adjacency matrix (Ai, j indicates the connection between nodes vi and vj). Figure 1(b)

illustrates the input and output of the model. xt 2 RN�1 denotes the human activity 
intensity across all the graph nodes at time t: We aimed to learn a mapping from his

torical node features to future values, defined as X̂ ¼ f Xð Þ; where f denotes the pre

diction model. X ¼ xt−Qþ1, xt−Qþ2, . . . , xtf g 2 RN�Q represents the input data. 

X̂ ¼ x̂ tþ1, x̂ tþ2, . . . , x̂ tþL
� �

2 RN�L denotes the predicted output. Q is the length of the 
historical window and L is the prediction horizon.

Figure 2 presents the overall framework of the proposed PED-STGNN. It consists of 
three primary modules: a multivariate functional similarity prior learning module based 
on hypernode2vec, a prior-enhanced spatiotemporal dependency learning module 
and a plug-and-play probabilistic prediction module. The first module extracts the 
multivariate functional similarity prior between urban regions by using a hypergraph- 
based structure. The second module integrates the prior into the GNN architecture to 
improve both prediction accuracy and interpretability. The third module enables PED- 
STGNN to switch seamlessly between probabilistic and deterministic prediction modes. 

Figure 1. Relevant definitions.
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To maintain computational efficiency, we precomputed the multivariate functional 
similarity prior offline, which eliminated additional cost during training and inference.

3.2. Multivariate functional similarity prior learning based on hypernode2vec

Temporal patterns of residents’ activities are closely related to urban functions. 
Characterizing functional similarity and incorporating it as sparse constraints on the 
parameters of deep learning models can significantly improve both accuracy and inter
pretability. POIs are widely used to explicitly represent urban functions (Yao et al. 
2017, Niu and Silva 2021). Previous studies used the distances between POI sequences 
to quantify functional similarity and to construct corresponding graph structures 
(Geng et al. 2019). However, relying solely on sequence distance introduces bias and 
reduces precision. First, the limited variety of POI types hinders the accurate represen
tation of complex and diverse urban functions. Second, regions with mixed functions 
often experience temporal shifts in the dominant function, such as office use during 
the day and entertainment use at night. Sequence-based approaches oversimplify 

Figure 2. Illustrations of PED-STGNN.
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these time-sensitive patterns and may overlook the temporal importance of specific 
functional roles. To overcome these limitations, we proposed a novel framework called 
hypernode2vec. This framework captures functional similarity between urban regions 
by first learning a hypergraph weight matrix in a self-supervised manner and then 
constructing a prior adjacency matrix.

Figure 3 illustrates the rationale for using hypergraphs to model multivariate func
tional similarity. The complex relations between urban regions and functions resemble 
hypergraph structures: an urban region with multiple functions corresponds to a 
hypergraph node connected to several hyperedges, while a function spanning mul
tiple regions corresponds to a hyperedge connecting multiple nodes. Based on this 
analogy, we constructed a hypergraph GH ¼< VH, EH, WRegion−Func > to represent the 

multivariate relations between urban regions and functions. In this structure, VH ¼

vH:if g
N
i¼1 denotes the set of N hypergraph nodes (i.e. N urban regions); EH ¼ eH:jf g

M
j¼1 

denotes the set of M hyperedges (i.e. M urban functions) and WRegion−Func 2 RN�M is 
the hypergraph weight matrix encoding the connections between nodes and hyper
edges. The connections represent the relations between regions and their functions. It 
is important that the hypergraph was used only to support the subsequent GNN mod
eling and was not an independent prediction framework.

As described earlier, the hypergraph weight matrix encodes multivariate relations 
between urban regions and diverse functions. To learn this matrix and accurately cap
ture these relations, we adopted a self-supervised learning framework. Figure 4 illus
trates the workflow of learning the hypergraph weight matrix. First, we initialized a 
matrix of shape N�M and computed the initial hypergraph weight matrix WRegion−Func 

by using a one-dimensional convolution and a softmax function. Second, we con
structed training samples ~MRegion−POI by perturbing the original ‘Region-POI matrix’, 
which we overlaid reclassified POIs on urban regions to generate. The perturbations 
included random row masking, row substitution and row retention. The perturbed 
matrix served as the input for self-supervised learning. Finally, we minimized the 

Figure 3. Rationale for using hypergraphs to model multivariate functional similarity.
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difference between the predicted and the original ‘Region-POI matrix’ to derive the 
learned WRegion−Func: Equation (1) summarizes the process:

WRegion−Func ¼ softmaxðConv1DðWRandomÞÞ

M̂Region−POI ¼ FNNðHGCNð ~MRegion−POI, WRegion−FuncÞÞ

�

(1) 

where WRandom 2 RN�M is the randomly initialized matrix; Conv1D denotes a one- 
dimensional convolution with a kernel size of 3; ~MRegion−POI 2 RN�P denotes the per
turbed ‘Region-POI matrix’, where P is the number of reclassified Amap POI categories 
in Table 1; HGCN represents the hypergraph convolution operation; FNN denotes the 
feedforward neural network, M̂Region−POI is the predicted ‘Region-POI matrix’.

Although we derived the matrix WRegion−Func; it cannot be directly used to augment 
GNN because its shape differs from that of a standard adjacency matrix. To address 
this issue, we generated a prior adjacency matrix compatible with the GNN input 
based on WRegion−Func: Figure 5 illustrates the workflow. Inspired by node2vec (Grover 
and Leskovec 2016), which samples node sequences based on adjacency matrices, we 
probabilistically sampled hypergraph node sequences from the hypergraph weight 
matrix. We then used the skip-gram method to obtain the hypergraph node embed
dings and computed the pairwise similarity between the nodes. For each row in the 

Figure 4. Workflow of learning the hypergraph weight matrix.

Table 1. Reclassification of Amap POIs.
Original first-level categories Reclassification categories

Scenic spots Recreation category
Science, education and cultural services Science, education and cultural service category
Offices and corporations Work category
Government agencies and social organizations
Automobile sales
Business-oriented residences Residence category
Passage facilities Transportation category
Transportation facilities services
Automotive repair Basic living support facility category
Automotive services
Public facility
Motorcycle services
Lifestyle services
Financial and insurance services
Accommodation services Consumption category
Sports and leisure services
Shopping services
Catering services
Healthcare services Healthcare service category

8 C. ZHONG ET AL.



Figure 5. Generation process of the prior adjacency matrix.

resulting similarity matrix, we assigned 1 to the top-k values and 0 to the others. 
Consequently, we obtained the prior adjacency matrix APrior; where the ratio k=N is k1:

3.3. Prior-enhanced spatiotemporal dependency learning

Priors help mitigate the reduced accuracy caused by sampling bias and the poor inter
pretability due to the black-box nature of data-driven models (Wang and Zhu 2024, 
Yang and Wu 2025). By incorporating causality or semantic constraints into an explicit 
modeling framework, priors improve both accuracy and interpretability. To integrate 
these benefits, we designed a prior-enhanced spatiotemporal dependency learning 
module, which improves the performance and interpretability of conventional GNN 
architectures.

Figure 6 presents the workflow of the prior-enhanced spatiotemporal dependency 
learning module. The module includes two temporal convolution layers and one prior- 
enhanced GNN layer. In the GNN layer, we used the prior adjacency matrix APrior to 
enhance the conventional GNN. The forward propagation process of this module is 
described in Equation (2):

~H ¼ TempConvðXÞ
~h

Prior
k ¼ ReLU

P
l2 ljAPrior k, l½ �¼1f g akl � ~h l·WPrior

� �
2 ~H

Prior

~h
Classic
m ¼ ReLU

P
n2 njAClassic m, n½ �¼1f g amn � ~hn·WClassic

� �
2 ~H

Classic

Hst ¼ ReLUðConcat ~H
Prior

, ~H
Classic

� �

·WstÞ

Hout ¼ TempConvðHstÞ

8
>>>>>>>><

>>>>>>>>:

(2) 
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where X 2 RN�Q denotes the input human activity intensity across N urban regions 

over Q historical timesteps; Hout is the output of the prior-enhanced spatiotemporal 

dependency learning module; Hst is the intermediate representation of spatiotemporal 
features; TempConv denotes the temporal convolution operation. The matrix APrior 

introduced in Section 3.2 guided the forward propagation process. Specifically, l 2

ljAPrior k, l½ � ¼ 1
� �

indicates the process was constrained by the prior implicitly repre

sented in APrior: AClassic is the conventional adjacency matrix, which was constructed by 
using Wasserstein distance between region-wise activity sequences (Lan et al. 2022). 
Similarly to APrior; we assigned 1 to the top-k’ smallest values and 0 to the others. with 

the ratio k �=N defined as k2; akl and amn are the attention scores; WPrior 2 Rh�h;

WClassic 2 Rh�h and Wst 2 R2h�h denote learnable weights matrices with h being the 

hidden dimension; ~hl 2 ~H and ~hn 2 ~H denote the hidden features of urban regions l 

and n; respectively; ~h
Prior
k 2 ~H

Prior 
denotes the output features of the kth region via the 

prior adjacency matrix and ~h
Classic
m 2 ~H

Classic 
is the output features of the mth region 

via the classic adjacency matrix; Concat ~H
Prior

, ~H
Classic

� �

denotes the concatenation 

operation, i.e. the process of enhancing the classic GNN by using prior knowledge. 
Residual connections were incorporated into the GNN to prevent problems such as 
gradient explosion or vanishing.

3.4. Plug-and-play probabilistic prediction

Unlike deterministic prediction, probabilistic prediction provides uncertainty estimates 
to support the identification of regions susceptible to extreme values (Liu et al. 2020, 
Gawlikowski et al. 2023, Gao et al. 2024). However, not all application scenarios require 
uncertainty quantification. In scenarios where uncertainty is unnecessary, probabilistic 
prediction may reduce both computational efficiency and predictive accuracy. To sup
port various application scenarios, we developed a plug-and-play probabilistic 

Figure 6. Workflow of prior-enhanced spatiotemporal dependency learning.
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Figure 7. Workflow of plug-and-play probabilistic prediction module.

prediction module, which enables users to switch between deterministic and probabil
istic outputs according to specific requirements.

Inspired by Bayesian neural networks based on variational inference, we learned 
the distributions of multilayer perceptron (MLP) parameters to enable probabilistic pre
diction (Abdar et al. 2021). Figure 7 illustrates the workflow of the plug-and-play prob
abilistic prediction module. We employed the reparameterization trick to sample 
parameters from the learnable variational Gaussian distribution Nðl̂, r̂Þ; where l̂ and 
r̂ denote the learnable mean and standard deviation, respectively. We fed Hout in 
Section 3.3 and the sampled parameters into a probabilistic MLP to obtain the pre
dicted values. Equation (3) describes this process:

sProb ¼ l̂ þ e� r̂, e � Nð0; 1Þ
X̂ ¼ Prob MLPðHout; sProbÞ

�

(3) 

where Prob MLP denotes the probabilistic MLP, with its parameters modeled as distri
butions instead of deterministic values; sProb represents all the sampled parameters; e 
is a random variable drawn from a standard Gaussian distribution; X̂ denotes the pre
dicted values. Drawing on the bootstrap method (DiCiccio and Efron 1996), we esti
mated the predicted values by averaging across repeated resamples and quantified 
uncertainty by using 95% confidence intervals. When single-value parameters (instead 
of sProb) are used in Prob MLP; the module simplifies to a standard MLP for determinis
tic prediction. This design enables dual-mode prediction.

For probabilistic prediction, we first computed the root mean square error (RMSE) 
between predicted and true values. We then constructed a loss function by combining 
RMSE with the Kullback-Leibler (KL) divergence between the learnable variational dis
tribution and a predefined posterior distribution, Nðl, rÞ based on Liu et al. (2020). 
Equation (4) describes the details:

KL ¼ logr − log r̂ þ
r̂2 þ ðl̂ − lÞ

2

2� r2
−

1
2
Þ

Loss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iðx̂ i − xiÞ
2

n

s

þ b� KL

8
>>>><

>>>>:

(4) 
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where KL denotes the KL divergence; x̂ i denotes the ith predicted value; xi denotes 
the ith true value; b is the regularization coefficient. For deterministic prediction, we 
adopted RMSE as the loss function.

3.5. Model evaluation

3.5.1. Evaluation metrics
We assessed model accuracy by using three metrics: RMSE, mean absolute error (MAE) 
and mean absolute percentage error (MAPE). The equations show the details:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i ðx̂ i − xiÞ
2

n

s

(5) 

MAE ¼

P
i x̂ i − xij j

n
(6) 

MAPE ¼

P
i

x̂ i−xi
xi

�
�
�

�
�
�

n
� 100% (7) 

where x̂ i denotes the ith predicted value; xi is the ith true value; n is the total number 
of samples.

3.5.2. Baseline models
We selected several baseline models including both deterministic and probabilistic 
ones for comparison with our proposed model.

1. STGCN (Yu et al. 2018): STGCN is a deterministic prediction model that integrates 
graph convolutional network (GCN) and gated convolutional neural network 
(CNN). GCN is used to learn spatial dependencies and gated CNN is used to cap
ture temporal dependencies. This model is widely used for spatiotemporal predic
tion tasks.

2. ASTGCN (Guo et al. 2019): ASTGCN is a deterministic model that incorporates GCN 
and CNN. The model is further enhanced with an attention mechanism to select
ively weight input features. It effectively captures key spatiotemporal dependen
cies in the data.

3. T-GCN (Zhao et al. 2020): T-GCN is a deterministic model that combines GCN with 
a gated recurrent unit (GRU). It uses GCN to learn spatial dependencies and uses 
GRU to extract temporal features.

4. STHGCN (Wang et al. 2021): STHGCN is a deterministic prediction model that con
structs a hypergraph from historical traffic data and metro station topologies. It 
uses hypergraph convolution for spatial learning and GRU for temporal learning.

5. ASTGCRN (Liu et al. 2023): ASTGCRN is a deterministic model based on the graph 
convolutional recurrent network (GCRN) framework. It incorporates an attention 
mechanism to improve the representation of both temporal and spatial features.

6. SVGP (Titsias 2009): Sparse variational Gaussian process (SVGP) is a probabilistic 
model that approximates Gaussian processes by using sparse variational inference 
and inducing points. This approach significantly reduces computational cost while 
maintaining probabilistic interpretability.

12 C. ZHONG ET AL.



7. STNN (Liu et al. 2020): STNN is a probabilistic deep learning model for spatiotem
poral prediction. It employs a multi-layer structure that combines the convolu
tional gated recurrent unit (ConvGRU) with CNN. This model provides accurate 
probabilistic predictions of wind speed.

4. Experiment

In this section, we present the study area and the experiments we performed. We con
ducted a series of experiments to explore the following research questions:

RQ1: Does the prior learned through hypernode2vec improve predictive accuracy?
RQ2: Does the prior learned through hypernode2vec enhance interpretability?
RQ3: Does the plug-and-play probabilistic prediction module function as intended?
RQ4: How does PED-STGNN perform compared with existing models?

4.1. Study area, data preprocessing and experimental settings

As shown in Figure 8, the study area comprises the Gulou, Taijiang and Cangshan 
Districts of Fuzhou City, Fujian Province, China. These urban districts are characterized 
by large populations and high human activity intensity. Consequently, they are well- 
suited for evaluating spatiotemporal prediction models. We partitioned the area into 
885 regular grid cells, with each cell measuring 500 m� 500 m. Human activity inten
sity was derived from anonymized mobile location data and used for model training, 
validation and testing. As summarized in Table 2, the dataset includes anonymized 
user IDs, geolocation coordinates (latitude and longitude), and timestamp information. 
Raw mobile location data are prone to noise and inconsistencies because of phenom
ena such as the ping-pong and drift effects (Nalin et al. 2024, Song et al. 2024). The 
ping-pong effect refers to spurious location switches between adjacent base stations 
caused by signal fluctuations. Drift describes gradual deviations from true positions 
caused by signal interference (e.g. from buildings), hardware or software limitations 
and cumulative environmental errors in positioning systems. We preprocessed the raw 
data through deduplication, outlier removal and filtering of ping-pong and drift 
effects. Then, we aggregated the number of individuals within each region at 15-min 
intervals as human activity intensity. To ensure temporal representativeness across 
weekdays and weekends, we designated data from 1 March to 21 March 2023 as the 
training set, 22 March to 25 March 2023 as the validation set and 26 March to 28 
March 2023 as the test set. We conducted hyperparameter tuning to optimize model 
performance. We set the number of input historical timesteps as 9, the hidden dimen
sion as 512, and the prior, classic sparsification thresholds k1, k2 (Sections 3.2 and 3.3) 
0.02 and 0.03, respectively. Based on iterative experimentations, we set the regulariza
tion coefficient b (Section 3.4) as 0.01, l and r of the predefined posterior distribution 
for PED-STGNN (Section 3.4) as 0 and 0.1 and set the initial learning rate as 0.0001.
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4.2. Comparison with baseline models (RQ1)

To validate the accuracy of PED-STGNN, we first conducted a quantitative comparison 
under the deterministic mode. As shown in Table 3, ST-GCN achieved the best per
formance among all baselines, with an RMSE of 20.68 and an MAE of 11.73. Compared 
with ST-GCN, PED-STGNN reduced RMSE and MAE by approximately 10.3% and 11.6%, 

Table 2. Examples of mobile location data.
Anonymized IDs latitude/�E longitude/�N Start time

03244040-5cac-4ffc-9594-6073b5f589e7 118.168526 24.489397 2023/3/1 19:23
04974c4b-4dd7-44c1-9991-2ee3c892b8b3 121.251564 30.172546 2023/3/1 13:52
… … … …
1219f065-f87c-3562-bb4a-5067d58338aa 118.99641 25.430447 2023/3/1 20:22

Figure 8. Study area.
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respectively. While T-GCN showed the lowest MAPE among baseline models, PED- 
STGNN still outperformed it by approximately 9.1%. These findings underscore the 
benefits of incorporating the multivariate functional similarity prior. Unlike baseline 
models that rely on data-driven adjacency learning or simple priors, PED-STGNN incor
porates multivariate functional similarity between urban regions, which improves pre
diction accuracy. These results highlight the importance of appropriate priors for 
enhancing GNN performance in complex urban environments (Zhang et al. 2024, 
Wang et al. 2025d).

We then compared the probabilistic PED-STGNN with two sets of models: probabil
istic models derived from deterministic ones through the plug-and-play module and 
specialized probabilistic prediction models. As shown in Table 4, PED-STGNN demon
strated strong overall performance across all evaluation metrics. Specifically, it 
achieved the best RMSE and MAPE scores and outperformed the best baselines by 
approximately 9.3% and 14.2%, respectively. Although STNN – a deep learning model 
designed for probabilistic prediction – achieved the lowest MAE, PED-STGNN ranked a 
close second. It increased MAE by approximately 5.5%. Importantly, Tables 3 and 4
reveal that converting deterministic models to probabilistic ones can increase RMSE by 
up to 3.62 units. However, this moderate increase is acceptable given the substantial 
benefit of uncertainty quantification. Moreover, since human activity intensity typically 
ranges from hundreds to thousands, this minor loss of accuracy has limited impact on 
decision-making.

4.3. Sensitivity analysis of hyperparameters

To examine the robustness and the influence of the key hyperparameters on accuracy, 
we conducted a sensitivity analysis on k1 (from Section 3.2), k2 (from Section 3.3), the 
hidden dimension, and the number of input historical timesteps. First, we varied k1 

and k2 from 0.01 to 0.04 and used grid search to explore their effects. As shown in 

Table 3. Comparison with baseline models (deterministic mode).
Model RMSE MAE MAPE (%)

ST-GCN 20.68 11.73 23.73
T-GCN 22.14 11.76 19.06
ASTGCRN 22.99 12.40 20.45
STHGCN 24.22 14.87 19.58
ASTGCN 22.00 12.20 26.87
PED-STGNN (deterministic) 18.54 10.37 17.32

Note: The bold values indicate the best performance.

Table 4. Comparison with probabilistic baseline models.
Model RMSE MAE MAPE (%)

ST-GCN (with the plug-and-play probabilistic prediction module) 22.04 12.53 24.15
T-GCN (with the plug-and-play probabilistic prediction module) 25.76 12.99 19.68
ASTGCRN (with the plug-and-play probabilistic prediction module) 22.88 12.70 22.68
STHGCN (with the plug-and-play probabilistic prediction module) 25.15 13.05 19.71
ASTGCN (with the plug-and-play probabilistic prediction module) 23.86 12.45 22.25
STNN 25.41 10.41 46.64
SVGP 27.73 15.34 41.54
PGD-STGNN (with the plug-and-play probabilistic prediction module) 19.99 10.98 16.92

Note: The bold values indicate the best performance.
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Figure 9, the model demonstrated strong robustness to these parameters. RMSE fluc
tuated by only about 1.24. Generally, as k1 and k2 increased, RMSE first declined and 
then rose and reached its global minimum (18.54) when k1 and k2 were set to 0.02 
and 0.03, respectively. We then analyzed the sensitivity to hidden dimensions and 
tested values of 32, 64, 128, 256, 512, and 1024. As illustrated in Figure 10(a), the 
model was less robust to this parameter, with RMSE varying by about 1.9. The lowest 
RMSE occurred at the hidden dimension of 512. Lastly, we assessed the sensitivity to 
the number of input historical timesteps by setting it between 7 and 12. As shown in 
Figure 10(b), RMSE again varied by about 1.9, with the lowest RMSE occurring at the 
timestep of 9. These findings suggest that PED-STGNN is relatively robust to hyper
parameter changes, as the total RMSE fluctuated by no more than 2. The results also 
provide practical guidance for hyperparameter selection.

Figure 9. Sensitivity analysis of k1 and k2:

Figure 10. Sensitivity analysis of hidden dimension and input timesteps.
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4.4. Ablation experiments (RQ1)

To assess the individual contributions of our proposed modules, we performed a series 
of ablation experiments in the deterministic mode. As shown in Table 5, removing the 
prior-enhanced adjacency relationship resulted in an approximate 17.2% increase in 
RMSE, while excluding the classic adjacency relationship led to a 17.0% increase. 
Eliminating both adjacency structures forced the model to use a dense adjacency 
matrix and caused RMSE, MAE and MAPE to increase by 17.6%, 15.9% and 15.6%, 
respectively. These findings confirm that incorporating both prior and classic con
straints significantly enhances prediction accuracy in spatiotemporal GNN models.

4.5. Interpretability analysis of prior enhancement (RQ2)

To investigate whether hypernode2vec captured multivariate functional similarity, we 
randomly selected four regions with multiple urban functions. We extracted adjacency 
matrices across all timesteps in the test dataset and analyzed the corresponding rows 
for the selected regions. Over 99% of the rows contained only one nonzero entry, 
which indicates that the model concentrates on a minimal set of urban regions. For 
the rows corresponding to the selected regions, we identified the columns with the 
adjacency values of 1, aggregated the indices of these columns across all timesteps 
and recorded their frequencies. The regions corresponding to the two most frequent 
column indices were then labeled as closely connected to the selected regions. To 
determine the dominant urban functions of the regions, we referred to Baidu map, 
Amap and Amap POIs. Some of the closely connected region pairs and their dominant 
functions were subsequently visualized. As shown in Figure 11, despite functional het
erogeneity and spatial separation, the region pairs demonstrated high multivariate 
functional similarity. These pairs spanned a broad area of Fuzhou and included both 
frequent functions, such as residence and office, and less common ones, such as 
healthcare and recreation (e.g. parks and scenic spots). These findings indicate that 
hypernode2vec effectively captures functional similarity without spatial bias.

4.6. Qualitative analysis of prediction results (RQ3)

We conducted a qualitative analysis to evaluate the validity of the probabilistic predic
tions. From a temporal perspective, we randomly selected one region and compared 
the deterministic predictions with the probabilistic ones across all timesteps in the 
test dataset. As shown in Figure 12(a), deterministic prediction produced single-point 
estimates, while Figure 12(b) illustrates that probabilistic prediction provided both 
point estimates and prediction intervals. The uncertainty, quantified by these intervals, 

Table 5. The results of ablation experiments.
Ablation method RMSE MAE MAPE (%)

w/o Prior enhancement and classic adjacency relationship 21.81 12.02 20.02
w/o Prior enhancement adjacency relationship 21.72 11.94 19.22
w/o Classes adjacency relationship 21.70 11.94 18.94
PGD-STGNN (deterministic) 18.54 10.37 17.32

Note: The bold values indicate the best performance.
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exhibited clear diurnal periodicity. The intervals were broader between 7:00 and 22:00 
(corresponding to peak hours of urban activities) and narrower during nighttime. Such 
a temporal pattern aligns with well-established human mobility rhythms (Guo et al. 
2018, Yang et al. 2025). In practice, regions with high uncertainty are more vulnerable 
to extreme events and require proactive risk management such as preparing for sud
den crowd surges.

From a spatial perspective, we visualized the distributions of prediction uncertainty, 
actual human activity intensity and the risk of extreme values (the ratio of uncertainty 
to human activity intensity) at 2:30, 10:30 and 18:30 in the test dataset. As illustrated 
in Figure 13(d–f), uncertainty was higher in the northern regions than in the southern 

Figure 11. Visualization of regions closely connected in the adjacency matrix.

Figure 12. Comparative visualization of probabilistic and deterministic predictions.
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ones and much higher during daytime. These patterns align with both the population 
distribution shown in Figure 8 and the daily activity patterns of urban residents. For 
each time, we randomly selected one region exhibiting high uncertainty and then 
identified its primary urban functions by integrating remote sensing imagery, Baidu 
Map and Amap. As shown in Figure 13(a–c), these regions demonstrated diverse urban 
functions. The region in Figure 13(a) contained two major healthcare institutions, 
Fuzhou Chinese Medicine Hospital and Fujian Provincial Hospital. These institutions 
contributed to increased nighttime uncertainty at 2:30. The selected regions in Figure 
13(b,c) contained commercial zones, Shangri-La Commercial Center and Wanda Plaza, 
respectively. The high density of consumption-related entities contributed to the sharp 
fluctuations in human activity intensity and led to high uncertainty. Although uncer
tainty levels in these regions were relatively high, they remained acceptable relative to 
the actual human activity intensity shown in Figure 13(g–i). They did not compromise 
the reliability of the model’s predictions. Importantly, for risk prevention, regions 

Figure 13. Qualitative analysis of prediction results.
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prone to extreme values should be identified by jointly considering both uncertainty 
and observed human activity intensity (Cheong et al. 2020, Zhu et al. 2024). To this 
end, we computed the ratio of uncertainty to observed intensity as a proxy for relative 
risk. As shown in Figure 13(j–l), this analysis reveals distinct patterns of risk across 
urban regions, which highlights the spatial heterogeneity of extreme-value 
susceptibility.

5. Discussion

This section addresses RQ4. In this section, we summarize the improvements of PED- 
STGNN over conventional spatiotemporal prediction models and discuss its broader 
real-world applications. Most existing models struggle to capture multivariate relations 
between urban geographical entities, which leads to both accuracy loss and interpret
ability degradation. Additionally, the absence of dual-mode functionality restricts their 
flexibility and applicability in diverse real-world scenarios.

PED-STGNN addresses these limitations and represents a substantive advancement 
in the domain of spatiotemporal prediction by offering three key technological advan
tages. First, PED-STGNN improves prediction accuracy by approximately 10.3% in RMSE 
compared with baselines including ASTGCRN (Liu et al. 2023), ST-GCN (Yu et al. 2018), 
ASTGCN (Guo et al. 2019), STHGCN (Wang et al. 2021) and T-GCN (Zhao et al. 2020). 
The accuracy gain is primarily attributed to the incorporation of appropriate prior 
knowledge via the hypernode2vec framework. The framework captures semantic asso
ciations between regions with mixed functions and informs the construction of adja
cency matrices. It characterizes higher-level urban semantics compared with the 
models that rely on observed data or simple priors and accurately represents latent 
functional similarity, which enhances both generalizability and robustness. Second, the 
incorporation of the prior markedly improves interpretability. As discussed in Section 
4.5, PED-STGNN identified the linkages between the urban regions with shared but 
complex functions. This not only demonstrates the hypernode2vec’s ability to capture 
complex semantics but also provides a deeper understanding of the PED-STGNN’s pre
diction logic. Compared with black-box models, the interpretability allows users to bet
ter understand the rationale for the model’s outputs, which facilitates informed 
decision-making, improves user trust and enables the targeted refinement of the 
model design (Guo et al. 2022, Zhang et al. 2021, Kong et al. 2024). Third, the pro
posed plug-and-play probabilistic prediction module enables seamless switches 
between deterministic and probabilistic modes without significant accuracy loss. For 
deterministic models, this module allows the output of uncertainty in the form of con
fidence intervals, which has substantial practical significance (Liu et al. 2020, Lan et al. 
2022, Gao et al. 2024, Wang and Zhu 2024). For example, urban administrators may 
adopt probabilistic prediction in risk-sensitive scenarios, such as the prevention of 
crowd surge. In this scenario, the probabilistic mode supports the identification of 
regions where human activity intensity may exceed safety thresholds, which enables 
early intervention. In scenarios where uncertainty is unnecessary, the deterministic 
mode is preferred for its efficiency and accuracy. The plug-and-play design of this 
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component enhances the flexibility and real-world applicability of existing prediction 
models.

Despite these advantages, this study has some limitations: (1) when mobile phones 
are powered off or disconnected from Wi-Fi, the data may be unsampled or under- 
sampled, which introduces sampling bias; (2) we did not incorporate external influen
ces such as weather conditions or emergency events that may affect human activity, 
which limits the real-time density estimation during disruptive events; (3) because of 
dataset constraints, we were unable to assess model’s robustness across different sea
sons or geographical regions. To address these limitations, future research will focus 
on three areas: (1) integrating mobile location data with complementary sources, such 
as public transport smart-card records and bike-sharing demand to mitigate sampling 
bias; (2) incorporating meteorological and emergency data from official sources to 
enhance the performance during emergency events; (3) expanding the dataset both 
spatially and temporally to evaluate robustness in different seasons and regions.

6. Conclusion

In this study, we proposed a novel PED-STGNN that integrates multivariate functional 
similarity as a prior to enhance both predictive accuracy and interpretability. The 
model further incorporates a plug-and-play probabilistic prediction module that ena
bles users to switch between deterministic and probabilistic modes. Experiments 
based on mobile location data from Fuzhou demonstrated the model’s advantages in 
accuracy, interpretability and operational adaptability. Specifically, prior enhancement 
significantly increases predictive accuracy. Compared with the state-of-the-art baselines 
(STGCN and T-GCN), the model achieved a 10.3% reduction in RMSE, an 11.6% 
decrease in MAE, and a 9.1% improvement in MAPE. The prior also enhances the mod
el’s capacity to capture spatial dependencies among urban regions with similar func
tions, which provides more interpretable rationales for predictions. The plug-and-play 
probabilistic prediction module effectively transforms deterministic models into prob
abilistic ones while preserving relatively high precision. Compared with the best prob
abilistic baselines, PED-STGNN achieved a 9.3% reduction in RMSE and a 14.2% 
reduction in MAPE. In terms of MAE, it ranked second and achieved a 5.5% increase 
compared with STNN, a deep learning model specialized in probabilistic prediction. 
Overall, these advancements support the development of GeoAI by enhancing predict
ive accuracy and mitigating the black-box nature of deep learning models. They also 
expand the practical scope of geospatial decision-making.
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