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A Hybrid Data-Driven Framework for
Spatiotemporal Tratfic Flow Data Imputation

Peixiao Wang™, Tao Hu, Fei Gao, Ruijie Wu

Abstract—An accurate estimation of missing data in traffic flow
is crucial in urban planning, intelligent transportation, economic
geography, and other fields. Thus, improving the data quality
of traffic flow is a necessary step in data modeling. Most exist-
ing studies use data-driven models to determine spatiotemporal
patterns in traffic flow data and fill in the missing information
automatically. However, simple data-driven models have unsatis-
factory results for describing complex patterns in traffic flow and
filling in missing data. This study treated the complex patterns in
traffic flow as integrating multiple simple patterns and proposed
a hybrid missing data imputation framework called ST-PTD. We
used a specific time-series analysis to mine periodic patterns and
proposed a novel matrix decomposition method to describe the
trend of the traffic flow data. Furthermore, we fused the periodic
and trend characteristics of the missing data using a novel den-
dritic neural network. We applied the framework in actual traffic
flow data sets collected in Wuhan, China. The results showed that
the ST-PTD framework outperformed the eight existing baselines
in terms of imputation accuracy.

Index Terms—Dendritic net, matrix factorization, missing
traffic flow data, spatiotemporal data imputation.

I. INTRODUCTION
A. Motivation

S SPATIOTEMPORAL data, traffic flow is widely used

in many fields, such as urban planning, intelligent trans-
portation, and economic geography [1]-[4]. However, due
to limitations in data collection and privacy issues, incom-
plete traffic flow data are widespread, which restrict the
performance of spatiotemporal data mining methods [5]-[8].
Spatiotemporal analysis of incomplete data sets may pro-
vide unreasonable inference and assumptions. However,
directly omitting missing data is an inefficient data resource
utilization [7], [9]. To solve this problem, the objective of this
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study is to propose a missing data imputation framework based
on the patterns of traffic flow [10]-[12].

B. Related Studies

Existing missing data imputation methods can be divided
into two: 1) statistical learning and 2) data-driven methods.
Classical statistical methods assume missing data obey certain
mathematical rules in space and time dimensions and establish
a specific parameter model to describe the pattern of missing
data [13]. For example, the inverse distance weighting (IDW)
model assumes the data distribution in the spatial dimension
obeys the first law of geography and fills in the missing
value by calculating the distance between the missing data
and the observed data [14]. Kriging interpolation assumes the
spatial distribution of the observation data satisfies the second-
order stability and uses a covariance function to obtain the
optimal linear unbiased estimation of the missing data [15].
The autoregressive (AR) integrated moving average (ARIMA)
and simple exponential smoothing (SES) methods assume the
observation data satisfy the time stationarity in the time dimen-
sion and infer the missing data based on the observation data of
the preceding several moments [16], [17]. Some studies con-
sider the characteristics of missing data in time and space
and establish the corresponding statistical model, such as ST-
IDW, ST Kriging, ST-ARIMA, and P-BSHADE [18]-[21].
Although classical statistical methods have been widely used
in missing data imputation, achieving excellent results in traffic
flow data set remains difficult. The classical statistical methods
are based on strict assumptions, and the actual traffic envi-
ronment deviates from this. In addition, the traffic flow data
have complex spatiotemporal patterns, which are difficult to
describe using specific mathematical formulas [22].

With the rapid development of artificial intelligence and
high-performance computing, data-driven models have grad-
ually become the mainstream in missing data imputation.
Data-driven methods, such as machine learning, matrix fac-
torization, neural networks, and deep learning, do not require
data sets to obey specific mathematical rules but establish
nonparametric models to automatically mine the spatiotem-
poral characteristics to impute the missing values [23]. For
example, Chang and Ge [24] applied a variety of traditional
matrix decomposition models for traffic flow data imputation
and compared the performance of their models. Asif et al. [12]
proposed a variant matrix factorization model based on tradi-
tional methods to extract global traffic patterns in large-scale
road networks, estimating missing values in traffic flow data.
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Yu et al. [25] integrated time dependence into the traditional
matrix factorization model and proposed a new temporal regu-
larized matrix factorization (TRMF) to estimate missing values
in traffic flow data. Chen et al. [26]—-[28] extended matrix fac-
torization to tensor factorization, mining the missing patterns
in traffic flow data from a higher dimensional perspective to
impute the missing values in the data set. In addition, rel-
evant studies apply deep learning algorithms to reconstruct
missing data and achieve good results [29], [30]. For instance,
Cheng et al. [31] used extreme learning machine (ELM) to
integrate IDW and SES algorithms and proposed a lightweight
missing data interpolation model. Li et al. [6] combined
deep neural networks and P-BSHADE algorithm to propose a
hybrid two-step estimation framework. Compared to classical
statistical methods, data-driven methods do not require prior
knowledge and explicit mathematical expressions and have
reliable data imputation results. However, when the spatiotem-
poral pattern in the missing data set is more complex, simple
data-driven models often cannot obtain satisfactory data filling
results. The reason is that simple data-driven models cannot
adequately describe the complex spatiotemporal patterns in
missing data sets.

C. Strategy

Though missing data imputation gains interest, especially
for traffic data quality enhancement, its reliability issues per-
sist; i.e., spatiotemporal patterns in the traffic flow are not
only difficult to describe using specific mathematical expres-
sions but also to automatically capture by simple data-driven
models [32]. To address this problem, inspired by multiview
learning [33], [34], we treated the complex patterns in traf-
fic flow as integration of multiple simple patterns, established
a unique data-driven model for a single pattern, and finally,
improved the performance of missing data imputation by
fusing the data imputation results of different models.

The research shows that traffic flow data have typical trend
and periodic characteristics [35]. To simultaneously charac-
terize the trend and periodicity of the missing traffic flow, a
hybrid traffic flow imputation framework called ST-PTD is
proposed. First, a specific time-series model is used to mine
the periodic patterns of the traffic flow. Then, a novel matrix
factorization method considering bidirectional temporal depen-
dence is proposed to describe the trend characteristic of traffic
flow. Finally, we used a new dendritic neural network to obtain
the final imputation results. This study provided the following
significant contributions.

1) According to the trend and periodic characteristics of
traffic flow, we defined two different processing strate-
gies. Specifically, we used a specific time-series analysis
to mine periodic patterns and proposed a novel matrix
decomposition method to describe the trend of the traffic
flow data. By manually extracting periodic and trend-
ing features, we alleviate the difficulty of the model to
automatically mine complex traffic patterns.

2) We introduced a novel dendritic neural
network (DD) [36] to fuse the results of multiple
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Fig. 1. Data structure of the traffic flow data.

models. This improved the practicability of simple
data-driven model in traffic flow data imputation.

3) We evaluated the performance of the ST-PTD framework
using actual traffic flow data. The results demonstrated
the advantages of our framework compared to eight
baseline methods.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

In this study, we regarded traffic flow data as a spatiotem-
poral matrix with missing data X(S,7), where S = {s;}i"
represents the spatial dimension index of data, T = {z‘j}j’;:1
represents the time dimension index of data, m represents the
total number of spatial objects, and »n is the total number of
timestamps. As shown in Fig. 1, X(s, 1) = ¢ indicates that
the traffic flow data of the spatial object s, at the time stamp
1 are missing.

This study aims to estimate the missing traffic flow data
according to observed traffic flow data, and the process is
shown in

XS, T)= M<X(S,T)
Vi) e, X(sih)=¢ (D
Vi) € @, X(si1)#¢

where X(S,T), M, X (S, T), and Q2 represent the spatiotem-
poral matrix with missing data, the missing data imputation
framework proposed in this study, the spatiotemporal matrix
obtained after imputation, and an indexed collection of missing
data, respectively.

III. METHODOLOGY

In this section, we describe the proposed hybrid frame-
work called ST-PTD for traffic flow data imputation, whose
structure is presented in Fig. 2. The ST-PTD framework
is mainly composed of three parts: 1) spatiotemporal peri-
odic matrix modeling; 2) spatiotemporal trend matrix fac-
torization; and 3) multiple fusion, which are discussed in
Sections III-A-III-C, respectively. First, a specific time-series
analysis was used to mine the periodic patterns of traffic
flow data. Then, a novel bidirectional AR matrix decompo-
sition (BiARMF) method was proposed to describe the trend
information of traffic flow data. Finally, a novel DD network
was used to fuse the periodic and trend characteristics of the
missing data to obtain the final imputation result.
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Fig. 3. Schematic of the spatiotemporal periodic matrix.

A. Modeling of the Spatiotemporal Periodic Matrix

Periodicity is a typical daily or weekly repetition pattern of
traffic flow data. To use the traffic flow periodic pattern, we
constructed a spatiotemporal periodic matrix of the traffic flow.
Fig. 3 shows the data structure of the spatiotemporal periodic
matrix, where p, m, and n represent the size of the period, the
number of roads, and the number of time periods, respectively.
The following are two advantages in exploring the missing
pattern of traffic flow data from their periodicity: first, the
data from each road in the spatiotemporal periodic matrix is
stable in time; that is, the traffic flow data fluctuate around the
mean value, making it conducive for mathematical modeling.
Second, the adjacent data in the spatiotemporal periodic matrix
have a time difference of period, which alleviates the impact
on missing data imputation.

Based on the stable characteristics of the spatiotemporal
periodic matrix, the filling value of traffic flow on different
roads can be defined by

PP = uij + blj
Vo = g + by
931- = uszj + b3; 2)

NP .
Vigj = Umj + bunj
where f)ffj represents the estimated value of road s, at the
time #; with time step p as the period; u,,; represents the mean
value of observable data of road sy, at the time {z;1;,}7_, with

time step p as the period, that is, the traffic flow of s, at

{ti+ip)i_, fluctuates around u;;; and b,,; represents the opti-
mized parameter, that is, the bias of the traffic flow of road
Sm at time {tj+,-p};’:0 relative to the mean uy;. In (2), ﬁff;-, Upnjs
and b, are scalars.

Taking road s, as an example, the value of b,; can be
trained by minimizing the square loss between the estimated
and true traffic volume. The loss function is defined by

L (bug) = % > (- v,,,,-)2 3

JESn

where €2, represents the index set of missing data in road
Sm, that is, the only cumulative loss of the square error of the
observable data; GZ} represents the estimated traffic flow from
the periodic view; and vy, represents the expected output of
the model.

B. Factorization of the Spatiotemporal Trend Matrix

Compared to the periodic characteristics of traffic flow, its
trends are more complicated. Fig. 4 shows the data structure
of the spatiotemporal trend matrix, and the adjacent elements
of the spatiotemporal trend matrix in the time dimension differ
by only one time window. That is, the traffic flow trend of a
road at a specific time is affected by its surrounding roads and
moments. In order to describe the correlation between time and
space and to automatically extract the trend features in the traf-
fic flow, a matrix factorization model is often used. However,
the traditional matrix factorization model only determines the
spatiotemporal trend matrix from spatial and temporal state
matrices but does not explicitly define the trend characteris-
tics in the traffic flow. Thus, BIARMF method was proposed
to fill in the missing information in the traffic flow data set.

The BiARMF method is derived from the AR model, where
the state at the current moment is equal to a linear combination
of the state at previous moments [37]. Considering the time
lag in the AR model, we introduced the trend characteristics
of traffic flow from two directions (forward and backward). As
shown in Fig. 4, the spatiotemporal trend matrix STM € R™*"
is decomposed into the spatial state matrix SSM e R"™*k
and the temporal state matrix TSM € R¥*". Additionally, the
temporal state matrix T7SM implies trend dependence. Taking
time f,_» as an example, the forward and backward trend
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Fig. 4. Schematic of the spatiotemporal trend matrix factorization.
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Fig. 5. Fusion of multiple results.

dependence of tsm,,_, € TSM is expressed

tsmy,_o ~ Z;:,?_z_]f 0{ ®tsm,- lf >1

tsm,_o ~ Z"_ZH” 0 Qtsm; 1 > 1

i=n—1

STM = SMM © TSM s.t.{
4)

where tsm,_, € RK*! represents the time state vector of
traffic flow at time 7,_, and k is the hyperparameter in the
traditional matrix decomposition; /s and I, are hyperparam-
eters, which represent the time-dependent length of forward
and backward directions, respectively; 0’: e R and 05’ €
R¥*1 are optimizable parameters, representing forward and
backward time-dependent weights (vectors), respectively; X)
represents the multiplication of vectors; and ® means matrix
multiplication.

The solution of matrix factorization considering trend con-
straints differs from that of traditional matrix factorization.
The BiARMF model parameters were optimized by adding
the bidirectional time dependency. To simplify the opera-
tion, we decomposed the bidirectional time dependence on
two unidirectional time dependencies, and the loss function is
expressed

L(SSM, TSM, ©;, ©)

1. 2
=> E(vf; —ssm{®tsmj) + R(TSM|®y, If) + R(TSM|®y, I;) )
i)ge
T
R(TSMI®y. ) = 1, (isme = X5, 0], @tsm) (tsmy — 37 0, @ tsm)
T
RATSMI®y. 1) = 07" (tsm; — Y4, 0 @tsmy) (tsm, — T3, 07, @ tsm)

(6)

where ssm; € SSM represents the spatial status vector of the
road s;; tsm; € TSM is the time status vector at the moment #;;
Iy, Iy, 02, and 0; have the same definition in (4); 2 represents
the index set of missing data; and f)fi’ represents the estimated

Y
DD Modules

Dimension reduction

value (scalar) of the road s; at time #; considering the forward
and backward trend.

C. Multiple Fusion

Based on the characteristics of traffic flow periodicity and
trend, two different data-driven models have been established,
but each model has a limited description of the missing pattern.
Therefore, we attempted to fuse the results of different data-
driven models to improve the accuracy of missing data filling.
Considering the discernible logical relationship between data
filling results from different perspectives (the results of data
filling under multiple models are essentially different manifes-
tations of the missing patterns of traffic flow), the DD network
was used to fuse the different data imputation results.

The DD network is a new deep learning method based on
gang neuron, which completes the function mapping from
input to output by learning the logical relationship in the
data [36]. Compared to the traditional cell body network, the
DD network has low computational complexity and control-
lable precision. As shown in Fig. 5, the DD network adopted
in this study is mainly composed of three parts. First, fz;‘} and
f)f;’ enter the DD modules through linear dimension elevation.
Then, the final data fusion result \3;-“ is obtained through linear
dimension reduction. The process of data fusion is expressed

P8t
X = o(We ©) (S’f,))
Vij

A*=w>A'oX
AP =w3A20oXx @)
AL : “’i].L.’l:_lAL_l 0 X

P = o (WAL
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Algorithm 1 Training Process of ST-STD
Require: Training samples : X = {v;;}
Missing rate : ¢
Hyperparameters of BiIARMF : I, [, k
Number of DD modules : num
Ensure: ST-STD model: M
1: construct Xo and 2 based samples X and miss rate ¢
/lobtain imputation results from periodic and trend views
2: construct SPM and STM based Xgo
3: construct {\Asz} by (2) and (3)
4: construct {O‘f}} by (5) and (6) with I, I, k
/lconstruct training instances
5: D0
6: for each (i,j) ¢ R do
7: put a training instance ({V;, f)‘?}, v;j) into D
ltrain ST-STD framework !
8: initialize the parameters W
9: repeat
10: randomly select a batch of instances D;, from D
11: find W by minimizing (8) with D; and num
12: until stopping criteria is met
13: output the learned ST-STD model M

where W¢ represents the weight matrix of linear dimension
elevation; W’ the weight matrix of linear dimension reduction;
WEL=1 the weight matrix of DD modules, where L is the
number of DD modules; AL the intermediate output of the DD
module, where Al=Xx ; © represents the Hadamard product;
and o the sigmoid activation function. From (7), the largest
difference between DD and cellular networks is that there is
no activation function in the DD module.

The DD network can be trained by minimizing the square
loss between the fused and true traffic volumes. The loss
function is defined

2
Vij)

where W represents all learnable parameters in the DD
network, i.e., W¢, W', and W-L=1. @ are the index set of
missing data, fszs the fusion result of DD network; and v,
the expected output of the model.

1 -
LW =33 (vg“ -
(i) ¢S

®)

D. Algorithms and Optimization

The basic principle of the ST-STD framework is to estab-
lish a supervised learning method, which takes the data filling
results from periodic and trend perspectives as the input of
the DD network to estimate the final missing traffic flow
information. In order to train the ST-STD framework, the
traffic flow data are divided into training and test samples.
The training samples are used to train the parameters of the
framework, while the test data are used to test the imputa-
tion performance. The training process of framework M is
shown in Algorithm 1. Based on the training samples X, we
constructed a spatiotemporal matrix Xg with missing rate c,
where € records the index of missing data (line 1). Then, the
interpolation results of the missing data are obtained from the

}N\ Wuhan (a)
° *
e ?
2 p 7
]
L 4
o ? : ® ¢
o ® L] *
) * * . X
? L% B (]
9 8 °
¢ L/
0 03 06 12 g
— — ®  Camera Location
‘N\ Wuhan (b)

Legend

Traffic Road Network|

Fig. 6. Sketch map of the study area. (a) Spatial distribution of the
experimental cameras. (b) Spatial extent of the road network.

TABLE I
FIELD INFORMATION OF AVI DATA

Field Name Field Type Description
Camera ID Number Camera unique identifier
Plate number String License plate number
Capture Time Time Time of photo shooting
Latitude Number Latitude of the camera
Longitude Number Longitude of the camera

periodic and trend perspectives (lines 2—4). Finally, the inter-
polation results from multiple perspectives and truth values
are combined to form training instances (lines 6 and 7) to
optimize the final ST-STD framework (lines 9—12).

IV. RESULTS AND DISCUSSION
A. Data Preparation

1) Data Sources: Two data sets were used to evaluate the
performance of the ST-PTD framework: 1) the automatic vehi-
cle identification (AVI) data and 2) vehicle trajectory data in
an area in Wuhan, China.

The AVI data are based on the license plate recognition
technology, and the geographic coordinates of the vehicle in
the road space are automatically derived from the photos taken
by the camera. The AVI data were gathered last March 1-28,
2021, covering 44 cameras. Fig. 6(a) shows the spatial dis-
tribution of the experimental cameras. Table I describes the
field information of AVI data, in which the plate number is
encrypted to obtain a unique identification of the vehicle.

The vehicle trajectory data are based on GPS technology,
which automatically recognizes the position of a vehicle in the
road space. The timespan of the GPS data is from August 1,
2018, to August 28, 2018. Owing to the large number of all
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TABLE 11
FIELD INFORMATION OF VEHICLE TRAJECTORY DATA

Field Name Field Type Description
Vehicle ID Number Vehicle unique identifier
Time String Data recording time
Latitude Number Latitude of the vehicle
Longitude Number Longitude of the vehicle
TABLE I

DESCRIPTION OF THE PROCESSED DATA SETS

Dataset AVI Data GPS Data
Indicator Traffic volume Traffic Speed
Time interval 5 min 15 min
Period step 288 (60/15%24) 96 (60/15*24)
Spatial objects 44 181
Temporal objects 8064 (28*288) 2688 (28*96)
Timespan 2021/3/1-2021/3/28  2018/8/1-2018/8/28

trajectory data points in Wuhan, we limited the study area of
the trajectory data. Fig. 6(b) shows the limited spatial area of
trajectory points in the experiment. Table II describes in detail
the field information of the GPS data.

2) Data Preprocessing: Although the AVI and GPS data
record vehicle trajectory, they do not directly count the traffic
volume and traffic speed information on the road. Therefore,
data preprocessing is conducted for the original data using the
following preprocessing process.

1) For the AVI data, the traffic volume under different
devices was counted at the time interval of 5 min. For
the GPS data, we mapped the trajectory points to the
traffic road segments and then calculated the average
traffic speeds of different segments at the time interval of
15 min. Table III describes the numerical characteristics
of the processed data set.

2) To train the ST-PTD model, based on the two missing
types (i.e., random missing and block missing), par-
tial traffic information was deleted at 20% and 40%
missing rates, respectively. Among them, the random
missing means that data missing is random, which is
generally caused by poor equipment signal. The block
missing indicates that data missing is continuity, which
is generally caused by continuous equipment failure or
power failure. Fig. 7 shows traffic volume and traf-
fic speed information at 40% missing rate, where the
natural missing data represents unobserved data caused
by equipment failure.
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B. Evaluation Metrics and Comparative Methods

1) Evaluation Metrics: In missing data imputation, a criti-
cal issue is how to evaluate the performance of the imputation
model. In this study, the mean absolute error (MAE) and root
mean square error (RMSE) between the imputation and true
values were used as quantitative indicators to verify the imput-
ing accuracy of the proposed model. The MAE and RMSE are
calculated using

1 ~
MAE = IT/ Z |V,’j — vij| )
(i,))eR
1 ~
RMSE= |+ 37 (vij— ) (10)
(i,)eR

where 2 represents the index set of missing data; N represents
the total number of missing data, i.e., N = |£|; v;; represents
the real traffic flow of road s; at time tj; and \7; represents the
traffic flow estimated by the model on the road s; at time ¢;.

2) Comparative Methods: To comprehensively evaluate the

performance of the ST-STD framework, we used eight baseline
methods for comparison that are based on two missing types.

1) ST-IDW [19]: Spatiotemporal inverse distance inter-
polation (ST-IDW) is a statistical model that defines
spatiotemporal distance and uses an IDW model to
impute missing traffic volume in each road segment.

2) ST-KNN [38]: Spatiotemporal K-nearest neighbors
(ST-KNNSs) is a data-driven model, which fills the miss-
ing traffic condition by searching the k spatiotemporal
nearest neighbors in the historical database.

3) ST-2SMR [6]: Spatiotemporal two-step missing data
reconstruction (ST-2SMR) is a data-driven model that
considers the missing patterns of the data set and uses a
neural network to integrate coarse and fine interpolation
results to improve the model’s imputation performance.

4) ST-ISE [31]: Lightweight ensemble spatiotemporal
interpolation (ST-ISE) is also a data-driven model that
fills missing traffic volume in each road segment using
ELM to integrate SES and IDW interpolation results.

5) TRMF [25]: TRMF is a data-driven model that incor-
porates temporal dependencies as a regularization term
into commonly used matrix factorization to fill missing
traffic volume in each road segment.
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6) BTMF [28]: Bayesian temporal matrix factoriza-
tion (BTMF) is a variation of the TRMF model that
incorporates Bayesian theory into the solution of the
TRMF model to fill missing traffic volume in each road
segment.

7) BGCP [26]: Bayesian Gaussian
CANDECOMP/PARAFAC (BGCP) is a data-driven
model that extends the matrix factorization to the tensor
factorization to improve the imputation performance.

8) LRTC-TNN [27]: Low-rank tensor completion with
truncated nuclear norm (LRTC-TNN) is a data-driven
method that fills the missing traffic condition by factor-
izing traffic tensor of location x day x time windows.

C. Variable Estimation

In this section, using the random missing rate of 20%
as an example, the hyperparameter calibration process of
the ST-PTD framework on the traffic volume data set is
analyzed. The hyperparameters of the ST-PTD framework pre-
dominantly include the trend-forward dependent step size, Ir;
trend-backward dependent step size, /; rank of matrix factor-
ization, k; and the number of DD modules, num. To determine
the optimal hyperparameter of the framework, the control vari-
able method was used to obtain the combination of parameter
values with the best imputation accuracy. In the parameter
estimation stage, I, I, and k in the BIARMF algorithm were
first determined. Then, the number of DD modules, num, was
adjusted to test the imputation accuracy.

1) Calibrating the Parameters of BIARMF: In the matrix
factorization model, the rank k of the matrix factorization plays
an important role in the imputation process. During parameter
calibration, we set the range of k to [1,2,..., 11] and used
cross-validation to obtain the best k and optimal combination
of the parameters. Fig. 8 shows the effect of hyperparame-
ter k on the imputation performance. The RMSE and MAE
decreased initially and then stabilize with an increase of k.
These results allow us to determine the optimal value for
k for different data sets. When k = 5, the optimal impu-
tation performance of the model is obtained on the traffic
volume data.

After determining k, the time-dependent steps /¢ and [, are
identified. To simplify the complexity of parameter adjust-
ment, let /¢ be identical to [,. The optimal parameters of the
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time-dependent steps [y and [, are found in [0, 1,2, ..., 10].
The effect of hyperparameters I and [, on the imputation
performance is shown in Fig. 9. These results allow us to
determine the optimal /s and I, values for different data sets.
The results show that MAE and RMSE decrease initially and
then stabilize with the increasing step. When Il = [,= 3, the
model has the best imputation performance.

2) Calibrating the Number of DD Modules: The impact of
the number of DD modules on the model performance was
further verified. In the dendritic neural network, the optimal
number of DD modules is found in [1, 2, 3, 4, 5]. The
imputation results are shown in Fig. 10. As num increases,
the imputation performance of the model initially decreases
and then increases. However, when num is between [1, 2],
the imputation performance of the model decreases. When
num > 2, the imputation performance of the model tends to
increase. Therefore, when num = 2, the optimal imputation
performance of the model is obtained.

D. Comparison With Baselines

In this section, we analyze first the imputation performance
of the ST-PTD and baselines under random missing and then
the imputation performance of the ST-PTD and baselines under
block missing.

Table IV shows the comparison results between ST-PTD
and baselines under random missing in the traffic volume and
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TABLE IV
COMPARISON RESULTS (IN MAE/RMSE) WITH BASELINES
FOR RANDOM MISSING

TABLE V
COMPARISON RESULTS (IN MAE/RMSE) WITH BASELINES
FOR BLOCK MISSING

Traffic Volume Traffic Speed Traffic Volume Traffic Speed

Models MR: 20%  MR: 40%  MR: 20%  MR: 40% Models MR:20%  MR:40%  MR: 20%  MR: 40%

ST-IDW 77471406 9.11/1656 7380961  8.90/11.24 ST-IDW 13.53/26.04  15.46/30.52 13.28/1638 14.18/17.32
ST-KNN 574/967 7391331  5.15/776  6.38/8.25 ST-KNN 10.96/19.39  11.66/23.04  838/11.40  8.94/13.26
ST-ISE 491730  531/787  326/434  3.38/4.71 ST-ISE 588/11.29  620/12.04  3.47/5.71 3.69/5.28
ST-2SMR 495715 548895  3.44/471 3.82/5.19 ST-2SMR 536/942  6.57/13.85  3.73/5.00  4.07/6.73
TRMF 5.46/8.91 6.01/935  4.51/569  4.12/520 TRMF 7651431 939/18.17  5.01/6.88  5.25/6.93
BTMF 528/773  6.05/9.69  3.12/3.78  3.13/3.80 BTMF 6.68/12.86  687/1227  456/6.09  4.78/6.34
LRTC-TNN  451/695  4.60/720  3.04370  3.12/3.83 LRTC-TNN  556/880  5.80/9.13 3.16/3.88  3.24/4.03
BGCP 4677726 475/745 305370  3.06/3.72 BGCP 540933 5.68/10.07  3.12/3.76  3.14/3.82
ST-PTD 4.17/643  415/643  291/342 293343 ST-PTD 4.98/8.12  4.90/835  2.93/3.45  2.94/3.54

traffic speed data sets. The results show that the imputation
performance of all models decreases slightly with an increase
of the missing rate under random missing. Among them, the
imputation performance of the ST-IDW model is affected by
the missing rate. Except for the ST-IDW model, other models
were less affected by the missing rate. That is, the data-driven
model is less affected by the missing rate than the statistical
learning model. Based on the RMSE and MAE indicators,
the ST-IDW model achieved worse imputation performance,
while the models with better imputation performance are ST-
2SMR, ST-ISE, TRMF, BTMF, BGCP, LRTC-TNN, and ST-
PTD. That is, the imputation performance of the data-driven
models is significantly better than that of the statistical learning
models. In addition, in the data-driven model, ST-PTD obtains
the best imputation performance.

Table V shows the comparison results between the ST-PTD
model and the baselines under block missing in traffic volume
data set and traffic speed data set. The results indicate that
the imputation performance of all models show clear differ-
ences under block missing. Models ST-IDW, ST-KNN, BTMF,
and TRMF achieved the worse imputation performance, while
models ST-2SMR, ST-ISE, BGCP, LRTC-TNN, and ST-PTD
achieved better imputation performance. That is, tensor factor-
ization and deep learning models are more suitable for missing
data imputation. In addition, in the data-driven model, com-
pared to models ST-2SMR, ST-ISE, BGCP, and LRTC-TNN,
ST-PTD also obtains the best imputation performance.

In general, the ST-PTD model shows good imputation
performance under random missing, and block missing,
thereby proving the superiority of the ST-PTD model.

E. Qualitative Analysis

In this section, the qualitative performance of ST-PTD is
described by the scatter plots. Fig. 11 shows the imputation
results of the ST-PTD with a single road segment with a miss-
ing rate of 40%. In the traffic volume data, the true value
is closer to the estimated value under random missing and
block missing. In addition, the residual under block missing
is slightly larger than that under random missing. Compared
to that of the traffic volume data set, the residual of the traf-
fic speed data set is smaller. The results indicate that the
imputation result of the ST-PTD has high imputation accuracy.

FE. Effect of Different Components on Imputation Accuracy

The ST-PTD framework has three independent components:
1) modeling of spatiotemporal periodic matrix (MSPM); 2)
decomposition of spatiotemporal trend matrix (BiARMF); and
3) fusion of multiple results (ST-PTD). Therefore, in this
section, we further compare the impact of different com-
ponents on imputation accuracy based on traffic volume
data. To distinguish the performance of different compo-
nents with different missing types and missing rates, we
added specific suffixes to different components. For example,
BiARMF/R/20% represents the filling result of the BIARMF
components under random missing with a missing rate of
20%, and BiIARMF/B/20% represents the filling result of the
BiARMEF components under block missing with a missing rate
of 20%. The effects of different components on imputation
accuracy are presented in Fig. 12. Overall, the imputation
performance of the ST-PTD framework is better than that
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Fig. 12. Effect of different components on imputation accuracy.

of MSPM and BiARMEF. BiARMF is greatly affected by
the missing rate and missing type. Compared to that of the
BiARMF component, the imputation results of MSPM are less
affected by the missing rate and missing type, which is also
why the ST-PTD has better performance.

V. CONCLUSION AND FUTURE WORK

As an accurate estimation of missing data in traffic flow
is crucial in urban planning, intelligent transportation, eco-
nomic geography, and other fields, improving the data quality
of traffic flow is often a necessary step in data modeling. In this
study, we proposed a hybrid data-driven framework called ST-
PTD to impute the missing information in traffic flow. First, we
used a specific time-series analysis method to mine the peri-
odic patterns of traffic flow data. Then, we proposed a novel
matrix decomposition method called BIARMEF to describe the
trend information of traffic flow data. Finally, we applied a
novel DD network that fused the periodic and trend charac-
teristics of the missing data and obtained the final imputation
result.

In the experimental study, we used two actual traffic flow
data sets to verify the imputation performance of the ST-
PTD framework. First, we applied the control variable method
to obtain the optimal parameter combination of the ST-PTD
framework. Second, we compared the ST-PTD to existing eight
baseline methods, including ST-IDW, ST-KNN, ST-2SMR, ST-
ISE, TRMF, BTMF, BGCP, and LRTC-TNN. Third, we used
scatter plots to visually show the imputation results of ST-
PTD. Finally, we tested the influence of different components
on imputation accuracy, proving that the proposed method is
suitable for traffic flow imputation.

For future work, the following limitations need further
investigation: 1) verification of the proposed framework with
a variety of data sources; 2) comprehensive comparison of
this model with other imputation models; and 3) integra-
tion of more perspectives, such as seasonal trend and weekly
periodicity, into the ST-PTD model to achieve a more robust
model that further improves the accuracy of missing data
imputation.
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