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A B S T R A C T   

Freeway traffic volume is strongly correlated with the intensity of regional socioeconomic spatial interactions 
and the road network structure. Although existing studies have proposed indicators of betweenness centrality 
(BC) integrated into regional spatial interactions, the socio-economic drivers of freeway traffic volume formation 
have been neglected. More importantly, existing studies have not established a non-linear response relationship 
among BC, city socio-economic spatial interactions, and road traffic volume, which severely limits the 
comprehensive quantification of the role of freeway traffic flow drivers. Therefore, this study proposes a freeway 
traffic volume inference method that integrates spatial interaction to enhance BC. First, the socioeconomic 
factors of the origin and destination cities are incorporated into the BC indicator to create an enhanced 
betweenness centrality indicator (ODBC), which quantifies the strength of spatial interactions between cities. 
Second, a machine learning approach is used to develop the non-linear response relationship between ODBC and 
freeway traffic flow to accurately infer traffic volume. Finally, utilizing the SHapley additive explanation 
approach, the role vectors of intercity freeway traffic volume drivers are quantified. Experiments conducted on 
data from freeway toll stations demonstrate that the proposed method surpasses the baseline method based on BC 
and weighted by BC considering only the potential destination or origin city attractiveness, with an improvement 
in R2 of 14%, 4.2%, and 4%, and a maximum reduction in RMSE of 40%, 24.5%, and 26%. The proposed method 
yields higher accuracy for unknown road segments and is easily interpretable.   

1. Introduction 

Freeways are efficient thoroughfares that link cities and serve as a 
crucial means of road transportation. The rapid development of free-
ways has bestowed convenience upon the national economy and 
regional progress, playing an indispensable role in social and economic 
growth (Song et al., 2021). Accurate extrapolation of freeway traffic 
volume helps improve road transport efficiency, which is a crucial 
concern in current intelligent transport and management (Cheng et al., 
2021, 2018; Wang et al., 2023a; Wang et al., 2022a, Wang et al., 2022b). 

Existing literature demonstrates that intercity freeways have a sub-
stantial impact on enabling the transportation of individuals and goods 
between cities (Zhao et al., 2024, 2023). The traffic flow on intercity 
freeways is strongly influenced by the intensity of inter-city interactions 

and the layout of the road network (Thompson et al., 2019; Wen et al., 
2017). Understanding and accurately inferring freeway traffic volume is 
crucial for optimizing transportation efficiency, improving road safety, 
and facilitating economic development (Chen et al., 2024). Recent 
research proposes a freeway traffic volume inference method by 
considering the appeal of possible destination cities and underscores the 
significance of the intensity of socio-economic interactions between 
regions (Zhang et al., 2023). However, this method ignores the impact of 
road network configuration on the movement of vehicles. Betweenness 
centrality (BC) has been widely used as a crucial metric in network 
analysis to assess the significance of edges within a network (Turner, 
2007; Li et al., 2020a; Petridis et al., 2020; Pazoky and Pahlavani, 2021; 
Kazerani and Winter, 2009; Wang et al., 2023b). Road segments with 
higher betweenness centrality values are inferred to have a greater 
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impact on traffic volume, often serving as crucial connectors between 
different parts of the network. Consequently, betweenness centrality is 
considered a valuable indicator for comprehending traffic patterns and 
inferring traffic volume (Henry et al., 2019; Zhang et al., 2022a). 
However, conventional BC solely emphasizes the network structure 
(Gao et al., 2013), which hinders a comprehensive representation of the 
intensity of spatial relationships among regions. Consequently, a recent 
study proposes a new BC metric that incorporates spatial interactions 
into the network topology to model the road traffic flow (Wu et al., 
2022a). However, this study fails to consider the socio-economic levels 
of involved cities when assessing the intensity of spatial interactions. 
This limitation hinders the thorough quantification of the factors driving 
intercity freeway traffic. More importantly, previous research mostly 
concentrates on the association between BC or enhanced BC and traffic 
flow. The nonlinear response relationship among BC, city spatial inter-
action, and road traffic flow has not been established, thus preventing 
accurate extrapolation of intercity freeway traffic flow. 

This study proposes a freeway traffic volume inference method with 
an enhanced BC metric (Origin-Destination interaction embedded BC, 
ODBC) from the formation mechanism perspective, considering the 
strength of socio-economic spatial interactions among cities and the 
effect of traffic network configuration on freeway traffic volume. The 
following are this study’s primary contributions: 

(1) The socio-economic levels of cities are used to build an enhanced 
BC, allowing for a quantitative representation of the strength of spatial 
interactions among cities on road network structure. 

(2) A machine learning approach is proposed to model the rela-
tionship among network structure, spatial interactions, and freeway 
traffic, chosen for its capability to capture complex patterns and 

interactions inherent in the data, thereby enhancing the precision of 
inferring freeway traffic flow. 

(3) The Shapley additive explanation approach (SHAP) is employed 
to quantify the influence of ODBC on freeway traffic volume, enhancing 
our understanding of freeway traffic volume formation mechanisms by 
providing interpretable insights into the contributions of different 
factors. 

2. Methods 

The research framework of this research is shown in Fig. 1. Firstly, a 
city socio-economic interaction enhanced BC indicator by introducing 
the origin and destination cities attractiveness is developed in Section 
2.1. Secondly, a freeway traffic volume inference method based on 
ODBC using various machine learning methods is constructed in Section 
2.2. Finally, SHAP is used to quantify the action vectors of factors and 
the interactions between various factors on freeway traffic volume. 

2.1. Spatial interaction enhanced betweenness centrality 

To measure the socio-economic interactions between candidate 
origin and destination cities on freeway traffic, this study develops an 
enhanced BC. Firstly, the BC values of road segments are computed. 
Specifically, the freeway directed weight network G(V, E) is constructed 
using the road network topology. V represents the collection of nodes, 
while E denotes the set of road segment edges. The road segment is 
oriented from its starting node to its ending node, and the weight is the 
road length. The BC value of road segment e represents the mediating 
role of road segment e in the freeway network, i.e. the extent to which it 

Fig. 1. The research framework. (OD represents Origin-Destination. BC represent Betweenness Centrality.).  
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controls the traffic exchanges between cities (Yang et al., 2022). 
Secondly, previous research has demonstrated a robust correlation 

between urban socioeconomic indicators and intercity truck volume 
(Zhang et al., 2023; Li et al., 2020b). Specifically, GDP and GDP per 
capita offer insights into economic activity and prosperity levels, while 
population density provides an indication of urban density and potential 
demand for goods and services. Additionally, the ratios of primary, 
secondary, and tertiary industries shed light on the economic structure 
and diversification of urban areas, which can impact freight movements. 
Finally, the urbanization rate reflects the degree of urban development 
and its associated infrastructure demands. By incorporating these in-
dicators, we aim to capture diverse aspects of urban socioeconomic 
dynamics that may influence intercity truck volume. Therefore, seven 
easily accessible urban socioeconomic indicators of candidate origin and 
destination cities have been selected to further enhance BC indicators. 
The calculation as shown in Equation (1). 

ODBCe,m =
∑

s,t∈V ;s∕=t

∑

i,j∈C;i∕=j

σs,t(e)
σs,t

Oe,i,mDe,j,m

dOD,e,ij
(1)  

where ODBCe,m represents enhanced BC value by city spatial interactions 
of road e; σs,t(e) represents the shortest paths between s and t; σs,t denotes 
the total count of shortest pathways between s and t in this network. 
Oe,i,m and De,j,m represent the m statistical indicators of the potential 
origin Oe,i and the potential destination city De,j passing through road 
segment e; m represents the statistical indicators of GDP, population, 
industrial structure, and the rate of the urbanization, respectively. 

The specific steps for identifying the potential origin city Oe,i and 
potential destination city De,j of the road segment e are (1) setting the 
road segment e as the starting location in the national freeway directed 
topology network G(V,E) to identify the potential destination city De,j of 
the vehicle with e as the starting position as well as the shortest con-
nectivity distance dD,j from the road segment e to the De,j; (2) setting the 
road segment e as the termination location in the national freeway 
directed topology network G(V,E) to identify the potential departure 
city Oe,i as well as the shortest connectivity distance dO,i. Both the po-
tential origin city Oe,i and the destination city De,j are searched for in the 
set of cities C in mainland China. dOD,ij denotes the shortest distance 
between the potential origin Oe,i and the potential destination city De,j 

passing through road segment e. 

2.2. Freeway traffic volume inference with enhanced BC 

The formation of freeway traffic is inextricably linked to the socio- 
economic interaction of cities (Yang et al., 2023). Similar to recent 
research (Zhang et al., 2023), this study uses seven easily accessible 
socio-economic indicators as independent variables (Table 1). These 
socio-economic indicators are weighted using Equation (2) in Section 
2.1 to calculate the ODBC indicator of the road on which each toll station 
is situated as the independent variables. Considering the time- 

dependence of traffic flow, hourly time indicator is introduced. 
The dependent variables comprised vehicle type-categorized hourly 

traffic flow statistics. The passenger vehicles include Light and Medium- 
duty passenger vehicle (LMPV) and Heavy-duty passenger vehicle 
(HPV). Trucks include Light-duty truck (LDT), Medium-duty truck 
(MDT) and Heavy-duty truck (HDT). The basis of vehicle classification 
(Wu et al., 2022b) is shown in Table S1. The detailed description of the 
data is in Section 3.1.1. 

This study utilizes the Random Forest method (RF) to develop the 
relationship between road segment ODBC and traffic volume for each 
vehicle type. Random forest is a classical machine learning technique 
that incorporates an integrated learning idea and a decision tree clas-
sifier, which has the characteristics of high training speed, low possi-
bility of overfitting, and easy operating process (Breiman, 2001). Two 
widely used machine learning methods, i.e., GBDT (Gradient Boosting 
Decision Tree) and XGBoost (Extreme Gradient Boosting Tree) methods 
are also employed for comparison. GBDT is an iterative decision tree 
algorithm that belongs to the Boosting algorithm, where the final pre-
diction output is obtained by boosting a weak learner to a strong one 
(Friedman, 2002; Jerome H. Friedman, 2001). XGBoost is an improve-
ment of GBDT that achieves faster convergence and mitigates the risk of 
overfitting (Yi et al., 2021). 

2.3. Analysis of influencing factors on traffic volume 

SHAP is used to quantify the effect vectors of each influencing factor 
on the traffic volume inference model. SHAP calculates the magnitude of 
the influence that each feature of the sample exerts on the dependent 
variable and yields the Shapely value (Lundberg et al., 2018; Lundberg 
and Lee, 2017). In addition, this study measures the interaction of the 
influencing factors using SHAP, which is used to quantify whether the 
combined effect of the influencing factors enhances or weakens the 
impact on traffic volume. Equation (2) represents the calculation of 
shapely values. The calculation of factor interaction is shown in Equa-
tion (3) (Lundberg et al., 2020). 

f (x) = ϕ0(f , x)+
∑m

i=1
ϕi(f , x) (2)  

where f(x) indicates the predicted value; ϕ0(f , x) indicates the mean 
predicted value for the dataset; m denotes the number of features; 
ϕi(f , x) is the SHAP value for the i-th feature. 

Φi,j(f , x) =
∑

S⊆M \{i,j}

|S|!(M − |S| − 2)!
2(M − 1)!

∇ij(f , x, S) (3)  

where M represents the count of features; the SHAP interactions of 
feature i and feature j are equally distributed by each feature, namely, 
Φi,j(f , x) = Φj,i(f ,x), and the total interaction is equal to Φi,j(f , x) + Φj,i(f ,
x). 

3. Evaluation 

3.1. Experimental design 

3.1.1. Data sources 
Experimental analyses are conducted using data from national 

freeway network and socio-economic indicators of Chinese cities, as well 
as sample data gathered from freeway toll stations in the Beijing-Tianjin- 
Hebei (BTH), China. The first two parts of the data are used to develop 
ODBC indicators. The freeway toll station data is used to extract the 
hourly traffic volume of each vehicle classification. 

Specifically, the national freeway network data includes attribute 
information, such as starting and end locations, road length, and to-
pology. Socio-economic data of Chinese cities are derived from the 2022 
China City Statistical Yearbook. 

Furthermore, the dataset capturing the vehicles that traversed the 

Table 1 
Influence factors of freeway traffic volume.  

Category Independent 
variables 

Variable 
code 

Time Hour hour 
Socio-economic interactions in origin and 

destination cities 
GDP GDP 
Population density popdensity 
Primary industry 
ratio 

first 

Secondary industry 
ratio 

second 

Tertiary industry 
ratio 

third 

GDP per capita perGDP 
Urbanization rate urban  
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freeway toll stations in the BTH region on March 15, 2022, from 0:00 to 
24:00 h has been acquired. The total amount of data is 14,318,743 re-
cords. The data format is shown in Table 2. The dataset records the 
name, latitude, and longitude of each toll station, as well as the ID, time, 
and attribute information of each vehicle passing through the toll sta-
tions. After map matching and data preprocessing, the BTH toll stations 
are matched to the freeway network (Fig. 2). Then, based on the vehicle 
type classification, this study counts the hourly traffic volume of each 
vehicle classification at 2080 toll stations, the results as shown in 
Table 3. 

To construct the model, the dataset is split into a training set 
comprising 70 % of the data for model development, and a test set 
consisting of the remaining 30 % for validation purposes. To prevent 
overfitting, 10-fold cross-validation is then employed. 

3.1.2. Evaluation metrics 
Four frequently used evaluation criteria are utilized to quantify the 

performance of models, as shown in Eqs. (4), (5), (6), and (7). R2 is a 
metric used to quantify the level of model fit. RMSE is utilized to 
quantify the exact size of the deviation between predicted and true data. 
MAE is a metric that quantifies the gap between predicted and true 
values, which can indicate the average size of the prediction errors. 
MAPE is a metric utilized to assess the accuracy of predictions that ex-
presses the degree of discrepancy between predicted and true values as a 
percentage. A lower MAPE value indicates a higher level of precision in 
the model’s predictions. 

R2 = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − yi)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(5)  

MAE =
1
n
∑n

i=1
|yi − ŷi | (6)  

MAPE =
100%

n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (7)  

3.1.3. Parameter selection 
Taking the random forest model as an example, the parameters that 

need to be tuned include the number of trees (n_estimators), the 
maximum depth (max_depth), and the maximum number of features 
(max_features). The process of tuning parameters in a random forest 
involves specifying an estimated range of values for each parameter, 
individually optimizing these values, and ultimately selecting the com-
bination that yields the optimal parameter values. The permissible 
values for the parameter n_estimators vary from 1 to 1000. Maximum 
depth values are from 1 to 1000. The max_features is chosen either as the 
square root of the total number of features or as the logarithm of that 
number. Taking LDT as an example, the trend of RMSE with the values of 
n_estimators and max_depth is demonstrated as shown in Fig. 3. When 
n_estimators = 867, max_depth = 2325, the max_features is the square 

root of the feature number, RMSE is the smallest and can be used as the 
optimal parameter combination for the model. 

3.2. Influence of socio-economic interactions 

The impact vectors on freeway traffic volume are quantified and 
SHAP heatmap is drawn according to the predicted value, arranged in 
ascending order, as depicted in Fig. 4. The row where f(x) is located 
indicates the predicted traffic volume for each model. Horizontal co-
ordinates represent instances. Vertical coordinates represent features. 
The rightmost bar represents the SHAP value. 

Hourly time is the most important influencing factor for passenger 
vehicles and trucks. The SHAP values of the hour variables have the 
most dispersed distribution of the predicted values of passenger vehicle 
and truck traffic flow. This indicates that the role of hour variables on 
traffic flow is more complex, which is related to the fact that freeway 
traffic volume has strong temporal variability characteristics (Zhang 
et al., 2022b). 

Regarding socio-economic factors, the primary industry ratio of the 
origin and destination cities holds paramount importance for passenger 
vehicles. Overall, the SHAP of the primary industry ratio increases as the 
predicted value increases. Primary industry ratio mainly demonstrates 
to promote passenger vehicle volume. Similarly, population and GDP of 
cities show an increase in passenger vehicle volume. In contrast, GDP 
per capita mainly showed a tendency to decrease passenger vehicle 
volume. The SHAP values of the tertiary ratio show an increasing trend 
as the predicted values of traffic flow for LMPV increase, while for HPV, 
the tertiary ratio shows an increasing traffic volume on all samples. 

In terms of LDT, the most important socioeconomic factor is the GDP 
of cities. GDP has the impact of boosting the flow of LDT traffic. In other 
words, the greater the GDP of the OD cities, the greater the demand for 
LDT. In terms of MDT, the primary industry ratio is the most important 
socio-economic factors. The role of the primary industry ratio on MDT 
traffic is complex, as high values of the primary industry ratio may be 
found in regions with low or high traffic volume predictions. The SHAP 
values of GDP per capita are divided into three groups. In terms of HDT, 
the primary industry ratio is also the most important socio-economic 
factor. The dispersed distribution of high SHAP values for the primary 
industry ratio indicates that the role of the primary industry ratio is 
complex. While the high values of the secondary industry ratio in the 
cities of origin and destination mainly show the effect of increasing the 
traffic flow of HDT. 

Further, the SHAP value is decomposed into the main effects and 
interaction effects of each influence factor. Taking HDT as an example, 
the results are shown in Fig. 5. The horizontal coordinate denotes the 
SHAP value. Each point indicates an instance, while the colors indicate 
the feature values in the vertical coordinate. The feature on the diagonal 
indicates the main effect of the feature. While non-diagonal is the 
interaction of one feature with another. Figures in the non-diagonal 
position with the diagonal in the symmetrical position have the same 
shape but opposite colors. 

Specifically, the main impact of the hourly time shows an increase in 
HDT traffic volume, which is related to the time-of-day restrictions. For 
example, HDTs are prohibited from being driven on roads located within 
the Fifth Ring Road in Beijing from 6:00 to 23:00. Therefore, as the value 
of the hourly time increases, the traffic flow of HDT shows an increasing 
trend. In terms of the socio-economic factors, the main effect of the 
primary industry ratio is a reduction in HDT traffic volume. The inter-
action of the primary industry ratio with the other factors diminishes the 
propensity of high primary industry ratio values to lower HDT traffic 
volume to varying degrees. The high GDP and GDP per capita are mostly 
reflected in the trend towards increased traffic in HDT, which is weak-
ened by interaction with other socio-economic factors, respectively. A 
similar role is seen for the urbanization rate. While the high values of the 
secondary industry ratio show a tendency to increase the HDT traffic 
volume. 

Table 2 
Recording data from freeway toll stations.  

Toll gate identification Vehicle 
identification 

Vehicle 
type 

Time 

S005112001010920020 CF2228_1 HDT 2022–03-15 
T00:20:57 

G450111002001920010 MKV000_0 LDT 2022–03-15 
T14:43:38 

S003211001000310010 BW1880_0 LMPV 2022–03-15 
T21:51:49 

G000411001000410010 F1Z466_0 LMPV 2022–03-15 
T23:53:07 

… …  …  
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3.3. Performance results 

3.3.1. Inference accuracy 
To evaluate the efficacy of the proposed traffic volume inference 

model, three baseline models are developed. They are baseline-BC based 
on the BC metric. Baseline-D is a benchmarking model based on BC 
weighted by the potential destination cities attractiveness. And Baseline- 
O, a benchmarking model based on BC weighted by the attractiveness of 
potential departure cities. Specifically, the baseline-BC independent 
variables include hours and BC. To keep consistency, the proposed 
model based on the ODBC uses the same socio-economic factors as the 
Baseline-D and the Baseline-O, with differences in the approach of 

Fig. 2. Distribution of freeways and freeway toll stations in Beijing-Tianjin-Hebei region, China.  

Table 3 
Hourly traffic volume by vehicle type.  

Time Hour Road identification LMPV HPV LDT MDT HDT 

2022–03-15 00:00–00:59 0 5,453,640,000,005 7 0 13 44 137 
2022–03-15 12:00–12:59 12 5,454,740,001,857 38 0 22 49 118 
2022–03-15 13:00–13:59 13 5,454,650,000,284 41 8 28 8 22 
2022–03-15 20:00–20:59 20 5,454,650,000,291 13 9 31 3 14 
…. … …  …    
2022–03-15 23:00–23:59 23 6,255,230,000,044 10 0 0 2 11  

Fig. 3. The trend of RMSE with the values of n_estimators and max_depth.  

Fig. 4. Heatmap of the role of influence factors on freeway traffic volume.  
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calculating the socio-economic indicator values. Among them, the po-
tential destination city search for Baseline-D aligns with recent literature 
(Zhang et al., 2023). To better compare the effect of city attractiveness 
on freeway traffic, only BC values weighted by hour and city socio- 
economic factors are used. The socio-economic indicators in Baseline- 
O are weighted using the socio-economic factors of potential depar-
ture cities. The potential origin search is in the opposite direction of the 
potential destination city search in Baseline-D. 

The Random Forest, GBDT and XGBoost machine learning methods 
are used for modelling respectively. Overall, the outcomes of the pro-
posed method surpass those of three benchmark models (Table 4). 
Comparing the proposed model and the three baseline models, Baseline- 
O and Baseline-D outperform the Baseline-BC, except for the XGBoost- 
trained LMPV model effect. This finding suggests that the introduction 
of city attractiveness helps to increases the precision of freeway traffic 
volume inference compared to the approach based on the BC of network 
topology. However, neither Baseline-BC nor Base-O and Base-D have 
been able to fully capture complex transportation needs. Thus, these 
benchmark models have some limitations, and the effects are all inferior 
to the proposed model in this study. Statistically, the proposed model 
improves R2 by 0.2 %–23.3 % and reduces RMSE by a maximum of 24 % 
compared to Baseline-D. 

In terms of the evaluation metrics, the R2 of all models except the 
HPV is high, with values above 0.8. As far as the MAPE, the proposed 
model is all lower than the baseline models. However, the absolute value 
of MAPE in the proposed model is still higher. The reason for this is the 
existence of some toll stations with small values of hourly traffic volume, 
which results in the discrepancy between the predicted and actual 
values being several times the true value, inflating the MAPE value. The 
LMPV with an hourly traffic average of 137 is used as an example for 
further validation, and the model is retrained after deleting data with an 
hourly traffic of 10 or less. The retrained results are displayed in 
Table S2. Table S2 shows that the MAPE plummets from 0.817 to 0.35. 
Thus, the high absolute value of the MAPE of the proposed model is 
strongly linked to the data distribution. In conclusion, the proposed 
method has high reliability for freeway traffic flow inference. 

In addition, RF and GBDT modeling is slightly better than XGBoost 
and GBDT in comparison to different machine learning methods. 
Further, RF is faster in training and is easy to operate. In summary, RF 
model is better than GBDT and XGBoost. Therefore, follow-up modeling 
is done using RF to compare the results of the baseline and the proposed 
model. 

3.3.2. Stability analysis 
Additionally, the stability of both the benchmark and the proposed 

models are compared. Taking LMPV as an example. In this scenario, a set 
of 20 identical random numbers is employed to model the proposed and 
baseline models, using the RF. Furthermore, all models undergo 

parameter tuning. The 20 modelling results of the proposed model and 
the three baseline models are shown in Fig. 6. From Fig. 6, the mean 
value of R2 of the proposed method is higher than these benchmark 
models. Importantly, the distribution intervals and interquartile 

Fig. 5. The interaction effects of each influence factor on HDT traffic volume.  

Table 4 
Comparison of prediction accuracy outcomes (in R2/RMSE/MAE/MAPE) be-
tween the proposed method and baselines.    

LMPV HPV LDT MDT HDT 

RF Baseline- 
BC 

0.897/ 
87/ 
35.8/ 
1.5 

0.526/ 
9/2.8/ 
1.1 

0.885/ 
17/11/ 
0.9 

0.899/ 
17/9.6/ 
1.0 

0.888/ 
18/ 
11.9/ 
1.0 

Baseline- 
O 

0.933/ 
72/ 
29.6/ 
1.2 

0.589/ 
9/3.0/ 
1.0 

0.936/ 
13/8.5/ 
0.6 

0.928/ 
15/8.6/ 
0.9 

0.922/ 
16/9.9/ 
0.8 

Baseline- 
D 

0.939/ 
69/ 
28.9/ 
1.2 

0.536/ 
9/3.1/ 
1.0 

0.933/ 
13/8.7/ 
0.7 

0.940/ 
13/8.1/ 
0.7 

0.917/ 
16/ 
10.0/ 
0.8 

Our 
model 

0.943/ 
64/ 
25.7/ 
0.8 

0.588/ 
8/2.8/ 
1.0 

0.946/ 
12/7.8/ 
0.5 

0.946/ 
13/7.7/ 
0.6 

0.933/ 
14/9.2/ 
0.5 

GBDT Baseline- 
BC 

0.865/ 
102/ 
45.5/ 
2.1 

0.29/ 
11/3.1/ 
1.0 

0.848/ 
20/ 
11.3/ 
0.8 

0.834/ 
20/ 
12.0/ 
0.9 

0.843/ 
22/ 
12.8/ 
0.8 

Baseline- 
O 

0.881/ 
96/ 
32.5/ 
1.1 

0.488/ 
9/3.3/ 
1.0 

0.903/ 
15/9.5/ 
0.6 

0.915/ 
16/ 
10.4/ 
1.2 

0.913/ 
17/ 
10.7/ 
0.8 

Baseline- 
D 

0.885/ 
94/ 
33.7/ 
1.7 

0.498/ 
9/3.2/ 
1.0 

0.924/ 
14/9.1/ 
0.7 

0.918/ 
16/9.2/ 
0.6 

0.921/ 
16/ 
10.1/ 
0.8 

Our 
model 

0.934/ 
71/ 
27.6/ 
1.2 

0.614/ 
8/2.5/ 
0.8 

0.945/ 
12/7.7/ 
0.5 

0.92/ 
15/9.2/ 
0.7 

0.931/ 
14/9.3/ 
0.5 

XGBoost Baseline- 
BC 

0.926/ 
75/ 
31.2/ 
1.3 

0.447/ 
10/3.5/ 
1.2 

0.929/ 
13/9.0/ 
0.7 

0.913/ 
16/10/ 
1.1 

0.904/ 
17/ 
11.6/ 
0.8 

Baseline- 
O 

0.926/ 
76/ 
29.4/ 
1.7 

0.492/ 
8/3.0/ 
1.2 

0.935/ 
13/8.6/ 
0.7 

0.924/ 
15/9.4/ 
1.0 

0.914/ 
16/ 
10.8/ 
0.9 

Baseline- 
D 

0.917/ 
80/ 
30.3/ 
1.7 

0.473/ 
8/3.0/ 
1.2 

0.933/ 
13/8.5/ 
0.7 

0.934/ 
14/8.2/ 
0.6 

0.910/ 
17/ 
11.0/ 
0.9 

Our 
model 

0.946/ 
65/ 
27.5/ 
1.2 

0.52/9/ 
3.4/1.2 

0.943/ 
12/8.1/ 
0.5 

0.94/ 
13/8.1/ 
0.6 

0.928/ 
15/9.6/ 
0.6  

Fig. 6. The stability analysis of the proposed and baseline models.  
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distances of the proposed model results are smaller than those of the 
three benchmark models. Specifically, the interquartile range of the 
proposed model is 0.32–0.47 times that of the baseline models, indi-
cating that the proposed model is more focused and has higher stability. 

3.3.3. Comparative analysis of temporal trends 
For comparing the prediction outcomes on unknown roads, three 

randomly selected roads have their hourly traffic flow distributions 
forecasted from 0 to 23 h using both the proposed model and the 
baseline models. Taking LMPV as an example, the predicted results of 
different models and the true value distribution are shown in Fig. 7. The 
prediction outcomes from the proposed model demonstrate closer 
proximity to the true values and exhibit higher stability (Fig. 7). Sta-
tistically, the proposed model surpasses the benchmark models in per-
formance across 61.1 % to 98.6 % of the observed time points. Overall, it 
proves superior in forecasting the hourly traffic volume of unknown 
roads compared to the benchmark models. 

4. Discussion 

Unlike previous research focusing on the correlation between BC and 
traffic volume, as well as incorporating spatial interaction-BC that did 
not adequately consider the socio-economic development level of cities, 
this study expands the application of BC in road traffic flow inference. 
The results show that freeway inference method with city socio- 
economic interactions enhanced BC improves R2 by an average of 
14.11 % and reduces RMSE by a maximum of 40 % compared to the 
baseline method that uses only BC. This finding indicates that city socio- 
economic interaction enhanced BC helps to improve road traffic infer-
ence results. This assertion is supported by the existing research (Li 
et al., 2021), which suggests that urban industrial development in-
dicators have the capacity to forecast 39.08 % of intercity mobility, 
whereas variables such as GDP, population density, and urbanization 
rate accounted for 16.99 % of the prediction. What’s more, the ODBC 
metrics proposed in this study, whose data are publicly and easily 
accessible, have some generalization ability and can be applied to traffic 
flow inference studies in other study areas. 

The new proposed method with city socio-economic interaction 
enhance BC in this study effectively improves freeway traffic flow 
inference results. In fact, intercity freeway traffic is caused by socio- 
economic interactions across regions (Thompson et al., 2019), and the 
findings of this study support the accuracy of this claim in inferring 
freeway traffic. Although the existing study infers traffic volume from 
the perspective of formation, it only takes into account the impact of 
potential destination cities (Zhang et al., 2023), ignoring the spatial 
interaction processes between the cities of departure and destination. 
The experimental outcomes of this research show that the R2 of the 
proposed ODBC-based method is improved by 0.2 %–23.3 % and the 
RMSE is reduced by 24 % compared to the weighted BC baseline model 
that only considers the influence of potential destination cities. 
Compared to the weighted BC baseline model that only considers the 
influence of potential departure cities, the proposed method improves 
R2 by 25.8 % and reduces RMSE by 26 %. What’s more, the results of the 
proposed model for unknown road segments are better than those of the 
baseline models that solely consider the attractiveness of the destination 
or origin cities. This finding indicates that adequate consideration of the 
spatial interaction processes between the cities of departure and desti-
nation can better infer freeway traffic. In summary, this study provides a 
new scientific method for freeway traffic volume inference. 

There are still some limitations in this research. First, the values of 
the proposed ODBC metrics may differ by using various distance func-
tions. Future studies will thoroughly examine the effect of distance and 
fit the best distance function to increase the precision of inferring 
freeway traffic flow. Second, inferred indicators are obtained by inte-
grating socio-economic indicators of origin and destination cities. 
However, it was unable to differentiate the specific contributions of 

origin and destination cities on freeway traffic flow. In order to solve this 
problem, future research will employ techniques like the causal graph 
attention model to clarify the contribution weights of origin and desti-
nation cities. 

5. Conclusion 

In this study, a new freeway traffic volume inference method with 
city socio-economic interactions enhanced BC is proposed. The effec-
tiveness of the proposed method is verified by employing traffic volume 
data from different types of vehicles collected at freeway toll stations in 
the Beijing-Tianjin-Hebei area of China. The findings indicate that the 
ODBC-based method for inferring freeway traffic flow outperforms both 
the BC-based baseline method and the BC weighting baseline methods 
relying solely on the attractiveness of potential departure or destination 
cities. Moreover, the proposed model exhibits superior accuracy and 
stability in predicting traffic volume for unknown road segments. In 
addition, SHAP is employed to quantify the effect vectors of the factors 
and the interaction between the factors on the freeway traffic volume. 
The results indicate that the primary industry ratio in both origin and 
destination cities is an important factor influencing freeway traffic 
volume. In summary, the proposed method is interpretable and enhance 
our comprehension of how city socio-economic interactions impact the 
flow of traffic on intercity freeways. This deeper insight serves to clarify 
the underlying driving mechanisms behind intercity freeway traffic. 
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