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Abstract
Monitoring traffic conditions on urban signalized road networks is an essential component of urban traffic control systems. 
Due to the sparseness of trajectory data and the influence of signal timing, it is challenging to estimate the traffic condition 
of large-scale urban signalized networks based on trajectory data. In this study, a novel and integrated data-driven learning 
approach (NEI-SE) is proposed, incorporating road network segmentation, speed matching, and sparse data imputation 
for the estimation of travel speed. First, the urban traffic network is divided according to signalized intersection and road 
segment length, considering the influence of signal timing on urban traffic speed. Then, based on taxi trajectory data and 
the divided road network, a traffic condition matrix is constructed describing the road conditions. Finally, a lightweight 
multi-view learning method that integrates temporal patterns and spatial topological relations is proposed to fill the missing 
values of the traffic condition matrix. The approach was validated on real-world traffic trajectory data collected in Wuhan, 
China. The results showed that NEI-SE outperformed nine existing baselines in terms of imputation accuracy. In addition, 
the AutoNavi congestion data was used to evaluate the data quality of the estimated traffic speed data due to lack ground 
truth of traffic speed. The results showed that the congestion index data had a significant negative correlation with imputed 
traffic speed series, with an average correlation coefficient of − 0.67, proving that the traffic speed data estimated by the 
proposed approach have satisfactory quality.

Keywords Signalized road networks · Traffic condition estimation · Spatiotemporal data imputation · Traffic flow missing

1 Introduction

Monitoring traffic conditions on urban signalized road net-
works is an essential component of urban traffic control sys-
tems (Angayarkanni et al. 2021; Guo et al. 2019a, b; Li et al. 
2020; Younes 2021). In recent years, many fixed-location 

sensors, such as microwave sensors and loop detectors, have 
been installed to monitor traffic conditions continuously and 
collaboratively (Ma et al. 2017; Vigos and Papageorgiou 
2010). However, due to the high cost of sensor installation 
and maintenance, fixed location sensors are unsuitable for 
large-scale monitoring of urban traffic conditions, especially 
for complex signalized road networks (González et al. 2020; 
Hara et al. 2018; Zhang et al. 2020). Fortunately, with the 
rapid development of connected vehicle technologies and 
the emergence of agent driving services, a large amount of 
vehicle trajectory data can be collected, providing a new 
alternative for traffic condition estimation of urban signal-
ized road networks (Guo et al. 2019a, b; Wang et al. 2022a, 
b; Yu et al. 2020).

At present, estimation of urban traffic conditions based on 
trajectory data has been widely investigated in urban plan-
ning (Xie et al. 2020), traffic management (Praveen and Raj 
2021; Yu et al. 2018), environmental monitoring (Cheng 
et al. 2020a; b, c, 2021), and other fields. In this study, our 
goal is to estimate the traffic speed of large-scale urban 
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signalized networks, which is a challenging task despite that 
enormous efforts have been made on this topic (Tao et al. 
2012; Yu et al. 2020). The main challenges are as follows.

(1) Complex traffic conditions of signalized road network 
(Tang et al. 2020a, b): Compared with highway road 
networks, urban signalized networks have more com-
plex topologies and spatial layouts in signalized inter-
sections. As shown in Fig. 1, due to the influence of 
signal control, the traffic patterns of road segments l1 
and l2 are significantly different. In addition, the speeds 
of road segments l3 and l4 are different even if they do 
not pass through the signalized intersection 5.

(2) Sparse distribution of trajectory data (Wang et al. 2014; 
Wilby et al. 2014; Zhao et al. 2019): In a specific time 
window (e.g., 5, 10, or 15 min), the coverage of trajec-
tory data on the entire traffic network is limited, making 
it difficult to estimate the traffic speed of some traffic 
segments where trajectory data are sparse or totally 
missing. For example, at most 30–40% of all road links 
are covered by trajectory data within 5 min in central 
Bangkok (Hara et al. 2018).

(3) Quality evaluation of estimation data (Zhan et al. 2017): 
The lack of ground truth (i.e., the “true” speed of city 
roads) makes it challenging to evaluate the quality of 
estimated traffic speed for large-scale urban signalized 
road networks.

This study addresses the above issues by developing a 
novel, efficient, and integrated data-driven learning approach 
(NEI-SE), which incorporates road network segmentation, 

speed matching, and sparse data imputation to estimate 
travel speed using vehicle trajectory data. This study makes 
the following three contributions.

(1) A road network segmentation algorithm called ISD-
RoadSeg was proposed to divide the urban road net-
work according to signalized intersection locations and 
road segment length. In addition, we re-constructed the 
road network topology after road network segmentation 
to facilitate speed estimation.

(2) A novel and hybrid learning approach was proposed 
to estimate the traffic speed of urban signalized road 
networks. The proposed approach not only considers 
the spatial topological relationship of the urban road 
network, but also considers the prior knowledge of the 
temporal periodicity and temporal proximity of the traf-
fic flow.

(3) Multi-source data, including the AutoNavi congestion 
data, were used to evaluate the quality of the estimated 
traffic speed. In addition, we release the estimated traf-
fic speed dataset to support related research on traffic 
condition imputation and prediction on the urban sig-
nalized road network.

2  Related works

In this section, we first review the research related to traf-
fic condition estimation based on trajectory data, and then 
review sparse traffic data imputation methods.

Fig. 1  The challenge of speed estimation on signalized road network
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2.1  Traffic condition estimation based on trajectory 
data

In past years, several studies have been made to estimate 
urban traffic condition using sampled vehicle trajectories. 
For example, Tao et al. (2012) presented a microscopic traf-
fic condition estimation method, which collected real-time 
position data through assisted global positioning system 
(A-GPS) mobile phones to estimate traffic speed on urban 
roads. Zhang et al. (2020) proposed a novel traffic flow esti-
mation model called TGMC-S by combining camera detec-
tion data and floating vehicle data. They defined a spatial 
smoothing index (SSI) to measure the difficulty of traffic 
flow estimation on each segment. Hara et al. (2018) pro-
posed a mixture gaussian graphical model (Mixed-GGM) 
model based on probe trajectory data. Zhan et al. (2017) 
constructed a flow-speed diagram (Q–V diagram) based on 
taxi trajectory and video data, and established travel speed 
estimation (TSE) and traffic volume inference (TVI) models. 
In addition to estimating urban traffic speed and volume, 
some scholars also used trajectory data to estimate traffic 
pollution emission (Shang et al. 2014) and vehicle queue 
length (Zhan et al. 2015; Zhao et al. 2019). However, most of 
the above studies focused on urban highway networks rather 
than urban signalized road networks. Tang et al. (2020a, b) 
used probe trajectory data and signal cycle data to estimate 
the total traffic volume within a certain period at the inter-
section level on signalized road networks. However, due to 
the difficulty of obtaining signal cycle data, this method is 
still unsuitable for estimating the traffic condition on large-
scale road networks.

2.2  Sparse traffic data imputation methods

Sparse traffic data imputation methods can be roughly 
divided into two categories: statistical learning methods and 
data-driven methods. Statistical learning methods assume 
that missing data obey specific mathematical rules in space 
and time dimensions and establish specific paramatric mod-
els to describe the patterns of missing data, such as, inverse 
distance interpolation (IDW), spatiotemporal inverse dis-
tance interpolation (ST-IDW) (Li et al. 2014), spatiotempo-
ral kriging (ST-Kriging) (Aryaputera et al. 2015), autore-
gressive integrated moving average (ARIMA) (Yozgatligil 
et al. 2013), simple exponential smoothing (SES) (Gardner 
2006), and point estimation model of biased sentinel hospi-
tals-based area disease estimation (P-BSHADE) (Hu et al. 
2013; Xu et al. 2013). Although classical statistical methods 
have been widely used in missing traffic data imputation, 
achieving good results is still difficult. On the one hand, 
classical statistical methods are based on strict assumptions, 
which may not hold in actual traffic environments. On the 
other hand, traffic flow data have complex spatiotemporal 

patterns, which are difficult to capture using specific and 
fixed mathematical formulas (Cheng et al. 2019, 2020a, 
b, c). Data-driven methods do not require to obey specific 
mathematical rules but establish nonparametric models 
to automatically mine spatiotemporal characteristics and 
impute missing values. For example, Yu et al. (2016a, b) 
integrated time dependence into the traditional matrix fac-
torization model and proposed a new temporal regularized 
matrix factorization method (TRMF) to estimate missing 
values. Chen et al. extended matrix factorization to tensor 
factorization, mining missing patterns in traffic flow data 
from a higher-dimensional perspective to fill in missing val-
ues (Chen et al. 2018, 2020; Chen and Sun 2021). In addi-
tion, relevant studies have applied deep learning algorithms 
to reconstruct missing data and achieved good results. For 
instance, Cheng et al. (2020a, b, c) used an extreme learning 
machine (ELM) to integrate IDW and SES algorithms and 
proposed a lightweight missing data interpolation model. 
Cheng and Lu (2017), Jiang et al. (2018) combined deep 
neural networks and P-BSHADE algorithm to propose a 
hybrid two-step estimation approach. Tang et al. (2020a, b) 
proposed to integrate the fuzzy rough set theory and fuzzy 
neural networks to complete missing traffic flow data. Yang 
et al. (2021) proposed a bidirectional attention model called 
ST-LBAGAN based on the generative adversarial network. 
Xu et al. (2020) proposed the GE-GAN model based on 
graph embedding and generative adversarial network. Com-
pared with classical statistical methods, data-driven methods 
do not require prior knowledge and explicit mathematical 
expressions and have more robust imputation results. How-
ever, the above studies still mainly focused on highway net-
works rather than signalized road networks.

3  Preliminaries and problem definitions

Definition 1 (Trajectory)  A trajectory T =
{
pi
}n

i=1
 is an 

ordered sequence of points pi =
(
id, ti, xi, yi

)
 , where id is 

a unique vehicle identifier; ti is the time at which pi was 
collected; (xi, yi) correspond to the longitude and latitude, 
respectively, of a sampled trajectory point at time ti ; and 
n indicates the number of trajectory points included in the 
trajectory T .

Definition 2 (Traffic network)  A traffic network G =< L, T > 
is a directed graph, where L =

{
li
}m

i=1
 represents a collec-

tion of road segments, and T =
{
⊔i

}h

i=1
 represents a col-

lection of topological relations. Considering the influence 
of traffic signal on traffic speed, we divide G according to 
specific rules. The segmented road network is expressed as 
Gs =< Ls =

{
ls
i

}M

i=1
, Ts =

{
⊔s
i

}H

i=1
> , where M > m,H > h.
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Definition 3 (Traffic condition matrix)  The traffic flow data 
extracted from the trajectories are used to build a spatiotem-
poral condition matrix with missing data X ∈ R

2M∗N , where {
si
}2M

i=1
 represents the spatial dimension of data, 

{
wk

}N

k=1
 rep-

resents the time dimension of data. As shown in Fig. 2, if 
X
(
s4,w1

)
= � , it means that the traffic speed of road seg-

ment l2 in direction 2 at time window w1 cannot be obtained 
from trajectories. The missing condition matrix X is imputed 
to obtain a complete condition matrix X̂ ∈ R

2M∗N , where 
X̂
(
si,wk

)
≠ �|∀(i, k).

Our goal is to obtain a complete condition matrix based 
on trajectory and road network data, and to evaluate the 
data quality of the imputed traffic condition matrix, 
described in Formula (1).

where 
{
Ti
}
 represents a set of vehicle trajectories; G repre-

sents the traffic network before segmentation; M represents 
the traffic speed estimation approach proposed; Gs represents 
the segmented traffic network; X̂ represents the imputed traf-
fic condition matrix.

(1)

{
< �X,Gs >= M ←<

{
Ti
}
,G >

Evaluate data quality of �X

4  Methodology

Our approach focuses on traffic speed estimation using mas-
sive vehicle trajectories, similar to the approach of Yu et al 
(2020). The different from Yu et al.‘s approach is that we 
focus on the signalized road networks, and evaluate the data 
quality of the extracted speed. As shown in Fig. 3, the pro-
posed speed estimation approach is mainly divided into three 
steps. First, the urban traffic network is divided according 
to the signalized intersection location and road segment dis-
tance, considering the influence of signal timing on urban 
traffic speed. Then, the traffic speed information on the road 
segment is extracted by considering the moving direction 
of trajectories. Finally, a lightweight multi-view learning 
method is proposed to estimate the missing traffic speed by 
integrating the temporal periodicity and closeness patterns 
and the spatial topological connection relations.

4.1  Signalized road network segmentation

The traditional traffic network is unsuitable for extracting 
traffic condition information on road segments. First, the 
traffic conditions of signalized networks are severely affected 
by signal timing, and a single road segment in the physical 
world often spans multiple signalized intersections. Second, 
when a road segment is particularly the length, the traf-
fic conditions on different parts of the road segment may 
also be different. Therefore, to accurately extract the traffic 

Fig. 2  Problem definitions
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conditions of the road network, a road network segmentation 
algorithm considering intersections and segment distance 
(ISD-RoadSeg) was proposed.

The ISD-RoadSeg algorithm divides the road network 
G =< L, T > into Gs =< Ls, Ts > , consisting of two steps: 
(1) Segmenting road, i.e. L → Ls , and (2) Reconstructing 
topological structure Ts

Figure 4 shows the process of road segmentation. First, each 
road segment in the set L is divided at the signalized intersection. 

For example, l1 in the set L is divided into ls
1
, ls
2
∈ Ls at the inter-

section. Then, when the length of the segmented road exceeds 
2dr , the road segment will be further divided. That is, starting 
from the start point of the segment, gradually divide the road sec-
tion of length dr , and the length of the remaining road segment 
needs to be greater than dr and less than 2dr . For example, l2 is 
divided into ls

3
, ls
4
 , and ls

5
∈ Ls , where the lengths of ls

3
 and ls

4
 are 

both dr . Finally, driving directions are assigned to each resultant 
road segment. In this study, the direction of a road segment is 
defined as the clockwise angle between the line connecting the 
two adjacent points of the road and the geographical north. As 
each road segment has two directions, we assign the directional 
information as attributes to each road segment, i.e., dir1 and dir2 . 
Taking road segment ls

6
 as an example, the calculation methods 

of ls
6
⋅ dir

1
 and ls

6
⋅ dir2 are shown in Eqs. (2) and (3).

where 
(
ls
6
⋅ S ⋅ x, ls

6
⋅ S ⋅ y

)
 represents the start point of road 

segmemt ls
6
;
(
ls
6
⋅ E ⋅ x, ls

6
⋅ E ⋅ y

)
 represents the end point 

(2)ls
6
⋅ dir

1
= arccos

(
ls
6
⋅ E ⋅ y − ls

6
⋅ S ⋅ y

len(ls
6
)

)

(3)ls
6
⋅ dir

2
= ls

6
⋅ dir

1
+ 180◦

Fig. 3  The approach of trajectories-based traffic speed estimation for signalized road networks

Fig. 4  An illustration of signalized road network segmentation
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of road segmemt ls
6
 . For the convenience of calculation, 

we enforce the constraint that ls
6
⋅ E ⋅ x is always greater 

than ls
6
⋅ S ⋅ x ; len is a function used to calculate the length 

between the start point and the end point of the road seg-
ment ls

6
 . From the Eqs.  (2) and (3), it can be seen that 

0◦ ≤ ls
6
⋅ dir

1
< 180◦ , and 180◦ ≤ ls

6
⋅ dir

2
< 360◦.

After the road network is divided, the topological struc-
ture Ts =

{
⊔s
i

}H

i=1
 of Ls is constructed. As shown in Fig. 5, 

i f  t h e r e  i s  a  t o p o l o g i c a l  r e l a t i o n s h i p 
⊔s =< ls

1
⋅ dir1 → ls

2
⋅ dir1 > , it means that the traffic condi-

tion on the direction dir1 of the road segment ls
1
 can be 

transferred to the direction dir1 of the road segment ls
2
 , such 

as traffic volume. The two adjacent road segments can have 
at most four types of topological relationships, i.e., 
ls
1
⋅ dir1 → ls

2
⋅ dir1,ls1 ⋅ dir1 → ls

2
⋅ dir2 , ls

1
⋅ dir2 → ls

2
⋅ dir2 , 

and ls
1
⋅ dir2 → ls

2
⋅ dir1 . The topological relation construc-

tion method of segment ls
i
 and segment ls

j
 is shown in 

Eq. (4).

where ls
i
⋅ S and ls

j
⋅ S represent the start point coordinates of 

segment ls
i
 and ls

j
 , respectively; ls

i
⋅ E and ls

j
⋅ E represent the 

end point coordinates of segment ls
i
 and ls

j
 , respectively. 

Algorithm  1 describes the entire procedure of 
ISD-RoadSeg.

(4)⊔
s =

⎧
⎪⎪⎨⎪⎪⎩

ls
i
⋅ dir1 → ls

j
⋅ dir1 ls

i
⋅ E = ls

j
⋅ S

ls
i
⋅ dir1 → ls

j
⋅ dir2 ls

i
⋅ E = ls

j
⋅ E

ls
i
⋅ dir2 → ls

j
⋅ dir2 ls

i
⋅ S = ls

j
⋅ E

ls
i
⋅ dir2 → ls

j
⋅ dir1 ls

i
⋅ S = ls

j
⋅ S
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4.2  Link‑level traffic speed extraction

After the road network is divided, the traffic speed of each 
road segment is extracted based on the trajectory data, i.e., 
the traffic condition matrix X is generated. Considering that 
the collected trajectory points do not contain the vehicle 
driving direction and speed, the speed and direction of the 
points are first calculated. The calculation method is shown 
in Eqs. (5) and (6).

where pi ⋅ diri represents the driving direction of the trajec-
tory point pi at time ti , i.e., the clockwise angle between 
the straight line of two adjacent trajectory points and the 
geographic north; pi ⋅ vi represents the instantaneous speed 
of point pi at time ti ; len

(
pi, pj

)
 represents a function for 

calculating the road network distance between two trajec-
tory points.

Based on the instantaneous speed and direction of the 
trajectory point, the traffic speed of the road segments 
Ls =

{
ls
i

}M

i=1
 is extracted. As each road segment has two 

directions, the dimension of the traffic condition matrix X is 
2M ∗ N  . The traffic speed of the ls

i
⋅ dir1 is obtained by 

X

(
s2i−1,

{
wk

}N

k=1

)
 , and the traffic speed of the ls

i
⋅ dir2 is 

obtained by X
(
s2i,

{
wk

}N

k=1

)
 . In addition, to alleviate the 

influence of abnormal values on speed estimation, the 

(5)

pi ⋅ diri =

⎧⎪⎨⎪⎩

arccos
�

pi+1⋅yi+1−pi⋅yi

len(pi+1,pi)

�
pi+1 ⋅ xi+1 ≥ pi ⋅ xi

arccos
�

pi⋅yi−pi+1⋅yi+1

len(pi+1,pi)

�
+ 180◦ pi+1 ⋅ xi+1 ≤ pi ⋅ xi

(6)pi ⋅ vi =
len(pi+1, pi)

pi+1 ⋅ ti+1 − pi ⋅ ti

harmonic mean (Salamanis et al. 2016), rather than the arith-
metic mean, is used to calculate traffic speed of a specific 
road segment in a time window. For example, the traffic 
speed on the direction ls

i
⋅ dir1 within the time window 

wk = [ts, te] is calculated by Eq. (7).

where pj ∈ ls
i
⋅ dir1 indicates that the movement direction of 

the point is the same as the direction of the road segment 
and is closer to the road segment ls

i
 ; ts represents the start 

time of the time window wk ; te represents the end time of 
the time window wk , Note: we only use the vehicle trajec-
tory under the passenger state to calculate the speed of the 
road segment.

4.3  Sparse traffic speed imputation

Owing to the sparse distribution of trajectory points, the 
spatiotemporal condition matrix X contain many missing 
elements. In order to obtain the complete spatiotemporal 
condition matrix X̂ of the entire road network, the missing 
values in the spatiotemporal condition matrix X are imputed. 
Existing studies integrate spatial and temporal correlation 
models to improve the performance of missing data impu-
tation. However, it is difficult to directly capture the traffic 
flow patterns from the spatial dimension on the signalized 
road network. For example, the traffic flow patterns of adja-
cent segments with different directions are usually different. 
Therefore, a lightweight multi-view learning method is pro-
posed to improve the performance of missing data imputa-
tion by integrating temporal patterns and spatial topological 
relations. In the time dimension, the imputed results of the 

(7)X
�
s2i−1,wk

�
=

n∑n

j=1

1

pj ⋅vj

pj ∈ ls
i
⋅ dir1 ∩ pj ⋅ tj ∈

�
ts, te

�

Fig. 5  Four topological relationships of adjacent road segments
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three views of closeness, daily periodicity and weekly perio-
dicity are integrated. In the spatial dimension, the imputed 
results of considering topological connections are integrated.

Prior studies show that the traffic condition has typical 
closeness, daily periodicity, and weekly periodicity charac-
teristics in the time dimension (Cheng et al. 2019). In the 
time dimension, sparse data imputation can be transformed 
into the traditional time series modeling problem, and the 
missing values can be estimated by using the samples of 
the adjacent historical times. For the temporal closeness, 
an improved simple exponential smoothing (Improved-SES) 
algorithm is used to mine the missing close patterns. For 
the periodicity, an improved moving average (Improved-
MA) algorithm is used to mine the missing periodic pat-
terns. Compared with traditional MA and SES algorithms, 
Improved-MA and Improved-SES describe the temporal 
characteristics of traffic flow from two temporal directions 
(forward and backward).

As shown in Fig. 6, the sample data of forwarding and 
backward time intervals were selected, using the time 

interval within which the missing data were located as the 
center position, which can alleviate the deficiency of the 
time lag in imputation results of the traditional SES and MA 
algorithm (Yi et al. 2016). Specifically, if the traffic condi-
tion within the time window wk on the direction ls

i
⋅ dir2 is 

missing, the imputation values considering the correspond-
ing closeness view is shown in Eq. (8).

where v̂c
2i,k

 represents the estimated value from the view of 
closeness; Lc represents the step of backward and forward 
dependence; �c represents the smoothing parameters, with a 
value range of [0,1]; Similarly, within the time window wk 
on direction ls

i
⋅ dir2 , the estimated values from the views 

of daily periodicity and weekly periodicity are respectively 
expressed as v̂dp

2i,k
 and v̂wp

2i,k
 , and the corresponding dependent 

steps are respectively expressed as Ldp and Lwp.
In the spatial dimension, based on the topological relations 

Ts , the second-level topological neighbors of the target road 
segment are identified as the spatial neighboring segments. As 
shown in Fig. 7, the first-level topological neighbors are 
directly connected to the target road segment, and the second-
level topological neighbors are directly connected to the first-
level topological neighbors. It should be noted that topological 
neighbors not only need to be spatially connected to the target 
road segment, but also need to be consistent with the filling 
direction of the target road segment. If the second-level topo-
logical neighbors of ls

i
⋅ dir2 are expressed as �i→dir2

Ts
 , the esti-

mated result of the traffic condition from the spatial view in 
time window wk is shown in Eq. (9).

(8)

⎧⎪⎨⎪⎩

v̂c
2i,k

=

∑Lc

j=1
v2i,k−j∗�

c∗(1−�c)j−1+
∑Lc

j=1
v2i,k+j∗�

c∗(1−�c)j−1

2
∑Lc

j=1
�c∗(1−�c)j−1

v2i,k−j = X(s2i,wk−j)

v2i,k+j = X(s2i,wk+j)

Fig. 6  Illustration of Improved-SES and Improved-MA algorithm

Fig. 7  Topological relations between target segment neighboring seg-
ments
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where v̂g
2i,k

 represents the estimated value from the spatial 
view; ds

2i↔j
 represents the distance between the sequence 

X
(
sj
)
 and X

(
s2i
)
 ; vj,k represents the observed values of the 

object sj in the time window wk.
For different views of traffic condition, four different 

estimation results are obtained, i.e., v̂g , v̂c , v̂dp and v̂wp . 
Theoretically, the fusion of the four results can improve 
the accuracy of the final data estimation (Cheng et al. 
2020a; b, c; Jiang et al. 2018). However, when the sin-
gle-view estimation results deviate significantly from the 
actual values, the simple fusion may worsen estimation 
accuracy. Therefore, we introduce a filtering mechanism 
before data fusion, the filtering process of a road segment 
is shown in inequality (10).

where v represents the actual value; v̂g represents the estima-
tion result under the spatial view; v̂c represents the estima-
tion result under the temporal closeness view; ̂vdp represents 
the estimation result under the daily periodicity view; v̂wp 
represents the estimation result under the weekly periodic-
ity view; v̂� represents the estimated value under a specific 
view, that is, when the single-view estimation result is good, 
the deviation between the estimated value and the actual 
value should be less than d� . Considering that the actual 
value v cannot be obtained, the constraint ||v −�v𝛼|| < d𝜖 can 
be simplified as ||�v𝛼 −�v𝛽|| < d𝜖 , that is, the deviation between 
any two views is less than d� . The estimated values of the 
view satisfying the constraints constitute the vector v̂ , where 
1 < ||�v|| ≤ 4.

Since v̂ has variable lengthes, the fusion method should 
be able to handle sequences with variable lengths. To this 

(9)
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(10)||v −�v𝛼|| < d𝜖 →
||�v𝛼 −�v𝛽|| < d𝜖 ∀𝛼, 𝛽 ∈ (g, c, dp,wp)

end, we adopt gated recurrent unit network (GRU) (Chung 
et al. 2014) to fuse the estimation results of the four views. 
As shown in Fig. 8, if v̂ = {v̂g, v̂dp, v̂wp} , the GRU cell cor-
responding to v̂c is omitted, and only the estimation results 
of the three views are fused. The process of single forward 
propagation is shown in Formula (11).

where hwp represents the hidden unit; zwp represents the out-
put of the update gate; rwp represents the output of the reset 
gate; v̂wp represents the estimation result of a single view; 
W , U , and b represent the parameters that can be optimized 
by the model; ⊙ denotes Hadamard product; v̂ represents 
the output of the model; � represents the sigmoid activation 
function.

The network can be trained by minimizing the square loss 
between the fused traffic speed and the true traffic speed. The 
loss function is defined in Formula (12).

where � represents the observable index set; v̂ij represents 
the result of the fusion; vij represents the expected output, 
that is, the actual value.

4.4  Complexity analysis of NEI‑SE

In this section, we analyze the time complexity of the NEI-
SE. For the proposed approach, missing data imputation is 
the most time-consuming step. The most time-consuming 
part of missing data imputation is the forward propagation 
operation of GRU. Therefore, we mainly analyze the time 
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Fig. 8  Fusion of results of multiple views
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complexity of GRU. Suppose the dimension of the learn-
able weight matrix in GRU is n , the time complexity of 
one operation of GRU is O(n2) . In this study, the maximum 
number of iterations of GRU is four. Hence the final time 
complexity is still O(n2) . At present, the commonly used 
data imputation method is tensor decomposition method. 
The tensor decomposition method needs to construct a three-
dimensional tensor, and the time complexity of its solution 
is about equal to O(n3) . Therefore, the proposed approach 
has obvious computational advantages.

5  Experimental results and discussions

5.1  Data preparation

5.1.1  Data sources

Three kinds of datasets were used to validate the proposed 
speed estimation approach: (1) traffic network data, (2) taxi 
trajectory data, and (3) AutoNavi congestion index data. The 
traffic road network data and taxi trajectory data were used 
to estimate the traffic speed, and the AutoNavi congestion 
data were used to evaluate the quality of the estimated traffic 
speed data.

Collected from the Amap platform, the traffic network 
data cover main urban roads within the second ring road of 
Wuhan, China.

The taxi trajectory data were gathered from the Traffic 
Management Bureau of Wuhan, China. The period of the 
trajectory data is from July 1, 2018, to August 31, 2018, and 
the sampling intervals range from 5 to 30 s. The total num-
ber of trajectory points in the two months is more than 500 
million, and the average number of trajectory points in one 
day is about 8 million. As shown in Table 1, each trajectory 
point contains unique identification, recording time, longi-
tude, and latitude. In order to protect privacy, the unique 
identification of taxi is encrypted.

The AutoNavi congestion data came from the Amap open 
platform. The Amap API was used to crawl the congestion 
data of the study region. The period of the congestion data is 
from July 1, 2018 to August 31, 2018. There are more than 
3.7 million congestion events in two months, with an aver-
age of 60,000 congestion events in one day. Each AutoNavi 
congestion data record contains the unique identification and 
the happening time of a congestion event, the duration of 
congestion, and the congestion index. The congestion index 
quantitatively describes the severity of road congestion. 
Compared with the trajectory data, AutoNavi congestion 
data have much better quality. Therefore, AutoNavi conges-
tion data can be regarded as the ground truth (Table 2).

5.1.2  Data preprocessing

As road network data, trajectory data, and AutoNavi conges-
tion data were collected from different sources, and we need 
to preprocess the original data. The preprocessing process 
consists of two steps:

(1) The coordinate systems of AutoNavi congestion data, 
road network data, and taxi trajectory data are trans-
formed into the WGS84 coordinate system.

(2) We extracted the congestion data and taxi track data 
within the second ring road of Wuhan.

5.1.3  Characteristics of extraction speed

When performing road network segmentation, the length 
threshold dr was set to 400 m after extensive experiments, and 
647 road segments were obtained after segmentation. Table 3 
shows the distribution characteristics of road lengths after 

Table 1  Samples of taxi trajectory data

a Means the content is omitted

Taxi Id Time Latitude Longitude

9634CEa 2018-07-01 00:00:01 30.6a 114.1a

6582DPa 2018-07-01 00:00:06 30.5a 114.2a

1345LEa 2018-07-01 00:00:09 30.5a 114.2a

…… …… …… ……
9537EEa 2018-08-31 23:59:48 30.5a 114.3a

Table 2  Samples of AutoNavi congestion data

a Means the content is omitted

Congestion id Time Shape Conges-
tion 
index

b5a6a 2018-07-01 00:04:43 Geometry (polyline) 3.6
9259a 2018-07-01 00:15:57 Geometry (polyline) 4.4
5d8aa 2018-07-01 00:18:35 Geometry (polyline) 10.0
…… …… …… ……
5fdda 2018-08-31 23:54:24 Geometry (polyline) 5.7

Table 3  Length distribution characteristics of the road network after 
segmentation

Length of road segment (m) Number

len
(
l
s

i

)
< 400 24

len
(
l
s

i

)
= 400 405

400 < len
(
l
s

i

)
≤ 600 121

600 < len
(
l
s

i

)
≤ 800 97
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segmentation. Road segments with a length of less than 400 m 
account for 62.5% of total road segments, indicating that there 
are still many long road segments of the road network after 
segmentation by signalized intersections. To accurately extract 
the traffic speed of different areas in a long road segment, it is 
reasonable to divide the road segment further.

In the speed extraction stage, the time window is set to 
15 min, similar to Hou et al. (2019). That is, a day contains 
a total of 96-time windows. After speed extraction, a total 
of 1,041,839 traffic speed values were obtained for the two 
months, and the overall missing rate was 13.5%. In addition, 
we further show the missing rate of speed data from time and 
space dimensions in Fig. 9. From the spatial dimension, the 
missing rates of different road segments are heterogeneous. 
The missing rate of most road segments is less than 15%, and 
the missing rate of very few road segments is more than 50%. 
From the perspective of the time dimension, trajectory data 
within the 15-min window cover 70–90% of the traffic seg-
ments at most. This also indicates that sparse data estimation 
is a crucial step in trajectory-based traffic speed estimation.

5.2  Sparse traffic data recovery

5.2.1  Evaluation metrics of sparse data recovery

In sparse data imputation, a critical problem is how to evaluate 
the performance of the imputation model. In this study, mean 
absolute error (MAE), root mean square error (RMSE), and 
mean absolute percentage error (MAPE) are used as quantita-
tive indicators to verify the imputation accuracy of the pro-
posed model. The calculation methods of MAE, RMSE and 
MAPE are shown in Formulas (13), (14), and (15).

where � represents the indexed set of observable data; N 
represents the total number of missing data; X

(
si,wj

)
 repre-

sents the real traffic speed of the spatial object si in the time 
window wj ; X̂

(
si,wj

)
 represents the traffic speed estimated 

by the model within the time window wj of the spatial object 
si.

5.2.2  Baseline methods

To comprehensively evaluate the performance of proposed 
approach, we used nine baseline methods for comparison 
based on two missing types (random missing, block missing) 
and four missing rates (20, 30, 40, and 50%):

• HA (Campbell and Thompson 2008): Historical average 
(HA) is a statistical model which fills missing traffic con-
dition in each road segment by averaging all the traffic 
conditions in the historical time slot.

• SES (Gardner 2006): Simple exponential smoothing 
(SES) is a special weighted historical average model 
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Fig. 9  Missing rate of traffic speed in temporal and spatial dimensions
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which fills missing traffic condition by weighting the 
smoothed value and the observed historical value.

• ST-KNN (Cai et al. 2016; Yu et al. 2016a, b): Spatiotem-
poral K-Nearest Neighbors (ST-KNN) is a data-driven 
model which imputes the missing traffic conditions by 
searching for k spatiotemporal nearest neighbors in the 
historical database.

• ST-ISE (Cheng et al. 2020a; b, c): Lightweight ensemble 
spatiotemporal interpolation (ST-ISE) is a data-driven 
model which imputes missing traffic conditions on each 
road segment using Extreme Learning Machine to inte-
grate SES and IDW interpolation results.

• ST-2SMR (Jiang et al. 2018): Spatiotemporal two-step 
missing data reconstruction (ST-2SMR) is a data-driven 
model which uses coarse and fine interpolations to 
improve the final imputation performance.

• TRMF (Yu et al. 2016a, b): Temporal regularized matrix 
factorization (TRMF) is a data-driven model which 
incorporates temporal dependencies as a regularization 
term into matrix factorization to impute missing traffic 
conditions on each road segment.

• BTMF (Chen and Sun 2021): Bayesian temporal matrix 
factorization (BTMF) is a variation of TRMF model 
which incorporates Bayesian theory into the solution 
of TRMF model to impute missing traffic conditions on 
each road segment.

• LRTC-TNN (Chen et al. 2020): Low-rank tensor com-
pletion with truncated nuclear norm (LRTC-TNN) is an 
improved tensor factorization method that imputes the 
missing traffic conditions by factorizing traffic tensors 
of location × day × time windows.

• BTTF (Chen and Sun 2021): Bayesian temporal tensor 
factorization (BTTF) is an advanced tensor factorization 
method that leverages temporal dependencies to impute 
missing traffic condition based on traditional tensor fac-
torization.

5.2.3  Parameter selection

The hyperparameters in the imputation process of the NEI-
SE mainly include the time closeness dependency step Lc , 
the smoothing parameter �c , time daily periodicity depend-
ency step Ldp , time weekly periodicity dependency step Lwp , 

Fig. 10  Parameter tuning of NEI-SE
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the multi-view filtering threshold d� , and the number num 
of nodes in GRU hidden layer. In the modeling process, the 
control variable method is used to obtain the optimal combi-
nation of parameters, in which the value range of �c is [0.1, 
1], the value range of Lc is [1, 15], the value range of num 
is [32, 62, 128, 256]. The value range of Ldp , Lwp , and d� is 
[1, 15]. Taking the random missing rate of 30% as an exam-
ple, Fig. 10 shows the process of parameter calibration. The 
results show that with the increase of Lc and �c , the impu-
tation accuracy of the NEI-SE gradually increases. When 
L
c = 9 and �c = 0.5 , the model achieves good accuracy. 

Similarly, Ldp , Lwp , d� , and num are also calibrated. Finally, 
the following settings of parameters were used throughout 
the experiments: Ldp = 5 , Lwp = 4 , d� = 5 , num = 256.

5.2.4  Comparison with baselines

In this section, we compare the imputation performance 
of the NEI-SE with baselines. Table 4 shows the compari-
son results between NEI-SE and baselines under random 
missing. The results show that the imputation performance 
of all models decreases slightly with the increase of the 
missing rate. Among them, the imputation performance 

of the ST-2SMR model is greatly affected by the miss-
ing rate. Except for the ST-2SMR model, other models 
were less affected by the missing rate. In addition, NEI-SE 
achieves the best imputation performance under random 
missing. Table 5 shows the comparison results between 
NEI-SE and baselines under block missing. The results 
show that with the increase of missing rate, the imputation 
performance of most models (such as ST-KNN, ST-ISE, 
ST-2SMR, TRMF, and BTMF) decreases significantly, 
while the imputation performance of the tensor decompo-
sition model and NEI-SE is relatively stable. Compared 
with BTTF, NEI-SE has less physical storage space. The 
reason is that BTTF is a tensor decomposition model, 
and each solution needs to construct a tensor of loca-
tion × day × time windows.

5.2.5  Imputation performance of the NEI‑SE

In this section, the scatter plots are used to describe the perfor-
mance of NEI-SE qualitatively. Figure 11 shows the imputa-
tion results of the NEI-SE with a single road segment with a 
missing rate of 30–40%. The results show that the observed 
values are close to the estimated values of the NEI-SE, and the 

Table 4  Comparison results 
(in MAE/RMSE/MAPE) with 
baselines for random missing

Models Missing rate

20% 30% 40% 50%

HA 3.69/4.96/11.05% 3.78/5.11/11.37% 3.90/5.28/11.77% 4.04/5.48/12.24%
SES 3.28/4.50/9.56% 3.36/4.62/9.80% 3.45/4.77/10.11% 3.57/4.97/10.50%
ST-KNN 2.75/3.64/8.46% 2.81/3.68/8.58% 2.93/3.75/8.72% 3.04/3.84/8.92%
ST-ISE 2.85/3.76/8.59% 2.71/3.55/8.21% 2.77/3.59/8.53% 2.90/3.78/8.89%
ST-2SMR 3.42/4.79/10.20% 3.93/5.47/11.82% 4.06/5.49/12.29% 4.06/6.99/13.05%
TRMF 2.80/3.41/8.47% 2.81/3.42/8.48% 2.81/3.42/8.49% 2.81/3.43/8.50%
BTMF 2.78/3.37/8.28% 2.79/3.38/8.31% 2.80/3.40/8.35% 2.81/3.42/8.39%
LRTC-TNN 2.94/3.70/8.41% 3.02/3.80/8.62% 3.12/3.94/8.88% 3.25/4.11/9.22%
BTTF 2.79/3.36/8.27% 2.79/3.37/8.29% 2.80/3.39/8.33% 2.81/3.41/8.37%
NEI-SE 2.66/3.31/8.14% 2.70/3.55/8.16% 2.69/3.33/8.19% 2.76/3.35/8.24%

Table 5  Comparison results 
(in MAE/RMSE/MAPE) with 
baselines for block missing

Models Missing rate

20% 30% 40% 50%

HA 5.84/8.30/17.23% 5.23/8.78/18.61% 6.99/9.87/20.73% 7.38/10.58/21.66%
SES 5.69/8.13/17.35% 6.03/8.46/18.41% 6.63/9.37/20.10% 6.80/9.84/20.51%
ST-KNN 3.13/4.13/9.28% 3.49/4.68/10.49% 3.82/5.25/11.62% 4.60/6.41/14.28%
ST-ISE 3.68/4.89/11.11% 4.56/6.12/14.41% 4.69/6.27/14.75% 5.39/7.20/17.01%
ST-2SMR 4.91/6.59/14.75% 5.14/6.85/15.45% 5.75/7.76/17.31% 6.38/8.25/18.84%
TRMF 3.49/5.08/10.00% 3.74/6.14/10.98% 5.09/9.05/14.04% 5.21/9.35/14.63%
BTMF 3.41/4.85/9.78% 3.77/6.22/11.03% 4.93/8.69/13.65% 5.12/9.21/14.41%
LRTC-TNN 3.26/4.08/9.54% 3.40/4.27/9.87% 3.75/4.69/10.64% 3.90/4.93/11.28%
BTTF 2.88/3.54/8.65% 2.87/3.53/8.70% 2.93/3.62/8.86% 2.96/3.70/8.95%
NEI-SE 2.84/3.64/8.43% 2.90/3.52/8.70% 2.89/3.51/8.68% 2.88/3.54/8.71%
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Fig. 11  Estimated values and corresponding actual values of a road segment: a 30% random missing, b 40% random missing, c 30% block miss-
ing, and b 40% block missing

Table 6  Imputation comparison 
(in MAE/RMSE/MAPE) of 
different fusion methods under 
random missing

Models Missing rate

20% 30% 40% 50%

MLP-Fusion 3.93/5.15/11.67% 4.01/5.25/11.69% 4.05/5.31/11.94% 4.33/5.62/12.78%
ELM-Fusion 4.83/6.45/13.76% 4.94/6.59/13.96% 5.06/6.75/14.26% 5.17/6.88/14.53%
Mean-Fusion 2.80/3.48/8.41% 2.82/3.51/8.43% 2.84/3.56/8.50% 2.87/3.61/8.58%
NEI-SE 2.66/3.31/8.14% 2.70/3.55/8.16% 2.69/3.33/8.19% 2.76/3.35/8.24%

Table 7  Imputation comparison 
(in MAE/RMSE/MAPE) of 
different fusion methods under 
block missing

Models Missing rate

20% 30% 40% 50%

MLP-Fusion 4.16/5.41/12.42% 4.92/6.30/14.77% 5.17/6.61/15.25% 5.69/7.21/17.02%
ELM-Fusion 3.95/5.27/11.46% 4.71/6.30/13.38% 5.41/7.19/15.17% 6.46/8.39/18.17%
Mean-Fusion 2.85/3.65/8.59% 2.90/3.81/8.86% 2.92/3.93/8.82% 3.09/4.58/9.02%
NEI-SE 2.84/3.64/8.43% 2.90/3.52/8.70% 2.89/3.51/8.68% 2.88/3.54/8.71%
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residuals are mainly between [−5, 5], which indicates that the 
imputation results of the NEI-SE have high accuracy.

5.2.6  Effect of fusion methods on imputation performance

In the data fusion stage, GRU was used to fuse multi-view 
estimation results. Therefore, we compare the effects of 
different fusion methods on imputation performance. We 
mainly compare four different fusion methods, including 
the fusion method of multi-layer perceptrons (MLP-Fusion) 
(Jiang et al. 2018), the fusion method of extreme learning 
machines (ELM-Fusion) (Cheng et al. 2020a, b, c), aver-
age fusion method after filtering (Mean-Fusion), and GRU 
fusion method after filtering (NEI-SE). Table 6 describes 
the imputation results of different fusion methods in the 
scenario of random missing. The results show that NEI-SE 
has the best imputation accuracy, while ELM-Fusion has 
the worst imputation performance. At the same time, it can 
be noted that the imputation accuracy of Mean-Fusion is 

higher than those of MLP-Fusion and ELM-Fusion, prov-
ing the importance of multi-view alignment. In addition, the 
imputation accuracy of NEI-SE is slightly higher than that 
of Mean-Fusion, showing that GRU is well suited for data 
fusion. Similarly, Table 7 describes the imputation results 
of different fusion methods in the scenario of block missing. 
The results show that NEI-SE also has the highest imputa-
tion accuracy under block-missing scenarios.

5.3  Data quality assessment based on AutoNavi 
congestion data

5.3.1  Evaluation metric of data quality

We used Pearson correlation coefficient to evaluate the qual-
ity of estimated traffic speed data. Pearson correlation coef-
ficient is used to calculate the correlation between AutoNavi 
congestion index and estiamted traffic speed. The traffic con-
dition matrix of AutoNavi congestion index is represented 

Fig. 12  Spatial distribution of congestion index and traffic speed
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by Xg , and the traffic condition matrix of traffic speed is 
represented by Xv . The calculation method of the correlation 
coefficients of Xv and Xg is shown in Formula (16).

where � represents an index set that can observe both the 
congestion index and the speed; T represents the number of 
observable data, i.e., T = |�| ; Xv

(
si,wj

)
 represents the traffic 

speed of the spatial object si in the time window wj ; Xg

(
si,wj

)
 

represents the traffic congestion index of the spatial object si 
in the time window wj ; r represents the correlation coefficient 
between traffic congestion index and traffic speed, and its 
value range is [− 1, 1]; In the real world, the traffic conges-
tion index and traffic speed should have an obvious negative 
correlation, i.e., r < 0 . In this study, the smaller the r value, 
the higher the data quality of traffic speed.

5.3.2  Analysis of data quality assessment results

Figure 12 shows the spatial distribution of the AutoNavi 
congestion index and traffic speed in two-time windows. The 
results show that the AutoNavi congestion index and the traf-
fic speed of the two-time windows show a high degree of 
consistency in the spatial distribution. In other words, the traf-
fic speed in the spatial area with a higher congestion index 
is lower. In comparison, the traffic speed in the spatial area 
with a smaller congestion index is higher. For example, the 
AutoNavi congestion indices of most road segments in the 
area marked with the red circle in Fig. 12a are more signifi-
cant than 3. The traffic speeds of most corresponding road 
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segments in Fig. 12b are less than 15 km/h, proving that the 
approach proposed in this study is practical for extracting traf-
fic speed data based on trajectories.

From the results of sparse trajectory imputation, it can be 
seen that the three methods of BTTF, LRTC-TNN, and NEI-
SE have good results. Therefore, we used the Pearson cor-
relation coefficient to evaluate the quality of traffic speed data 
quantitatively, and the results are shown in Fig. 13. The results 
show that the AutoNavi congestion index has a high negative 
correlation with estimated traffic speed. The average correla-
tion coefficient of the NEI-SE imputation dataset is − 0.67, the 
average correlation coefficient of the BTTF imputation dataset 
is − 0.65, and the average correlation coefficient of the LRTC-
TNN imputation dataset is − 0.61. There are two main reasons 
why the correlation coefficient between congestion index and 
traffic speed is not less than − 0.8. First, the function mapping 
between AutoNavi congestion index and traffic speed may not 
be linear. Second, there are some errors in the traffic speed 
extracted based on trajectory. Even so, it still shows that the 
traffic speed data extracted has high data quality.

6  Conclusions and future work

First, the urban traffic network is divided according to the 
signalized intersection and 400 m distance, considering the 
influence of signal timing on urban traffic speed. Then, the 
traffic condition matrix is extracted based on the taxi trajec-
tory and the divided road network. Finally, a lightweight 
multi-view learning method integrating temporal patterns 
and spatial topological relations is proposed to fill the miss-
ing values of the traffic condition matrix. We used nine base-
line methods for comparison based on two missing types 
and four missing rates. The results showed that NEI-SE out-
performed the nine existing baselines regarding imputation 
accuracy.

The AutoNavi Congestion data was used to evaluate 
the data quality of estimated traffic speed data. The results 
show that the spatial distribution of congestion index and 
traffic speed is consistent, that is, the traffic speed in the 
spatial area with higher congestion index is lower, while 
the traffic speed in the spatial area with lower conges-
tion index is higher. In addition, taking daily as the time 
interval, we used Pearson correlation coefficient to analyze 
the correlation between congestion index and estimated 
traffic speed. The results show that the congestion index 
has a significant negative correlation with estimated traffic 
speed, with an average correlation coefficient of − 0.67. 
This not only indicates that the traffic speed data extracted 
has high data quality, but also proves the effectiveness of 
the approach proposed.

The proposed approach provides a solution for the 
traffic condition estimation of the urban signalized road 

Fig. 13  Changes in correlation coefficient between congestion index 
and traffic speed over time
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networks. The proposed approach has three main advan-
tages. First, through the proposed approach, the traffic con-
dition can be estimated through massive vehicle trajecto-
ries without installing a large area of sensor equipment. 
Second, the data imputation method in NEI-SE can be 
regarded as an independent component and can be applied 
to different missing data imputation tasks. Three, the pro-
posed approach is easy to implement, and we provide an 
open-source code implementation.

Although the proposed method has many advantages, 
it also has limitations. First, we did not integrate the sig-
nal timing data into the proposed method due to the lack 
of signal timing data. Second, the proposed approach is 
a hybrid model rather than an end-to-end model, which 
affects the performance of the proposed approach to some 
extent. Finally, we used GRU for data fusion and the 
fusion method can be further explored. Given the above 
problems, future work will focus on two aspects. First, 
multi-source data will be collected to improve the effec-
tiveness of the approach. Then, a more appropriate data 
fusion method will be designed to improve the perfor-
mance of the approach.
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