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A B S T R A C T

Understanding human mobility and trip demand through e-bike trajectories is crucial for urban planning, 
environmental enhancement, and sustainable development. However, existing studies predominantly focus on 
shared (e− )bike trips, neglecting private e-bike trips. With the recent availability of sparse trajectory for private 
e-bikes, we established a novel analysis framework to reveal human mobility and trip demand in Wuhan, China. 
First, we propose a two-step method for extracting trip behavior from sparse trajectories of private e-bikes, 
involving the identification of staying areas and the generation of e-bike trips. Second, we establish a spatial 
random forest method to capture the nonlinear relationship between private e-bike trips and driving factors. 
Finally, we use the interpretable SHAP method to reveal the driving mechanisms of e-bike trips and explore the 
impact of various factors on these trips. The results indicate that (1) trip distances of private e-bikes follow a 
lognormal distribution, with an Adj. R-Square of 0.99, while trip times exhibit a Hill distribution, with an Adj. R- 
Square of 0.95; (2) Private e-bike trips are not commonly employed to address the first/last mile problem in 
public transportation and are more frequently used for daily commuting needs, with over 65% of these trips 
covering distances greater than 1 km or lasting longer than 5 min; (3) private e-bike trips positively correlate 
with the density of POIs like Hospital, School, and Transportation Station. However, compared to shared (e− )bike 
trips, Transportation Station Density, especially Metro Station Density, is less important for private e-bike trips; and 
(4) private e-bike trips are also positively correlated with Congestion Level and House Price, meaning that areas 
with severe traffic congestion or high housing prices tend to have more private e-bike trips. This study provides a 
new framework for understanding private e-bike trip patterns, also helping authorities better grasp the factors 
influencing e-bike trip demand.

1. Introduction

The escalation in motor vehicle ownership has exacerbated issues of 
traffic congestion and environmental pollution, thus imperiling the 
sustainable progression of urban transportation (S. Cheng et al., 2023; 
McCaffery et al., 2021). In response, many countries have regarded 
electric bicycles (e-bikes) as a viable remedy to attain zero carbon 
emissions objectives, actively endorsing them as the preferred mode of 

transportation for human mobility (Guidon et al., 2020; McKenzie, 
2020; McQueen et al., 2020). It is estimated that e-bike ownership 
around the world will continue to grow in the future, for example, 
China’s annual sales of e-bikes soared to 54 million in 2023 (IResearch 
Consulting and Master Lu, 2023).

The proliferation of e-bikes has led to an explosive surge in trajectory 
data, offering novel avenues for scrutinizing human mobility and trip 
demand through the lens of e-bikes (Fukushige et al., 2021; Fyhri and 
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Fearnley, 2015; Z. Guo et al., 2023; McKenzie, 2020; Rich et al., 2021; Z. 
Zhang et al., 2023). Presently, extensive studied have been conducted on 
understanding human trips through e-bike trajectories, encompassing 
analyses of hotspots and cold spots in e-bike usage (Xu et al., 2023), 
exploration of connecting trips between e-bikes and subways/buses (Liu 
et al., 2023; Zhou et al., 2023), the elucidation of driving factors behind 
e-bike trips (Bi et al., 2022; Ding et al., 2019; Y. Yu et al., 2022).

Although considerable studies have been conducted on human trips 
using e-bikes, there are still gaps. From the research object, existing 
studies predominantly center on trips using shared e-bikes (Choi et al., 
2023; Z. Zhang et al., 2023), rather than trips using private e-bikes (Y. 
Yu et al., 2022). Compared to shared e-bikes, private e-bikes have sig-
nificant advantages in flexibility, convenience, and freedom. However, 
current research on trips using private e-bikes is very limited, leaving 
their spatiotemporal patterns—such as mobility patterns and trip 
demand—largely unexplored (Guidon et al., 2020; McKenzie, 2020). 
Regarding methodology, the current approach primarily relies on 
simplistic applications of classical machine learning models, particularly 
for modeling trip demand (Bi et al., 2022; S. Yu et al., 2021). The 
classical machine learning model assumes that e-bike trips are inde-
pendent and identically distributed samples, which contradicts the 
spatial correlation and heterogeneity of e-bike trips.

In recent years, to enhance the management of private e-bikes, some 
cities have installed monitoring stations to collect their trajectories. 
Unlike GPS trajectories of shared e-bikes, the trajectories collected by 
monitoring stations exhibit significant sparsity, thereby safeguarding 
personal privacy. The collection of private e-bike trajectories has 
enabled numerous studies. Given this context, we established a novel 
analysis framework based on sparse trajectories of private e-bikes. The 
proposed framework extracts the trip behavior of private e-bikes from 
sparse trajectories and employs interpretable data-driven techniques to 
uncover their spatiotemporal patterns. Specifically, this study aims to 
answer the following three questions: (1) How to extract private e-bike 
trips from sparse trajectories? (2) How can we model the trip demand of 
private e-bikes while accounting for spatial correlation and heteroge-
neity? (3) What are the mobility patterns and driving factors behind 
private e-bike trips? This study fills the gap in current research on pri-
vate e-bike trips and enriches the literature on human mobility. In 
addition, we open-sourced the extracted trip data to facilitate research 
on private e-bike trips.

The remainder of this study is organized as follows. Section 2 reviews 
the relevant literature; Section 3 describes the study area and data 
sources of this study; Section 4 presents a detailed description of the 
proposed framework for e-bikes trip analysis; Section 5 analyzes the 
spatiotemporal impacts of the built environment, traffic conditions, and 
socioeconomic factors on private e-bike trips; In Section 6, the discus-
sion and summary are presented.

2. Related works

This study primarily focuses on human mobility for green trips, 
particularly private e-bike trips. Unfortunately, there has been limited 
research on private e-bike trips. Consequently, we primarily reviewed 
research related to shared (e− )bike trips.

In recent years, the establishment of shared (e− )bike systems has 
infused new vitality into green trips (Venkadavarahan et al., 2023). 
Shared (e− )bike trips often yield a wealth of dense trajectories thanks to 
the advantages of GPS positioning technology (Choi et al., 2023; Plazier 
et al., 2017). By integrating order data with dense trajectory data, re-
searchers can easily extract the trip features of shared (e− )bikes, such as 
trip distance, duration, origin, and destination (Ji et al., 2022; Tang 
et al., 2024). At present, related scholars have conducted extensive 
studies on shared (e− )bike trips (Bieliński et al., 2021).

For shared bike trips, Xu et al. (2023) found that the trip distances of 
shared bikes follow a log-normal distribution, with approximately 90% 
of trips concentrated within 1.3 km. Ji et al. (2022) and Zhou et al. 

(2023) found a significant positive correlation between sharing bike 
trips and metro station density, particularly in downtown areas. Above 
finding suggests that shared bikes have become an effective solution for 
addressing the first/last mile problem in public transportation (van 
Kuijk et al., 2022; Yen et al., 2023; Zuo et al., 2020). Many commuters 
utilize shared bikes for connecting trips during workdays, especially 
from shared bikes to the metro(L. Cheng et al., 2019; Fu et al., 2023; 
Zhou et al., 2023). Regarding driving mechanism modeling, Yu et al. 
(2022) and Zhou et al. (2023) established the relationship between 
shared bike trips and their driving factors using ordinary least squares 
and geographically weighted regression, respectively. To capture the 
nonlinear relationship between trips and driving factors, many scholars 
have also employed classical machine learning models, such as gradient 
boosting decision trees(Bi et al., 2022), random forest(L. Cheng et al., 
2019), and Xtreme Gradient Boosting(Ji et al., 2022). These Studies 
have demonstrated that shared bike trips are influenced by socioeco-
nomic factors, spatial locations, and urban built environment (Bi et al., 
2022; Ding et al., 2019; Eren and Uz, 2020; Fu et al., 2023).

For shared e-bike trips, the trip distances of shared e-bikes also 
follow a log-normal distribution (Li et al., 2024). Compared to shared 
bike trips, the trip distances of shared e-bikes are slightly longer(Guidon 
et al., 2019; Reck et al., 2021), but many shared e-bike trips still 
concentrate within 2 km(Li et al., 2024). These finding suggests that 
shared e-bike trips are primarily intended for short-distance urban trips, 
with many trips being used to address the first/last mile problem in 
public transportation (Choi et al., 2023; Liu et al., 2023; Zhu et al., 
2024). Regarding driving factors, Existing Studies show that shared 
e-bike trips are also influenced by socioeconomic factors, spatial loca-
tions, and urban built environment(Liu et al., 2023; Yang et al., 2022; Y. 
Yu et al., 2022; Zhou et al., 2022). For instance, socioeconomic factors 
impact the acceptance and frequency of shared e-bike usage, spatial 
locations influence usage patterns and demand intensity, and the urban 
built environment affects the availability and convenience of shared 
e-bikes.

In summary, considerable research has been conducted on (e− )bike 
trips. However, several gaps remain in the existing research. First, 
existing studies predominantly focus on shared (e− )bike trips rather 
than private e-bike trips. To protect personal privacy, we typically 
collect sparse trajectories of private e-bikes using monitoring stations, 
rather than the dense trajectories obtained through GPS technology. 
This sparsity presents challenges in accurately extracting trip behavior 
from these trajectories. Second, existing studies use classical machine 
learning approaches to capture the nonlinear relationship between (e− ) 
bike trips and driving factors. These approaches often assume sample 
independence and identical distribution, neglecting the spatial correla-
tion and heterogeneity inherent in (e− )bike trips. To address these gaps, 
we propose a method for extracting trip behavior from sparse trajec-
tories and establish a spatial random forest approach to capture the 
nonlinear relationship between private e-bike trips and driving factors. 
Additionally, we analyze the mobility patterns of private e-bike trips and 
reveal the driving mechanisms using interpretable data-driven 
techniques.

3. Study area and data sources

3.1. Study area

Wuhan is situated in the center of China, in the eastern part of Hubei 
Province, and along the middle reaches of the Yangtze River. Since 
2010, Wuhan’s resident population has been on a continuous upward 
trend, growing from 9.7 million in 2010 to 13 million in 2023. At pre-
sent, Wuhan has emerged a mega city in the central region of China and 
a core city in the Yangtze River Economic Belt. As shown in Fig. 1, the 
area within the Third Ring Road is the heart of Wuhan. Despite covering 
only 6% of Wuhan’s total area, this region accommodates 50% of the 
city’s population. This study focuses on the spatiotemporal patterns of 
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private e-bike trips within the Third Ring Road. Following to the 
methodology of Fu et al. (2023), we divided the study area into a regular 
grid of 200m × 200 m cells.

3.2. Data sources and data preprocessing

3.2.1. Data sources
The dataset of this study mainly consists of POI data, house price 

data, population data, Gaode congestion index data, and private e-bike 
trajectory data. The POI data, house price data, population data, and 
Gaode congestion index data are mainly used to construct the driving 
factors of urban environment, traffic condition, and socio-economics 
(discussed in Section 3.2), while the private e-bike trajectory data is 
mainly used to extract the trip behavior. In this subsection, we mainly 
describe the collection method and field information of private e-bike 
trajectories.

The trajectories of private e-bikes are collected through monitoring 
stations rather than GPS devices. When a private e-bike moves near a 
monitoring station, the real-time location is uploaded to the database. 
Over 8000 monitoring stations were deployed within the study area, as 
shown in Fig. 1. The dataset used in this study was collected from 
December 28, 2020, to January 10, 2021, encompassing over 1 million 
private e-bike trajectories. Table 1 shows the field information of a 
single private e-bike trajectory, where ID is the unique identifier of the 
private e-bikes. By sorting the trajectory points in time, a complete 
trajectory can be obtained. Compared to the GPS continuous tracking 
and positioning technology used for shared e-bikes, the trajectory points 
of private e-bikes are only generated when they are near monitoring 
stations. This method safeguards personal privacy but also results in 
significantly sparser trajectories.

3.2.2. Data preprocessing
To support this study, we preprocessed spatiotemporal datasets as 

follows.

(1) We have unified the coordinate systems of POI data, housing 
price data, congestion data, population data, and trajectory data 
into the WGS84 coordinate system.

(2) There are significant differences in human activity patterns dur-
ing weekdays, weekends, and holidays (S. Zhang et al., 2019; Y. 
B. Zhang et al., 2024). In this study, we focused on extracting and 
analyzing e-bike trips during weekdays, removing trajectory data 
collected on weekends and holidays.

(3) We filtered invalid private e-bike trajectory data, such as trajec-
tory data with too few points or no movement. Additionally, since 
we focus on private e-bike trips within the Third Ring Road, we 
removed trajectory data outside this area. After filtering the data, 
we obtained more than 300,000 private e-bike trajectories.

4. Methodology

As shown in Fig. 2, the proposed framework is divided into three 
parts: extracting e-bike trips based on sparse trajectories, modeling e- 
bike trips based on spatial random forest, and revealing e-bike trip 
mechanisms based on explainable approach (discussed in sections 4.1- 
4.3). First, we propose a two-step extraction method for trip behavior, 
which identifies the staying areas in trajectory data and extracts the trip 
behavior of e-bikes based on the temporal relationship of the staying 
areas. Second, we establish a spatial random forest method to capture 
the nonlinear relationship between e-bike trips and driving factors. 
Finally, we reveal the driving mechanism of e-bike trips and explore the 
impact of various factors on e-bike trips via the interpretable SHAP 
method.

4.1. Extracting E-bike trip based on sparse trajectories

The extraction of e-bike trips is a critical step in the proposed 
framework. Since private e-bikes is only tracked near monitoring sta-
tions, the trajectory points are sparse compared to those of shared e- 
bikes. Additionally, unlike shared e-bikes, there is no order data to assist 
in extracting the trip behavior of private e-bikes. Given the above dif-
ference between shared and private e-bikes, we propose a two-step 
method to extract the trip behavior from private e-bike trajectories. 
Specifically, we first identify the staying areas in the trajectory data, and 
then generate the e-bike trips based on the temporal relationships be-
tween these staying areas.

As shown in Fig. 3, the staying areas in the trajectory are primarily 
divided into two categories: the determined staying area and the po-
tential staying area. When the e-bike is parked near the monitoring 
station, the real-time trajectory point will be uploaded to the database at 
specific intervals. These points cluster near the monitoring station, 
forming determined staying areas. If the e-bike is not parked near a 
monitoring station, the real-time trajectory points will not be recorded 
in the database. When the trajectory point is recorded again, the first 
monitored area might be where the e-bike was parked, which we refer to 
as a potential staying area.

For potential staying areas, we extract the first or last point of the 

Fig. 1. Sketch map of the study area.

Table 1 
Sample of single private e-bike trajectory.

ID Date Time Latitude Longitude

125172 2020/12/28 07:16:24 30.4**** 114.4****
125172 2020/12/28 07:18:14 30.4**** 114.4****
125172 2020/12/28 07:19:03 30.3**** 114.5****
…… …… …… ……
125172 2021/01/08 20:14:07 30.4**** 114.5****
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Fig. 2. Research framework for analyzing spatiotemporal patterns of e-bike trips.

Fig. 3. Extraction of e-bike trips: (a) from determined staying area to determined staying area, (b) from determined staying area to potential staying area, (c) from 
potential staying area to determined staying area, and (d) from potential staying area to potential staying area.

P. Wang et al.                                                                                                                                                                                                                                   Journal of Cleaner Production 471 (2024 ) 143444 

4 



trajectory fragment. For determined staying areas, inspired by the hi-
erarchical agglomerative clustering algorithm, we extract the center 
point of the cluster in the trajectory fragment (details are in Appendix 
A). After identifying the staying area in the trajectory, the e-bike trip can 
be generated based on the temporal relationship between clusters, 
including from determined staying area to determined staying area 
(Fig. 3(a)), from determined staying area to potential staying area (Fig. 3
(b)), from potential staying area to determined staying area (Fig. 3(c)), 
and from potential staying area to potential staying area (Fig. 3(d)).

4.2. Modeling E-bike trips based on spatial random forest

Based on the extraction of e-bike trips, we further model e-bike trips. 
The random forest is a classical machine learning technique known for 
its powerful nonlinear fitting abilities, successfully applied across 
various fields (Valipour Shokouhi et al., 2024; B. Zhang et al., 2023). 
However, most existing studies simply apply the classical random forest 
without accounting for the specific characteristics of trip data. Specif-
ically, the classical random forest does not account for the spatial cor-
relation and heterogeneity of trip data, instead assuming that trip data 
are sample-independently and identically distributed. Therefore, we 
propose a spatial random forest (SRT) to address the above limitations.

As shown in Fig. 4, the proposed SRF incorporates not only the 
driving factors of the target grid but also those of its spatial neighbors. 
To enhance the model’s capacity in capturing spatial correlation, we 
introduced spatial neighborhoods into the classical random forest. 
Furthermore, we explicitly integrated the spatial position of the target 
grid into the SRF to improve its capability in capturing spatial hetero-
geneity. Table 2 outlines the 17 driving factors utilized in this study, 
categorized into spatial position, built environment, traffic condition, 
and socioeconomics. As the proposed SRF introduces the spatial neigh-
borhood, we need to fuse the driving factors of the target grid itself with 
those of the spatial neighbors. The specific fusion method is shown in 
formulas (1), (2), (3), and (4). 

f̂
i
sp = f i

sp (1) 

f̂
i
be =

∑

j∈Ωi

f j
be (2) 

Fig. 4. Definition of spatial random forest.

Table 2 
Dependent and independent variables in spatial random forests.

Input/Output Variables/Driving 
Factor

Variable Description (within each grid)

E-bike Trips Origin* Total amount of origins
Destination* Total amount of destinations

Spatial Position Longitude+ Longitude of center coordinates
Latitude+ Latitude of center coordinates

Built 
Environment

Road density+ Total road length
Land Use Mix+ Ratio of different land-use types
Commercial POI 
Density*

Number of Commercial POIs

School POI Density* Number of School POIs
Company POI 
Density*

Number of Company POIs

Hospital POI 
Density*

Number of Hospital POIs

Government POI 
Density*

Number of Government POIs

Bus Station Density* Number of Bus Stations
Metro Station 
Density*

Number of Metro Stations

Financial POI 
Density*

Number of Financial POIs

Residential POI 
Density*

Number of Residential POIs

Scenic POI Density* Number of Scenic POIs
Traffic 

condition
Congestion Level+ Congestion duration calculated from 

Gaode congestion index
Social economy Population Density* Population calculated through 

WorldPop data
House Price+ Average house prices calculated from 

Fangtianxia data

+ represents continuous variables, and * represents categorical variables.
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f̂
i
tc =max

j∈Ωi
f j
te (3) 

f̂
i
se =

∑

j∈Ωi

1
d2

ij
f j
be

∑

j∈Ωi

1
d2

ij

(4) 

where f̂
i
sp, f̂

i
be, f̂

i
tc, and f̂

i
se represent the fused spatial position, built 

environment, traffic condition, and socio-economic factors for the i th 
grid, respectively; Ωi represents the spatial neighborhood of the i th grid; 
f j
sp, f j

be, f
j
tc, and f j

se represent the spatial position, built environment, traffic 
condition, and socio-economic factors of spatial neighbor grid, respec-
tively; dij represents the spatial distance between the target grid and the 
spatial neighbor grid. Based on Formulas (1), (2), (3), and (4), the fused 
spatial position corresponds to the central coordinates of the target grid. 
The fused built environment is determined by aggregating the count of 
POIs within the spatial neighborhood. The fused traffic condition is 
represented by the highest congestion level observed within the spatial 
neighborhood. The fused socio-economic is calculated as the average 
house price and population within the spatial neighborhood.

4.3. Revealing E-bike trip mechanisms based on explainable approach

Although the proposed SRF establishes non-linear relationships be-
tween seventeen driving factors and e-bike trips, it is still unclear how 
these factors affect the model’s outputs. The SHAP method, a tool for 
interpreting the output of machine learning models (Lundberg and Lee, 
2017), helps understand why the model makes decisions by quantifying 
the contribution of each factor to the model output. Currently, the SHAP 
method has been successfully applied to interpret black-box machine 
learning models across various domains (Ji et al., 2022; Parsa et al., 
2020). Therefore, the SHAP method is employed in this study to eluci-
date the driving mechanism of e-bike trips.

The principle of SHAP method is based on the Shapley value in game 
theory, elucidating the impact of each driving factor on the model 
output by computing their respective Shapley values. Specifically, the 
mathematical model of SHAP is shown in Formula (5). 

SRF
({

f̂
i
1,…, f̂

i
j,…f̂

i
17

})
=

∑Nt

i=1
SRF

({
f̂

i
1,…, f̂

i
j,… f̂

i
17

})

Nt
+
∑17

j=1
SHAP

(
f̂

i
j

)

(5) 

where SRF represents the spatial random forest; 
∑Nt

i=1
SRF({̂f

i

1 ,…,̂f
i

j ,… f̂
i

17})
Nt 

denotes the average of model outputs for all grids in the test sample; Nt 

denotes the total number of grids in the test sample; SHAP
(

f̂
i
j

)
denotes 

the Shapley value of the j th driving factor in the i th grid. When 

SHAP
(

f̂
i
j

)
is greater than 0, the j th driving factor of i th grid has a 

positive effect on e-bike trips. When SHAP
(

f̂
i
j

)
is less than 0, the j th 

driving factor of the i th grid has a negative effect on e-bike trips.

5. Experimental results and analysis

5.1. Spatiotemporal characterization of E-bike trips

In this section, we first analyze the statistical distributions of trip 
distance and time, and then analyze the spatiotemporal characteristics 
of the origin and destination of e-bike trips.

Fig. 5(a) and (b) display the statistical distributions of trip distance 
and time, respectively. The results indicate that the number of e-bike 
trips first increases and then decreases as the trip distance increases, 
whereas the number of e-bike trips continuously decreases as the trip 
time increases. We further fit the statistical distribution of trip distance 
and time, as shown in Table 3. The results reveal that trip distances 
follow a clear lognormal distribution, with an Adj. R-Square of 0.99. The 
fitting result aligns with the characteristics of human trips, where 
shorter distances are often covered by walking or cycling rather than 
using e-bikes. In contrast, trip times exhibit a distinct Hill distribution, 
with an Adj. R-Square of 0.95. In addition, compared to shared (e− )bike 
trips, private e-bike trips are not commonly employed to address the 
first/last mile problem in public transportation and are more frequently 
used for daily commuting needs. For example, 65.6% of private e-bike 
trips cover distances greater than 1 km, and 68.5% of private e-bike trips 
last longer than 5 min.

Fig. 6(a) illustrates the time distribution of e-bike trip origins and 
destinations. The results indicate that the private e-bike trips exhibit a 
clear bimodal distribution, with the morning peak from 7:30 to 9:20 and 
the evening peak from 16:00 to 18:45. This results further demonstrate 

Fig. 5. Statistical distributions of e-bike trips: (a) statistical distributions of trip distance, and (b) statistical distributions of trip time.

Table 3 
Fitting results of statistical distributions.

Distribution Trip distance Trip time

R-Square Adj. R-Square R-Square Adj. R-Square

Normal 0.90649 0.90506 0.60716 0.60115
Lognormal 0.99438 0.99429 0.74208 0.73811
Pulse 0.06327 0.03913 0.85170 0.84788
Giddings 0.97421 0.97382 0.54006 0.53298
Hill 0.91214 0.91079 0.95319 0.95305
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that private e-bikes serve daily commuting needs. Additionally, we 
further quantified the lag effect between the origin curve and the 
destination curve using the cross-correlation function, as shown in Fig. 6
(b). The results show that the correlation coefficients of the two curves 
are highest when the lag time is 10 or 15 min, indicating that most e-bike 
trips are completed within this time frame.

Fig. 7(a)–(b) display the spatial distribution of the e-bike trip origins 
and destinations. The results reveal that e-bike trip hotspots are pri-
marily concentrated in the downtown area. This concentration can be 
attributed to two main factors. First, downtown areas typically host 
numerous commercial, cultural, and recreational facilities, generating a 
high demand for short to medium-distance trips (He et al., 2019). Sec-
ond, downtown areas often experience significant traffic congestion, 
while e-bikes provide a faster and more flexible travel option on city 
roads (Rérat, 2021). Additionally, the analysis shows that e-bike trips 
exhibit clear spatial heterogeneity across the study area, underscoring 
the necessity of the proposed SRF.

5.2. Driving mechanism of E-bike trips

In this section, we first analyze the fitting accuracy of the proposed 
SRF. Subsequently, we employ the interpretable SHAP method to unveil 
the impact mechanism of driving factors, including spatial position, 
built environment, traffic condition, and socioeconomic factors.

Fig. 6. Temporal distribution of e-bike trips: (a) number of origins and destinations over time, and (b) cross-correlation between the number of origins and 
destinations.

Fig. 7. Spatial distribution of e-bike trips: (a) spatial distribution of origins, and (b) spatial distribution of destinations.

Table 4 
Fitting results of spatial random forest and baselines.

Models Origin Destination

R-Square Adj. R-Square R-Square Adj. R-Square

Linear Regression 0.3659 0.3417 0.3486 0.3237
Decision Tree 0.1926 0.1826 0.1865 0.1764
XGBoost 0.4964 0.4870 0.4639 0.4539
Random Forest 0.5543 0.5460 0.5273 0.5184
Spatial Random Forest 0.5913 0.5836 0.5713 0.5633
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5.2.1. Modeling accuracy analysis
The Linear regression, Decision Tree, XGBoost, and Random Forest 

were used as baselines to analyze the advantages of the proposed SRF in 
terms of fitting accuracy, as shown in Table 4. The results indicate that 
the fitting accuracy of the XGBoost and Random Forest is significantly 
better than that of the Linear Regression, suggesting a nonlinear rela-
tionship between e-bike trips and the driving factors. Furthermore, the 
proposed SRF model outperformed the Random Forest model in fitting 
accuracy, highlighting the benefit of incorporating spatial factors into 
the conventional Random Forest model. Additional analysis was con-
ducted to examine the stability of fitting accuracy between the proposed 
SRF and the baselines, as shown in Fig. 8. The results suggest that the 
proposed SRF model demonstrates high fitting accuracy and exhibits 
strong stability, affirming its advantages in modeling e-bike trips.

5.2.2. Driving mechanism analysis
Based on the modeling of e-bike trips, Fig. 9 illustrates the relative 

importance of driving factors to e-bike trip origins. In this visualization, 
the colors represent the Shapley value of the corresponding driving 
factor, with a longer black bar on the right indicating a greater impor-
tance of the driving factor. The results reveal that the primary impact on 
e-bike trip origins stems from built environment factors, including 
Commercial POI Density, Hospital POI Density, Residential POI Density, 
School POI Density, Government POI Density, and Bus Station Density. 
Besides the built environment, the secondary impact on e-bike trip ori-
gins comes from spatial position and socio-economic factors, such as 
Population Density, Latitude, Longitude, and House Prices. Finally, the 
factors that have the lowest impact on e-bike trip origins are traffic 
condition factors, such as Congestion Level. Given the high consistency in 
the relative importance of driving factors for origins and destinations, 
the relative importance of these factors for destinations is provided in 
Appendix B, as depicted in Fig. S2.

Building upon identifying the relative importance of driving factors, 
Fig. 10 further illustrates the impact direction of driving factors on e- 
bike trip origins. In this visualization, the color of each data point rep-
resents the value of the corresponding driving factor, while the position 
of the data point represents the Shapley value of that factor. Moreover, 
the positive or negative sign of the Shapley value indicates the direction 
of the impact direction on e-bike trip origins. For built environment 
factors, the number of e-bike trips tends to increase with the rise in POI 
density. Notably, compared to shared (e− )bike trips, transportation 
stations—particularly metro station density—have a relatively minor 
impact on private e-bike trips. This discrepancy may be due to fewer 
people using private e-bikes for connecting transportation purposes. The 
perceived risk of theft, given the high value of private e-bikes, might 
deter individuals from leaving them at subway stations or bus stops. 

Fig. 8. Stability of spatial random forest and baselines: (a) origin, and (b) destination.

Fig. 9. Relative importance of driving factors to e-bike trip origins.

Fig. 10. Impact direction of driving factors on e-bike trip origins.
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Additionally, the results suggest areas with severe traffic congestion or 
high housing prices tend to have more private e-bike trips. The reasons 
for the above results are as follows. For areas with severe congestion, 
private e-bikes offer a more convenient mode of transportation. For 
areas with high housing prices, the presence of well-developed com-
mercial and medical facilities increases the demand for short-distance 
travel among residents. Similar to relative importance of driving fac-
tors, the impact direction of driving factors for destinations is provided 
in Appendix B, as depicted in Fig. S3.

In addition to depicting the impact direction of driving factors on e- 
bike trips, we further explore whether there is an interaction impact 
between driving factors, as shown in Supplementary Fig. S4. In this 
visualization, the greater the dispersion of points along the horizontal 
axis, the more significant the interaction between two driving factors. 
The results suggest that interactions among driving factors are primarily 
concentrated in the built environment. Taking Commercial POI Density 
and School POI Density as examples, Fig. 11 show the impact direction of 
their interaction on e-bike trips. For individual driving factor, the 
number of e-bikes trips will increase with the increase of Commercial POI 
Density or School POI Density, as shown in Fig. 11(a) or Fig. 11(c). Due to 
the interaction between these factors, the SHAP value exhibits a trend of 
initially decreasing and then increasing, as illustrated in Fig. 11(b). 
These results indicate that a higher number of e-bike trips is observed 
only when both Commercial POI Density and School POI Density are high.

6. Discussions and conclusions

Understanding human mobility and trip demand through e-bike 
trajectories is crucial for urban planning, environmental enhancement, 
and sustainable development. However, existing studies predominantly 
center on shared (e− )bike trips, with limited research on private e-bike 
trips. To fill this gap, we established a novel analysis framework based 
on private e-bike trajectories in Wuhan, China, and revealed the their 
spatiotemporal patterns using interpretable data-driven techniques.

In terms of methodology, we proposed a trip analysis framework 
based on sparse trajectories of private e-bikes. First, we propose a two- 
step method, identifying staying areas and generating e-bike trips, to 
extract trip behavior from private e-bike sparse trajectories. Second, we 
establish a spatial random forest method to capture the nonlinear rela-
tionship between private e-bike trips and driving factors. Finally, we use 
the interpretable SHAP method to reveal the driving mechanisms of e- 
bike trips and explore the impact of various factors on these trips. 
Compared to frameworks designed for shared (e− )bike trajectories (Ji 
et al., 2022; Tang et al., 2024), our framework has three advantages: (1) 
It directly extracts trip behavior from sparse trajectories collected by 
monitoring stations, enriching existing studies of trip behavior extrac-
tion; (2) It accounts for spatial correlation and heterogeneity, achieving 
superior fitting accuracy, particularly in cases involving nonlinear re-
lationships (L. Cheng et al., 2019; B. Zhang et al., 2023; 2024); and (3) It 
is versatile and can be applied not only to the spatiotemporal analysis of 

private e-bike trips but also to other modes of transportation, such as 
motor vehicles and buses.

In terms of empirical insights, we revealed the mobility patterns and 
driving mechanism of private e-bike trips via extensive real-world tra-
jectories, enriching our understanding of private e-bike trips. First, the 
statistical distribution of trip distance and trip time for private e-bike 
trips is similar to that of shared (e− )bike trips(Li et al., 2024). For 
example, trip distances follow a lognormal distribution, with an Adj. 
R-Square of 0.99, while trip times exhibit a Hill distribution, with an 
Adj. R-Square of 0.95. Second, while shared (e− )bikes are crucial in 
solving the first/last mile problem in public transportation (van Kuijk 
et al., 2022; Yen et al., 2023; Zuo et al., 2020), the same cannot be said 
for private e-bikes. For example, 90% of shared bike trips are within 1.3 
km(Xu et al., 2023), whereas over 65% of private e-bike trips cover 
distances greater than 1 km or have trip times exceeding 5 min. These 
findings suggest that private e-bike trips are rarely used to address the 
first/last mile problem in public transportation and are more commonly 
utilized for daily commuting needs. Third, the density of POIs such as 
Hospital POI Density, Commercial POI Density, Residential POI Density, 
School POI Density, and Transportation Station Density are significantly 
positively correlated with private e-bike trips. However, compared to 
shared (e− )bike trips (Y. Guo et al., 2021; Zhu et al., 2024), the Trans-
portation Station Density, particularly Metro Station Density, ranks lower 
in importance for private e-bike trips. These results suggest that rela-
tively few people use private e-bikes for connected trips. Finally, private 
e-bike trips are also positively correlated with Congestion Level and House 
Price, meaning that areas with severe traffic congestion or high housing 
prices tend to have more private e-bike trips.

There are still several limitations in this study. First, the e-bike trip 
extraction method is not effective in distinguishing trip purposes, such 
as trips for school or work. Second, in the driving mechanism analysis, 
we focused solely on urban-related factors such as spatial position, built 
environment, traffic conditions, and socioeconomic, while neglecting 
natural factors like weather. Finally, the analysis in this study was 
limited to weekdays, overlooking variations on holidays and weekends. 
In future work, we aim to enhance the extraction method for private e- 
bike trips, incorporate additional driving factors, and investigate 
spatiotemporal patterns across various time periods.
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