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A B S T R A C T

Airports, as significant sources of greenhouse gas emissions, play a crucial role in mitigating global climate 
warming. Existing studies mainly focus on the specific emission values of airports and lack effective methods to 
calculate high-resolution 3D emissions inventories. To address this gap, we propose a 3D High Emission Esti-
mation method (3D-HEE) to estimate the high-dimensional emissions of airports, including carbon dioxide (CO2), 
carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). We firstly calculate the emission points of 
the single aircraft trajectory. All emission points within the airport region are aggregated, and we develop an 
improved Three-dimensional empirical Bayesian kriging (3D-EBK) to estimate airport’s 3D emissions inventory. 
Secondly, we introduce a novel Local Emission Peak Indicator (LEPI) and propose a hotspot detection algorithm 
to identify irregular high emission areas in a 3D emissions inventory. Applied to Beijing Capital International 
Airport (PEK), our method identified three CO2 hotspots (HEIH1-3) near Terminal 1, the Capital Airport Line, 
and taxiways, confined to heights of 0–37.18 m due to CO2 diffusion patterns. CO and HC hotspots (HEIH1-2) 
clustered at 40.06◦N–40.08◦N, 116.58◦E− 116.61◦E and runway starts (0–37.18 m), suggesting shared emission 
mechanisms. In contrast, NOx hotspots spanned altitudes from ground level to 889.04 m, with HEIH1 
(389.03–889.04 m) likely linked to climb-phase emissions. The 3D-HEE method precisely resolves emission 
structures (e.g., flat ellipsoids for CO2, elevated plumes for NOx), providing actionable insights for airport- 
specific decarbonization strategies, such as optimizing ground operations and flight trajectories.

1. Introduction

With the rapid development of civil aviation, the atmospheric pol-
lutants in the exhaust emissions from airport aircraft, including CO2 CO, 
NOx, SO2, HC, and PM2.5, are having an increasingly significant impact 
on the environment(Mardani et al., 2019; Ouyang and Lin, 2017; Du 
et al., 2017). As a key location for aircraft takeoffs and landings, airports 
are often affected by elevated local concentrations of atmospheric pol-
lutants from aircraft emissions in the surrounding environment(Xiong 
et al., 2023; Fung et al., 2008; Zhang et al., 2019). According to relevant 
studies, the total emissions of NOx and CO from airport aircraft account 
for approximately 4 % of the emissions produced by mobile pollution 

sources. As a reference for aviation kerosene consumption, for every 1 
ton of aviation kerosene consumed, an aircraft typically emits 3187.00 
kg of CO2, 0.98 kg of SO2, 0.56 kg of CO, and 21.12 kg of NOx(Wang 
et al., 2023; Klapmeyer and Marr, 2012; Monsalud et al., 2015; Bastress, 
1973; Hu et al., 2020).

Currently, airports face a dual dilemma of excessive carbon emis-
sions and low operational efficiency during their operations(Zhang 
et al., 2019; Klapmeyer and Marr, 2012). Traditional airport operating 
models often focus on meeting basic flight takeoff and landing needs as 
well as passenger service demands, while neglecting the optimization of 
energy utilization efficiency and carbon emissions. The various complex 
facilities, equipment, and diverse operational processes within the 
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airport are intertwined, leading to uneven energy consumption distri-
bution and significant waste, making it difficult to enhance the overall 
operational efficiency of airports, and exacerbating the carbon emissions 
issue(Klapmeyer and Marr, 2012; Ashok et al., 2017; Kılkış, 2014; 
Kelemen et al., 2020). In addition to emissions from aircraft operations, 
airport terminal buildings also contribute significantly to energy con-
sumption and CO2 emissions, particularly through HVAC systems in 
extreme climates(Yildiz et al., 2022).

Current research on aviation emissions is relatively mature, with 
various calculation methods and models established, such as the Inter-
national Civil Aviation Organization (ICAO) calculation method 
(Mackenzie, 2010) and the Sabre Holdings method, which provide tools 
for quantifying aviation emissions (Yaohui et al., 2023; Graver and Frey, 
2009). Research on aviation emissions mainly focuses on the quantita-
tive assessment and measurement of aviation emissions, the impact of 
aviation emissions on the environment and climate, reduction paths and 
technological innovations in the aviation industry, and the regional 
distribution and spatial characteristics of aviation emissions. The 
assessment of aviation emissions relies on flight data and models to 
calculate the emissions of gases such as CO2 and NOx. This measurement 
provides a basis for formulating reduction policies. For example, studies 
indicate that aviation CO2 emissions account for approximately 2 % of 
global total emissions(Sun et al., 2022). A study evaluated the air pol-
lutants emitted by civil aircraft at Athens International Airport during 
takeoff and landing from 2002 to 2019. The pollutants evaluated include 
carbon dioxide, nitric oxide, carbon monoxide, hydrocarbons and par-
ticulate matter. The research results reveal the large-scale emissions of 
these pollutants during specific periods and suggest that measures 
should be taken in the future to mitigate their impact on the environ-
ment(Christodoulakis et al., 2022). Relevant models further quantify the 
emission contributions during different flight phases (such as takeoff 
and cruising). The calculation of aviation emissions is usually based on 
models, such as the EDGAR global emissions database and the ICAO 
model, combined with specific flight fuel consumption and flight dis-
tance data. Research shows that existing assessment methods can be 
accurate to the level of aircraft type and flight route, but there is still 
room for improvement to further enhance spatial and temporal resolu-
tion (Ashok, 2011). The impact of aviation emissions on climate mainly 
manifests in the long-term effects of CO2 and the short-term effects of 
non-CO2 gases (such as NOx and water vapor) on radiative forcing. 
Studies indicate that the contribution of non-CO2 emissions to climate 
may even exceed the direct effects of CO2(Lee et al., 2009). In addition, 
contrails and cirrus clouds formed at high altitudes significantly 
enhance the greenhouse effect(Takeda et al., 2008). The climate effects 
of aviation emissions are not limited to CO2; they also include the impact 
of NOx and water vapor on ozone and cirrus cloud formation(Varotsos 
et al., 2014). Recent studies show that non-CO2 emissions account for 
4.9 % of the radiative forcing caused by aviation emissions, mainly from 
the contrail effect. Explorations of aviation emission reductions involve 
new energy technologies (such as hydrogen fuel and electric aircraft), 
the application of biofuels, and the optimization of flight routes and 
altitudes to reduce fuel consumption. Technological advancements in 
the next 20–40 years (such as zero-emission engines and alternative 
fuels) are expected to significantly reduce emissions, but studies point 
out that existing technologies are unlikely to fully achieve the reduction 
targets set by ACARE and NASA, making additional policies and 
behavioral interventions potentially critical (Graham et al., 2014). 
Aviation emissions exhibit significant regional characteristics, with high 
emissions concentrated in the major hub airport areas of economically 
developed countries. This emission pattern warrants attention for its 
regional impact on air quality. The analysis of regional aviation emis-
sions reveals a phenomenon of deteriorating air quality around airports, 
primarily caused by increases in PM2.5 and NOx concentrations, which 
significantly impact public health(Masiol and Harrison, 2014a). How-
ever, existing research on airport carbon emissions mostly remains at the 
level of rough estimates of carbon distribution. Previous research 

methods mainly relied on macro statistical data and simplified model 
assumptions, lacking a detailed depiction and in-depth analysis of car-
bon emission sources within airports. This extensive research approach 
makes it difficult to accurately capture the actual situation of carbon 
emissions at airports, and it cannot provide precise decision-making 
support for energy-saving and emission-reduction measures.

In view of this, it is extremely urgent to carry out high-resolution 3D 
high emissions inventory and the identification of irregular 3D hotspot. 
Through accurate 3D scale estimation, a detailed picture of carbon 
emissions in the 3D space of the airport can be presented in all directions 
and at multiple levels, providing a sufficient data basis for in-depth 
exploration of the causes, transmission paths and dynamic change 
laws of aviation emissions. Irregular 3D hotspot refers to the concen-
trated area of aviation emissions with unique spatio-temporal distribu-
tion characteristics formed by the interweaving and interaction of 
aircraft operation trajectories, ground traffic flow, energy consumption 
of various facilities in the terminal building and surrounding environ-
mental factors in the 3D space of the airport. Physically speaking, it 
represents the aggregation pattern of energy consumption and aviation 
emissions in the complex system of the airport. The accurate identifi-
cation of irregular 3D hotspots helps to precisely locate the weak links 
and potential optimization directions in the airport’s operating mecha-
nism, thus providing crucial support for formulating highly targeted 
energy-saving and emission-reduction strategies, effectively improving 
the energy utilization efficiency and overall operational benefits of the 
airport, and vigorously promoting the airport to move forward in a low- 
carbon, environmentally friendly and sustainable direction.

This study proposes a method for 3D estimation of low-altitude 
airport emissions and detection of high emission irregular hotspots, 
called the 3D High Emission Estimation method (3D-HEE). Firstly, 
aviation emissions of aircraft trajectory points were calculated using 
TrajEmission method(Wang et al., 2024a). Second, the empirical 
Bayesian Kriging (EBK) method is used to estimate the aviation emis-
sions points of trajectory, and the points are interpolated as voxel 
(Gribov and Krivoruchko, 2020). Then, the method calculates the Local 
Emission Peak Indicator (LEPI) for all voxels based on the neighborhood 
space. LEPI is a quantitative measure used to determine the degree of 
emission of a single voxel relative to its neighboring space. Based on the 
results of the LEPI calculation, a dynamic threshold is selected to iden-
tify high-emission voxels. Finally, 3D DBSCAN is utilized to cluster the 
high-emission voxels into high emission irregular hotspot (HEIH)(Chen 
et al., 2022). And we utilize 3D-HEE to conduct a detection of 3D high 
emissions at Beijing Capital International Airport (PEK).

The structure of this paper is as follows: Section II introduces 
research methods; Section III showcases the data of case study and the 
results of HEIH detecting; Section IV is the discussion, discussing the 
causes of method and HEIHs’ impact on airport operations; Finally, 
Section V concludes with a summary of the research findings.

2. Methodology

This study puts forward a detection method for identifying the 3D 
high emission irregular hotspots. It is named 3D High Emission Esti-
mation method (3D-HEE). It is mainly divided into 3 parts: Emission 
estimation, 3D space estimation, and Emission hotspot identification. 
The flow chart of the model is shown in Fig. 1.

2.1. Emission estimation

The first part of the 3D-HEE method uses our previously proposed 
TrajEmission(Wang et al., 2024b) method to estimate emissions from 
flight trajectories. It consists of three parts: trajectory interpolation, fuel 
consumption calculation, and emission calculation. It addresses missing 
parts in the flight trajectory. Using the open-source toolkit OpenAP(Sun 
et al., 2020) and its internal kinematic aircraft performance model 
(WRAP) (Sun et al., 2019), the interpolation method is determined 
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based on the completeness of the flight phase. When there is a discon-
tinuity in the flight trajectory, if the missing parts are minimal, linear 
regression is first attempted to fill in the missing field values. If there are 
extensive missing parts or if the flight phase is incomplete (such as 
missing key climb–cruise–approach phases), the WRAP model is used for 
simulation interpolation. For fuel consumption calculations, the calcu-
lation model from TrajEmission is used. The relationship between fuel 
consumption and fuel flow is as shown in Equation (1). 

FC=
∑

FFfp,eng,alt × Neng × tfp (1) 

where FC denotes the fuel consumption of all phases for a flight. It is the 
summary result of each flight segment. FFfp,eng,alt represent the fuel flow 
rate in fp during the flight stage. The engine type is eng and the height is 
alt. Neng is the engine number of the engine type. The mode time tfp 

depends on the operating program.
In practical operations, ground speed is used instead of true airspeed, 

and the default engine type for different aircraft in OpenAP is referenced 
as the eng parameter. At the same time, considering the impact of 
aircraft weight on fuel consumption, a method similar to TrajEmission is 
adopted, selecting 100 %, 70 %, and 50 % of the Maximum Takeoff 
Weight (MTOW) for comparative analysis. During the calculation pro-
cess, the aircraft weight is updated in real-time by subtracting the fuel 
mass consumed during each flight segment. This accurately reflects the 
impact of the aircraft’s weight changes during the flight on fuel con-
sumption, resulting in more precise fuel consumption data. The emission 
calculation follows the emission model from TrajEmission, i.e., Equation 
(2): 

Emisspollu =
∑

FCi × EIp,i (2) 

where Emisspollu represents the total amount of aviation emissions 
contaminated by specific pollutants under all flight trajectories.

FCi represents the fuel consumption of trajectory i. EIp,i means the 
emission indices of pollutant p with trajectory i.

The Emission Index (EI) quantifies the intensity of pollutant emis-
sions per unit of fuel consumption, with its value influenced by various 
environmental factors such as temperature, humidity, pressure, and 
flight conditions (e.g., Mach number, altitude). To achieve a standard-
ized assessment of emission intensity, this study employs a dynamic 
correction method that maps the atmospheric conditions corresponding 
to actual flight trajectories to the International Standard Atmosphere 
(ISA) sea level benchmark. The specific process includes: first, quanti-
fying the deviation between the actual environment and the ISA stan-
dard using parameters Mach number correction factor β (Equation (3)), 
the temperature ratio θ (Equation (4)) the pressure correction parame-
ters δ (Equation (5)) and altitude-related parameter ω (Equation (6)); 
second, constructing a reference function for fuel flow (FF) and emission 

index based on a parabolic model, defining the ratio parameter as ratio 
in Equation (7), which serves as the dynamic correction benchmark; 
finally, converting the static sea level benchmark emission index (EI0) to 
the dynamic EI value at the target altitude through a multi-parameter 
coupling formula. Take CO as an example. The emission index EICO of 
CO is shown in Equation (8). 

β= e0.2×(M2) (3) 

θ=
T(alt)

288.15β
(4) 

δ=(1 − 0.0019812× alt) ×
5

288.15
(5) 

ω=
e− 0.0001426*(alt− 12900)

103 (6) 

ratio=FFactual/FFISA (7) 

EICO = EI0,CO × ratio (8) 

In the formula, M is the Mach number. The ratio of the quasi- 
temperature (288.15K), FF is the fuel flow rate, and β, δ, ω, and ratio 
are the parameters for correcting EI under the ISA working condition. 
EI0 is the emission index at sea level, and EI is the correction result. For 
common pollutants such as NOx, CO, and HC, the emission index is 
calculated separately according to their specific correction formulas, 
ensuring that the emission calculations fully consider variations in 
emissions under different flight conditions. This leads to a more accurate 
estimation of pollutant emissions.

2.2. 3D space estimation

3D estimation is based on the trajectory points of aviation emissions 
at low altitudes and uses the 3D Empirical Bayesian Kriging method to 
construct a 3D aviation emissions voxel dataset(Gribov and Krivor-
uchko, 2020). Before using the 3D Empirical Bayesian Kriging method to 
expand the spatial data, the normal distribution of the interpolation data 
must first be tested. Only when the data follows a normal distribution 
can the Kriging method be used for interpolation. Descriptive statistical 
analysis of the samples is performed using SPSS 22.0. The K-S test is used 
to determine whether the data follows a normal distribution. For data 
that do not comply, a logarithmic transformation is applied to meet the 
normality criteria. After preprocessing, the 3D Empirical Bayesian 
Kriging method is used to construct the experimental area signal 3D 
spatial voxel dataset, and K-Bessel is selected for the transformation type 
to achieve 3D spatial expansion. The formula for the 3D Empirical 
Bayesian Kriging method is shown in Equation (9), where Z(u) 

Fig. 1. 3D-HEE algorithm process.
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represents the interpolation at the target location u, n is the number of 
sampling points, Zi is the observation value at the i-th sampling point, 
and λi (u) is the interpolation weight, representing the contribution of 
sampling point i to the target location u. 

Z(u)=
∑n

i=1
λi(u)Zi (9) 

2.3. Emission hotspot identification

In the initial part of the algorithm, this study employs a voxel-by- 
voxel traversal method, using each voxel in the dataset as the center 
voxel to calculate the Local Emission Peak Indicator (LEPI). LEPI, as an 
indicator, signifies whether the aviation emissions in a local neighbor-
hood are in a relatively high peak state, and its numerical value reflects 
the degree of relative high values. This study defines the concept of 
neighborhood: let the current center voxel be p, with coordinates (x, y, 
z), and establish a local coordinate system at the center voxel p, where 
the z-direction is the normal direction, and x and y are perpendicular to 
z. In this coordinate system, a cube with the center voxel p as its centroid 
and a side length of 2dcartesian is created. The study determines that the 

neighborhood voxel set Np of voxel p is distributed at the 8 vertex voxels 
and the midpoint voxels on the 12 edges of the cube, as shown in Fig. 2. 
The center voxel p and the neighborhood voxel set Np have a regular 
positional relationship in the 3D coordinate system: Δd ∈ {0, dcartesian, 
-dcartesian}. In this coordinate system, the coordinates of the center voxel 
p (x, y, z), and the neighborhood voxel set Np can be expressed as: 

Np = {(x + Δd, y + Δd, z + Δd)}
Δd ∈ {0, dcartesian, − dcartesian}

(10) 

Based on the concept of neighborhood, the calculation formula for 
the LEPI is as follows: 

Ki = [I(xi, yi, zi) − I(x, y, z)]2

LEPI(pi) =

∑δ

i=1
Ki

δ

(11) 

In the above formula, I (x, y, z) represents the signal intensity value at 

the coordinates (x, y, z) of the center voxel, while I(xi, yi, zi) represents 
the value of the voxels in the neighborhood voxel set, with coordinates 
(xi, yi, zi). Ki represents the local variance between the center voxel p and 
the neighborhood voxel set Np, and δ represents the number of neigh-
borhood voxels. Based on the above steps, the same calculation is per-
formed for each voxel in the dataset, forming a set LEPIS = {LEPI (p1), 
LEPI (p2), …, LEPI (pn)}.

The main criterion for High-emission discrimination is the threshold 
dthreshold. The purpose of threshold selection is to accurately determine 
the threshold through quantitative analysis. Setting the threshold is key 
to distinguishing between high-emission and normal voxels and must be 
based on the voxel variability calculated from the distribution charac-
teristics of the dataset. Below is a method for selecting the threshold. The 
LEPIS sequence is then sorted in ascending order to form a sorted 
sequence LEPISsorted. A curve is fitted to the sorted LEPISsorted, where the 
vertical coordinate y represents LEPI, and the horizontal coordinate x 
represents the index pi of the center voxel sorted by LEPISsorted. Since the 
distribution of pi is equidistant, the first difference of the LEPI values 
should be calculated to approximate the slope ΔLEPI (pi) = LEPI(pi+1)- 
LEPI(pi); the second difference Δ2LEPI(pi) is then calculated to 
approximate the change in slope:  

Then, traverse all the second differences Δ2LEPI (pi) to find the voxel 
with the largest absolute value, which will be the threshold dthreshold. 
The selection of abnormal voxels is based on the determined threshold 
dthreshold. Voxels with LEPI greater than the threshold are selected from 
all voxels and are recognized as high-emission voxels, forming the set 
γpeak = {pi|LEPI(pi)> dthreshold, pi ∈ γ} . Where γ is the set of all the voxels. 
This paper uses the 3D DBSCAN algorithm to cluster γpeak into 3D high 
emission irregular hotspots. The 3D DBSCAN algorithm is based on 
neighborhood parameter sets (Eps, MinPts) to quantify the internal 
compactness of the data sample voxel set. In the experiments, multiple 
neighborhood distance thresholds (Eps) were set for testing, with a 
default minimum sample size threshold (MinPts) of 10, used for noise 
and small region clustering to remove noise. The optimal clusters are 
selected as the research areas included in the study scope.

Fig. 2. The p voxel and its neighborhood voxel set.

Δ2LEPI(pi)=ΔLEPI(pi+1) − ΔLEPI(pi)=
(
LEPI(pi+2) − LEPI(pi+1) − (LEPI(pi+1) − LEPI(pi)) (12) 
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3. Case study

3.1. Data

This paper selects Beijing Capital International Airport as the study 
area, using the trajectory points of aircraft from the ADS-B system and 
Flightradar24 for emission estimation and hotspot detection. The ADS-B 
system is widely used in aviation monitoring, allowing aircraft to 
automatically send flight-related information to ground stations, 
thereby enabling effective monitoring of aircraft status(Yang et al., 
2023). The ADS-B trajectory data in this study comes from Flightradar 
24, used to obtain trajectories during the actual flight operation phases 
of takeoff (LTO) and cruise descent (CCD). Each aircraft generates a 
position record every 30–45 s during flight via the Global Navigation 
Satellite System (GNSS), recording information such as ICAO code, 
real-time coordinates, timestamps, flight altitude, and ground speed. In 
addition, the flight schedule information (such as ICAO code, flight 
duration, departure and arrival airport codes, aircraft type, and engine 
manufacturer and number) is also sourced from Flightradar 24. The 
ICAO code is used to link ADS-B trajectory data with flight schedule 
data, creating a complete dataset for emissions calculation. Data samples 
can be found in Table 1, and the spatial distribution of some ADS-B 
waypoints is illustrated in Fig. 3. Table 1 displays the attributes of the 
ADS-B trajectory data, with each flight trajectory corresponding to a 
complete set of trajectory records.

3.2. Emission of flights

We used the TrajEmission method to simulate civil aviation pollut-
ants based on actual flight paths and an improved aircraft performance 
model, and developed an airport aviation emissions(carbon dioxide 
(CO2), carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides 
(NOx)) dataset (Wang et al., 2024b; Sun et al., 2020; Sun et al., 2019). 
The data is detailed in Table 2. The data sample date for PEK airport is 
October 16, 2021, with a total of 2491 points. The east-west span is 
116◦34′-116◦37′30″, and the north-south span is 40◦2′3” - 40◦7′, covering 
the entire Capital Airport. Since the main emission period of the aircraft 
is the LTO (Landing and Takeoff) phase, we set the altitude of the study 
to 3000 ft(Cao et al., 2019).

We perform descriptive statistical analysis on the collected emission 
data from Beijing Capital International Airport (PEK). The data sources 
include airport operation records, flight takeoff and landing data, energy 
consumption records, and ground service activity records. Descriptive 
statistics include calculating the mean, median, standard deviation, etc., 
to depict the basic characteristics of emissions at the airport. Table 3
presents the emission data for Beijing Capital Airport on October 16, 
2021. The sample size is 2491, covering four types of pollutants: carbon 
dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), and nitrogen 
oxides (NOx). The total emissions, average emissions, standard devia-
tion, and median for each pollutant are listed. Among them, CO2 has the 
highest emissions, with an average emission of 539535.76 g, whereas 
HC has the lowest average emissions at only 180.07 g. Table 4 further 
breaks down these emission data, categorizing them into four flight 
phases: approach, climb, idle, and takeoff. Each phase has its own 

sample size and the total and average emissions for the four pollutants. 
Notably, although the climb phase has the smallest sample size, it has 
the highest average emissions of NOx, reaching 5884.21 g. In contrast, 
the idle phase shows significantly higher average emissions for CO and 
HC, at 5376.77 g and 554.99 g, respectively. The takeoff phase has the 
largest sample size, and its average emissions of NOx are also the highest, 
at 4205.52 g.

3.3. 3D estimation of PEK

Using the 3D empirical Bayesian kriging method, spatial predictions 
were made for the aviation emission data from Beijing Capital Interna-
tional Airport (PEK), generating CO2, CO, HC and NOx 3D aviation voxel 
datasets, as shown in Fig. 4. Every voxel dataset contains a total of 
296,660 voxels. The resolution is 50 × 50 × 50 m. In order to evaluate 
the performance of the 3D empirical Bayesian kriging method, we used 
the cross-validation method. Cross-validation is a leave-one-out resam-
pling method that removes a single input point and uses the remaining 
points to predict the value of that point, then compares the predicted 
value with the actual measured value. Table 5 shows the cross- 
validation results of four aviation emission gases (CO2, CO, HC, NOx) 
after interpolation using the 3D Empirical Bayesian Kriging method (3D- 
EBK). These results include Average CRPS, Inside 90 Percent Interval, 
Inside 95 Percent Interval, Root-Mean-Square, Root-Mean-Square 
Standardized and Average Standard Error.

3.4. High emission irregular hotspots

By measuring the emission in the 3D voxel dataset, we obtained the 
LEPI for each voxel. The sorted LEPI sequence is illustrated in Fig. 5, 
which shows the LEPI curve based on the 3D voxel data. According to 
the aforementioned threshold selection process, the threshold of LEPI 
series for aviation CO2 emissions is 65682013534.12, the threshold of 
LEPI series for aviation CO emissions is 330020.16, the threshold of LEPI 
series for aviation HC emissions is 3802.10, and the threshold of LEPI 
series for aviation NOx emissions is 710000.86.

The results of detecting high emission irregular hotspots (HEIH) at 
PEK Airport using 3D-HEE are shown in Fig. 6. In the identification of 
high emission hotspots for CO2 emissions, a total of three irregular 
hotspots were identified, labeled as CO2 HEIH1, CO2 HEIH2, and CO2 
HEIH3. As seen in Fig. 6(a), the CO2 HEIHs are primarily located near 
the ground. According to the 3D-HEE results shown in Fig. 7(a), CO2 
HEIH1 is located on the west side of Terminal 1, CO2 HEIH2 is on both 
sides of the Capital Airport Line, and CO2 HEIH3 is at the taxiway. These 
are all relatively flat ellipsoids; the height of CO2 HEIH1 and CO2 HEIH2 
ranges from 0 to 37.18 m, and the height of HEIH3 ranges from 0 to 
18.59 m, consistent with the diffusion pattern of CO2. Fig. 6(b) and (c) 
show the detection results of high emission hotspots for CO and HC, 
respectively named CO HEIH1-2 and HC HEIH1-2, with height ranges of 
0–37.18 m. From Fig. 7(b), CO HEIH1 is located at 40.06◦N–40.08◦N, 
116.58◦E− 116.61◦E, and CO HEIH2 is located at the start of the airport 
runway. As shown in the figure, CO HEIH1-2 and HC HEIH1-2 have 
similar geographical locations and shapes, which may be related to their 
similar generation mechanisms. The high emission hotspot detection 
results for NOx emissions are shown in Fig. 6(c). A total of five NOx high 
emission hotspots were detected, named NOx HEIH1-5. Among them, 
NOx HEIH1 has the highest elevation, ranging from 389.03 m to 889.04 
m, while NOx HEIH3 has a height range of 0–539.03 m. The remaining 
hotspots are located at ground level, with a maximum height of 456.17 
m.

Fig. 8 shows the distribution of emissions for HEIH: carbon dioxide 
(CO2), carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides 
(NOx). Each histogram has the mass of the pollutant (in g) on the hori-
zontal axis and the number of samples on the vertical axis. The emission 
range for carbon dioxide is from 250,000 g to 1,500,000 g, with most 
samples concentrated between 750,000 and 1,000,000 g, totaling 56 

Table 1 
Partial aircraft emissions data of PEK.

Altitude/ft Longitude Latitude Flight phase Origin Destination

0 116.5944 40.07761 takeoff PEK CKG
300 116.5968 40.0773 climb PEK CKG
400 116.5958 40.0825 climb PEK NTG
400 116.5975 40.0732 climb PEK SHA
300 116.6142 40.0822 climb PEK SHA
734.4488 116.5851 40.07979 approach CTU PEK
397.8346 116.5856 40.07947 approach CTU PEK
61.22047 116.5861 40.07916 approach CTU PEK
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samples. The emission range for carbon monoxide varies from 0 g to 
6000 g, peaking between 1000 and 1500 g, with nearly 280 samples. 
The emission range for hydrocarbons is from 0 g to 600 g, with a peak 
between 100 and 150 g and approximately 320 samples. Nitrogen oxides 
have the widest emission range, from 0 g to 9000 g, with a peak between 
1500 and 4000 g and about 210 samples.

CO2 HEIH1, CO2 HEIH2, CO HEIH2, HC HEIH2, NOx HEIH1, NOx 
HEIH2, and NOx HEIH3 correspond to the aircraft takeoff phase. These 
spatial hotspots directly correlate with peak fuel combustion rates dur-
ing thrust generation. Jet fuel (primarily composed of hydrocarbons) 
produces CO2, CO, NOx, and HC when the C and N elements combine 
with oxygen during combustion. Consequently, as fuel consumption 
increases sharply, the emissions will correspondingly rise(Kerrebrock, 
1992). Aerodynamic configurations during takeoff dominate emission 
spatial patterns. The aircraft must maintain a certain angle of attack to 
obtain sufficient lift, altering the distribution and magnitude of aero-
dynamic drag. During the takeoff roll, the deployment of landing gear, 
flaps, and changes in the fuselage-airflow angle result in significant in-
creases in both parasitic and induced drag(Nicolosi et al., 2016; 
Chambers and Grafton, 1977; Kopecki and Rogalski, 2014). Maximum 
takeoff weight critically amplifies emission intensity. A fully loaded 

Fig. 3. The trajectory points of aviation emissions for PEK airport (Date: October 16, 2021). (a) The figure shows the geographical location of PEK airport; (b) The 
figure describes the two-dimensional distribution of trajectory points; (c) The figure describes the 3D distribution of trajectory points.

Table 2 
Partial aircraft emissions data of PEK.

Altitude/ft Longitude Latitude Flight phase NOx/g CO/g HC/g CO2/g Origin Destination

0 116.5944 40.07761 takeoff 888.4558 109.4157 7.566171 196431.6 PEK CKG
300 116.5968 40.0773 climb 2845.168 230.4361 19.22742 526293.6 PEK CKG
400 116.5958 40.0825 climb 3853.374 197.664 21.65063 618209.4 PEK NTG
400 116.5975 40.0732 climb 10549.23 432.8389 10.25893 1567905 PEK SHA
300 116.6142 40.0822 climb 7793.069 129.5378 0 753558.2 PEK SHA
734.4488 116.5851 40.07979 approach 80.80055 449.004 26.50188 50908.8 CTU PEK
397.8346 116.5856 40.07947 approach 80.08236 447.4945 26.42308 50780.77 CTU PEK
61.22047 116.5861 40.07916 approach 79.34555 445.9696 26.3432 50651.09 CTU PEK

Table 3 
Descriptive statistics of emission data from PEK Airport.

Airport Date Sample Size Emission Total (g) Average (g) Standard Deviation (g) Median (g)

PEK 20211016 2491 CO2 1343444047.00 539535.76 478977.42 437007.32
PEK 20211016 2491 CO 4418403.14 1773.03 3139.76 408.66
PEK 20211016 2491 HC 448363.54 180.07 336.57 26.38
PEK 20211016 2491 NOx 6868719.98 2758.52 3929.86 1123.44

Table 4 
Emission data of different flight phase.

Approach Climb Idle Take off

Sample 
Size

507 184 723 1080

Total CO2 

(g)
78733026.58 157803647.25 584361602.66 522545770.31

Average 
CO2 (g)

155598.86 862315.01 809365.11 484287.09

Total CO 
(g)

274085.78 47334.41 3882030.42 211404.08

Average 
CO (g)

541.67 258.65 5376.77 195.92

Total HC 
(g)

26879.49 2364.10 400704.52 18415.41

Average 
HC (g)

53.12 12.91 554.99 17.06

Total NOx 

(g)
217812.13 1076812.11 1036332.02 4537763.70

Average 
NOx (g)

430.45 5884.21 1435.36 4205.52
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Boeing 777-300 ER (approximately 350 tons (Jakovljević et al., 2018)) 
requires engines to generate 90–110 % rated thrust during acceleration 
phases, directly linking weight parameters to emission magnitudes 
through fuel consumption dynamics. CO2 HEIH3, CO HEIH1, HC HEIH1, 
NOx HEIH4, and NOx HEIH5 are associated with the approach and idle 

phases. Lower combustion efficiency (58–72 % compared to 85–93 % at 
cruise thrust) in these phases elevates unit emission factors. Despite the 
LTO phase accounting for only 6–12 % of total flight duration in typical 
missions(Akdeniz, 2022; Balli, 2022; Aygun and Caliskan, 2021), 
emissions are concentrated near ground-level airspace. Proximity to 

Fig. 4. 3D voxel data for PEK. (a) Visualization of voxel data on aviation CO2 emissions; (b) Visualization of voxel data on aviation CO emissions; (c) Visualization of 
voxel data on aviation HC emissions; (d) Visualization of voxel data on aviation NOx emissions.

Table 5 
The cross-validation results of 3D-EBK interpolation for different aviation emissions data.

Data Average CRPS Inside 90 Percent Interval Inside 95 Percent Interval Root-Mean-Square Root-Mean-Square Standardized Average Standard Error

CO2 148110.75 91.29 % 94.78 % 290512.09 0.9827 288482.20
CO 354.91 94.41 % 96.61 % 987.13 0.8906 1021.31
HC 39.12 94.50 % 96.52 % 111.20 0.8552 113.52
NOx 896.60 93.31 % 95.42 % 1982.88 0.9178 2085.78

Fig. 5. LEPI distribution data for PEK. (a) LEPI series for aviation CO2 emissions; (b) LEPI series for aviation CO emissions; (c) LEPI series for aviation HC emissions; 
(d) LEPI series for aviation NOx emissions.
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ground monitoring stations (≤300 m altitude) results in 3.2–5.1 times 
higher local pollutant impacts compared to high-altitude emissions 
(Testa et al., 2013).

4. Discussion

HEIHs are in the runway and taxiway areas, as well as the sur-
rounding airport region (beyond the extended runway centerline, near 
the airport boundary, etc.), high emission from aircraft can have 

Fig. 6. Results of detecting High emission irregular hotspots (HEIH) at PEK. The dashed box in the figure represents the voxel dataset of aviation emissions, and the 
three-dimensional model inside it depicts the detected HEIH, with its position in the box corresponding to its position in the voxel data. The map at the bottom shows 
the two-dimensional projection of HEIH on the map. (a) shows the detection results for CO2; (b) shows the detection results for CO; (c) shows the detection results for 
HC; (d) shows the detection results for NOx.

Fig. 7. 2D visualization of the HEIHs.
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multiple effects(Hu et al., 2022; Zhu et al., 2021). From an air quality 
perspective, this can lead to a sharp increase in local CO2 CO HC and 
NOx concentrations, affecting the health of airport ground staff, nearby 
residents, and organisms within the ecosystem. For example, runway 
personnel and nearby residents exposed to high concentrations of CO2 
and CO over a long period may experience respiratory discomfort, 
headaches, and other symptoms, while the balance of photosynthesis 
and respiration may also be disrupted for surrounding vegetation. In 
terms of meteorological conditions, CO2, as a greenhouse gas, can 
interfere with the microclimate around runways and taxiways due to its 
abnormal increase, impacting the accuracy of meteorological moni-
toring data and posing potential risks to flight takeoff and landing de-
cisions. Furthermore, high concentrations of emission gas may adversely 
affect precision equipment near the runways and taxiways, such as 
degrading the performance of runway visibility monitoring optical de-
vices, leading to data deviations that affect pilots’ judgments of runway 
conditions. In the surrounding airport area, the increased load of 
greenhouse gases due to abnormal emissions can trigger a series of 
environmental issues and may also raise concerns and worries among 
nearby residents regarding the environmental impact of the airport, 
potentially leading to social conflicts (Jensen et al., 2023).

From the perspective of engine operation and performance, aircraft 
takeoff requires the engine to produce tremendous thrust to quickly 
achieve the required takeoff speed within a limited runway length. 
During the takeoff phase, the engines typically operate at or near their 
maximum rated power. Modern jet engines significantly increase fuel 
flow during takeoff conditions to meet high thrust demands. This is 
because, according to the engine thrust formula, thrust is related to mass 
airflow and exhaust velocity increments. To generate sufficient thrust 
for acceleration, the engine must intake a large amount of air and eject 
high-speed exhaust gases, which consumes a significant amount of fuel 
(Kerrebrock, 1992). Regarding the high emission issues during the 
takeoff phase, we can implement a series of refined and explanatory 
energy-saving and emission reduction measures to provide precise de-
cision support. First, by optimizing the engine combustion system, 
including new technologies such as the EGR system, twin-scroll 

turbochargers, and 350-bar injection systems, we can improve engine 
efficiency, reduce fuel consumption, and decrease gas emissions(Cui and 
Chen, 2024; Wei et al., 2024; Martinez-Valencia et al., 2023). At the 
same time, the application of in-cylinder water injection technology can 
lower exhaust temperatures, suppress knocking, enhance ignition effi-
ciency, and further reduce fuel consumption(Zhang et al., 2024). 
Furthermore, reducing internal engine friction is also an important di-
rection for improving efficiency; although specific technical details are 
not elaborated, this is a technological area worthy of attention(Liu et al., 
2024). In terms of operational management, optimizing operational area 
settings through market data analysis can enhance service efficiency and 
user experience. Strengthening energy-saving and emission reduction 
operational training for ground personnel can improve airport opera-
tional efficiency. Promoting the use of Sustainable Aviation Fuel (SAF) 
can reduce dependence on fossil fuels and significantly lower exhaust 
emissions(Uy and San Juan, 2024). Implementing key energy-saving 
and emission reduction projects while promoting energy-saving tech-
nologies and ultra-low emission transformations can improve the energy 
efficiency benchmarks of the industry. Strengthening the construction 
and application of an online energy consumption monitoring system, 
perfecting the energy consumption statistics system and indicator sys-
tem, will help build a fixed pollution source monitoring system.

In idle mode, the aircraft engine still consumes fuel to keep running; 
although the fuel consumption rate is relatively low at this point, the fuel 
emissions per unit of fuel may increase due to reduced combustion ef-
ficiency. Emissions from the aircraft in the approach and idle states are 
directly released into the air near the airport, and due to the lower flight 
altitude, these emissions have a more direct and significant impact on 
the surrounding environment and air quality (Liu et al., 2020; Jonsdottir 
et al., 2019; Masiol and Harrison, 2014b). In response to the high 
emission issues during the approach and idle phases, comprehensive 
measures can be taken to promote the sustainable development of the 
airport aviation industry and reduce emissions. First, by optimizing the 
procedures for aircraft approach and idle operations, unnecessary fuel 
consumption can be reduced, for example, by adopting more precise 
approach paths and speed control (Rodríguez-et al., 2019). Second, 

Fig. 8. The statistics of the data from all HEIHs. In all figures, the color indicates the emission content of the voxel.
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improving ground operation efficiency, such as using ground power and 
air conditioning systems instead of the aircraft’s Auxiliary Power Unit 
(APU) while the aircraft waits for takeoff and landing, can reduce fuel 
consumption and emissions during idling(Fernandes et al., 2018). At the 
same time, promoting the use of sustainable aviation fuels (such as 
biofuels), which produce lower carbon emissions during combustion, 
can help reduce the overall carbon footprint (Cui and Chen, 2024). 
Additionally, improving engine combustion efficiency, especially during 
low-load operations, can reduce HC and CO emissions caused by 
incomplete combustion, thereby indirectly reducing CO2 emissions (Ng 
et al., 2021). Installing emission reduction facilities near airports, such 
as ground emission capture systems, can reduce the pollutants released 
into the air during aircraft idling and approach phases. Optimizing 
airport ground traffic can reduce the time and distance aircraft spend 
taxiing on the ground, thus decreasing fuel consumption and emissions 
during idling and taxiing phases(Monsalud et al., 2015; Polishchuk 
et al., 2019).

This study successfully applied the 3D-HEE method to PEK, revealing 
the HEIHs within the airport in more detail. Several key findings 
emerged from the experiments: First, although the regular voxel struc-
ture presented irregular shapes in some areas with missing values, the 
algorithm focused solely on the local emission differences between 
voxels without considering spatial relationships, yet still achieved good 
extraction results. Second, the method successfully utilized 3D DBSCAN 
to extract 3D structures, effectively filtering out scattered noise voxels 
caused by errors in the original data. In terms of visualization, this al-
gorithm allows for the observation of spatial variations in airport avia-
tion emissions from multiple dimensions, presenting the extracted HEIH 
structures intuitively. This not only helps deepen the understanding of 
HEIH characteristics but also provides researchers with a more intuitive 
tool to interpret and communicate their findings.

However, it is important to note that the dataset used consists of 
regenerated data from aircraft trajectories, and the location attributes 
must be representative. Although the study achieved results consistent 
with the distribution of airport aircraft status and was validated through 
causal analysis, this does not guarantee that detection accuracy is 
absolutely precise. Future work should consider using datasets with 
higher confidence and explore the impact of interpolation methods on 
the extraction accuracy of the algorithms.

5. Conclusion

This study proposed a 3D High Emission Estimation method (3D- 
HEE) to construct high-dimensional emissions of airport and detect its 
irregular 3D hotspot. This method combines Emission estimation, 3D 
space estimation, and Emission hotspot identification. We employ 3D- 
HEE method for 3D HEIH detection at Beijing Capital International 
Airport (PEK). Successfully identifying high emission irregular hotspots 
such as CO2, CO, HC and NOx HEIHs, thus confirming its effectiveness in 
airport emission research. The results show that the high thrust opera-
tion of the engine, the change of combustion efficiency, the take-off 
attitude and weight of the aircraft lead to HEIHs during the take-off 
phase. During the aircraft’s approach and idle phases, the low engine 
load results in incomplete fuel combustion, leading to HEIHs. This study 
provides empirical support for energy-saving and emission-reduction 
measures at airports, aiding in the formulation of targeted strategies, 
which are significant for achieving carbon peak and carbon neutrality 
goals and global climate action. However, airport aviation emission 
management still faces numerous challenges that require further in- 
depth research and improvement.
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