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A B S T R A C T   

Accurate rainstorm forecasting is crucial for the sustainable development of human society. Recently, machine 
learning-based rainstorm prediction methods have shown promising results. However, these methods often fail to 
adequately consider the prior knowledge of rainstorms and do not explicitly account for the dynamic spatio- 
temporal patterns of rainstorm events. This study introduces a novel end-to-end prior-informed rainstorm 
forecasting model that incorporates both fundamental physical priors and the spatio-temporal development 
patterns of rainstorms. The model utilizes a gated convolutional encoder-decoder network to effectively repre-
sent the spatio-temporal patterns of rainstorm events. A key component of the representation network is the 
Substantial Derivative-GuIded gated convolutional Unit (SDGiU), which updates latent states under the constraints 
of physical priors. Additionally, an integrated loss function is designed to minimize reconstruction errors on 
multiple scales and facilitate the generation of forecasts that reproduce the actual spatio-temporal patterns of 
rainstorm formation, development and dissipation. Experimental results on two reanalysis datasets show that the 
proposed forecasting model outperforms competing state-of-the-art baselines by at least 19.7% (15.0%) in 
overall Critical Success Index (Heidke Skill Score). Qualitative analysis indicates that the proposed model can 
generate predictions that are both physically consistent and spatially-temporally coherent.   

1. Introduction 

Rainstorms are typical extreme weather events that usually pose 
severe risks to agricultural production, urban infrastructure, and human 
life (Shortridge, 2019; Zhang et al., 2020). With the intensification of 
global climate change, rainstorms are occurring more frequently and 
with greater intensity (IPCC, 2022). In the future, we are likely to face 
more frequent and severer rainstorm events (Ornes, 2018). Therefore, 
accurate rainstorm forecasting plays a crucial role in providing critical 
risk information and decision-making suggestions for disaster preven-
tion and mitigation, which is of great importance for the sustainable 
development of human society (Wu et al., 2021; Li et al., 2023). This 
study focuses on the prediction of rainstorms. Rainstorms are typically 
characterized by heavy rainfall that exceeds a certain threshold within a 
short period of time. However, there is no universally recognized 
threshold for defining rainstorms. The definitions of rainstorm are 
usually depend on its intensity and duration, following local standards 

set by government agencies or academia. 
Although advances in Numerical Weather Prediction (NWP) 

methods have greatly improved the prediction skills of meteorologists 
(Bauer et al., 2015), current NWP operational models face challenges in 
rainstorm forecasting due to high computational costs and errors 
introduced by sub-grid parameterizations (Palmer et al., 2005; Sun, 
2005; Buehner and Jacques, 2020). Data-driven machine learning 
methods, which can capture complex spatio-temporal patterns and 
emulate nonlinear dynamics, have shown potential in weather modeling 
(Kashinath et al., 2021) and precipitation forecasting (Ravuri et al., 
2021; Bi et al., 2023). Specifically, deep learning methods have been 
extensively used in precipitation forecasting (Shi et al., 2017; Ravuri 
et al., 2021; Liu et al., 2022), However, deep learning-based precipita-
tion forecasting models may perform poorly for rainstorm forecasting 
due to the spatial and temporal heterogeneity of rainstorm occurrence, 
especially when making predictions over long time horizons (Ravuri 
et al., 2021). For example, convolutional networks may not be well- 
suited for capturing the spatial dependency of heavy rainfall (Bai 
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et al., 2022). 
Deep learning methods have been specifically developed for rain-

storm prediction. However, many of these studies either directly apply 
or simply extend the original deep learning models for severe convective 
weather or heavy rainfall prediction, such as convolutional neural net-
works (Zhou et al., 2019), UNet-based models (Hess and Boers, 2022), 
and location-refining neural network models that integrate the optical 
flow methods (Huang et al., 2022). A few recent deep learning-based 
predictors have achieved promising results by explicitly modeling the 
spatio-temporal correlations (Bai et al., 2022; Zhang et al., 2022) and 
multi-scale spatio-temporal variations of rainstorms (Yang and Yuan, 
2023). 

In recent years, the concept of physics-informed machine learning 
has been proposed to incorporate prior knowledge into machine 
learning models. This approach offers improved sample efficiency, 
generalization ability, interpretability, and convergence rates (Karnia-
dakis et al., 2021; von Rueden et al., 2021). Significant progress has 
been made in developing physics-informed machine learning models for 
weather and climate modeling (Kashinath et al., 2021). Integrating deep 
learning models with equations of atmospheric motion has been shown 
to be beneficial for heavy rainfall nowcasting (Ritvanen et al., 2023). 
However, most existing data-driven forecasting methods do not 
adequately consider the prior knowledge of rainstorms, nor do they 
explicitly account for the dynamic development patterns of rainstorms. 

Therefore, these methods do not generalize well to untrained scenarios 
and may not produce accurate and physically consistent predictions 
based on sparse and limited rainstorm samples. 

The objectives of this study are twofold: 1) to explore the possibility 
of integrating physical priors with deep learning models to improve the 
performance of rainstorm prediction; 2) to develop prior-guided deep 
learning-driven forecasting models that can capture the development 
patterns of rainstorms and generate predictions that are both physically 
consistent and spatially-temporally coherent. To achieve these goals, 
this study develops a comprehensive prior-guided deep learning model 
that incorporates the physical priors of rainstorms in the form of gov-
erning equations and spatio-temporal statistics. This study proposes to 
learn prior-guided representations for rainstorm events based on the 
substantial derivative equation, capturing the development patterns of 
rainstorms in space and time. Based on these learned event represen-
tations, an event affinity graph and a gated convolutional network are 
developed for rainstorm forecasting. While there are very few prior- 
informed machine learning-driven rainstorm forecasting models, this 
study explicitly integrates two different types of physical priors and 
develops a comprehensive prior-guided deep learning framework that 
effectively learns the spatio-temporal patterns of rainstorm events 
through a series of specially designed components. 

Compared to relevant studies, the proposed model can better use the 
prior knowledge from historical rainstorm samples and better predict 

Nomenclature 

Index of notations 
(xi,yi) Grid location 
nw, nh Number of grids in x or y direction in the study region 
Rt, R̂t Vectors of actual precipitation and predicted precipitation 

at time t for all grids. 
At, Ât Vectors of actual atmospheric attributes and reconstructed 

atmospheric attributes at time t for all grids. 
rx,y,t Precipitation at time t and location (x, y). 
Hl,t Hidden state of the lth layer at time t. 
Ft Spatio-temporal statistics of the rainstorms. 
Sl,t , Ŝl,t Intermediate representative features and reconstructed 

features of the lth layer at time t. 
Ul,Vl,Resl Learnable gating parameters in SDGiU of the lth layer (the 

velocity components of the hidden state in x, y directions 
and the residual matrix) 

Zl,Rl Update gate and reset gate in ConvGRU. 
P, Pl,t Attributed spatio-temporal affinity matrix of all 

atmospheric events; attributed spatio-temporal affinity 
matrix between the current event and similar historical 
events. 

pi,j Attributed spatio-temporal similarity between event(xi, yi,

ti) and event(xj,yj, tj); an element of P or Pl,t . 
El,t Event representations of l layer at time t for all grids 
Esim

l,t , esim
l,(xj ,yj ,tj) Representations of similar events of l layer at time t for 

all grids; elements of Esim
l,t . 

Ẽ
sim
l,t , ̃esim

l,(xi ,yi ,ti) Integrated pattern-aware embedding of l layer at time t 

for all grids; elements of Ẽ
sim
l,t . 

Ẽl,t Activated prior-informed embedding of l layer at time t. 
Gatee,Gatep Learnable activation gates for the embeddings of 

current events and historical events, respectively. 
Lrec, Lstc, Lcom Reconstructed loss, spatio-temporal coherence loss 

and the overall representation-prediction loss. 

Previous studies 
NWP Numerical Weather Prediction 
TrajGRU, ConvGRU(Shi et al., 2017) Trajectory/Convolutional Gate 

Recurrent Unit 
Simmim-Swin (Xie et al., 2022) Swin Transformer based Simple 

framework for Masked Image Modeling 
TCLR(Dave et al., 2022) Temporal Contrastive Learning for video 

Representation 
CNN (Zhou et al., 2019) Convolutional Neural Network for weather 

prediction 
FourCastNet (Pathak et al., 2022) Fourier Forecasting Neural 

Network for weather prediction 
STSGCN (Song et al., 2020) Spatial-Temporal Synchronous Graph 

Convolutional Networks 

The proposed model and its variants 
PGCN Prior-guided Gated Convolutional Network 
SDGiU Substantial Derivative-GuIded gated convolutional Unit 
SDGiU-EDN SDGiU based Encoder Decoder representation Network 
MSE loss Mean-Squared Error loss 
-R-SDGiU SDGiU-EDN without SDGiUs 
-SDGiU PGCN without SDGiUs 
-STCLoss PGCN without Spatial Temporal Coherence loss 
-APIE PGCN without spatio-temporal convolution and the prior 

activation layers (Activated Prior-Informed Embeddings 
are not produced and used in forecasting) 

Data and performance metrics 
MAE Mean Squared Error 
CSI Critical Success Index 
HSS Heidke Skill Score 
POD Probability of Detection 
MAR Miss Alarm Rate 
FAR False Alarm Rate 
ERA5 5th generation European Centre for Medium-range 

Weather Forecasts Reanalysis dataset 
NCEP National Centre for Environmental Prediction Climate 

Forecast System version 2  
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the spatio-temporal development process of rainstorm events, as 
demonstrated by the test results on two reanalysis datasets. The pro-
posed rainstorm forecasting model can be incorporated into operational 
flood warning systems to mitigate flood-related damages and provide 
timely weather information for travelers and residents (Piadeh et al., 
2022). It can also be integrated with hydraulic simulation models to 
improve watershed management (Kuriqi and Ardiçlioǧlu, 2018). The 
main contributions of this study are summarized as follows:  

1) A Prior-guided Gated Convolutional Network model is proposed for 
rainstorm forecasting. The proposed model leverages the substantial 
derivatives and spatio-temporal statistics of atmospheric dynamics 
as physical priors. These priors are integrated and activated as 
meaningful inductive biases to improve the sample efficiency and 
generalizability of data-driven forecasting models;  

2) A novel gated convolutional encoder-decoder network is developed 
to effectively represent the spatio-temporal patterns of rainstorm 
events. This representation network is built upon a specially 
designed Substantial Derivative-GuIded gated convolutional Unit 
(SDGiU), which plays a critical role in integrating physical priors 
with the gated convolutional network; 

3) An integrated loss function is designed to minimize the reconstruc-
tion errors on multiple scales, the prediction error loss, and the 
spatio-temporal coherence loss, facilitating the generation of fore-
casting results that reproduce the actual spatio-temporal patterns of 
rainstorm formation, development and dissipation. 

2. Definitions and problem formulation 

2.1. Rainstorm event and process 

There is no globally recognized standard for rainstorms. Since this 

study focuses on rainstorms in China, this study follows the official 
standard set by the China Meteorological Administration, which states 
that “rainfall of 16 mm or more per hour is considered a rainstorm” 
(China Meteorological Administration, 2012). In this study, a heavy 
rainstorm is defined as hourly precipitation exceeding 20.5 mm. 
Formally, rainstorm events are defined as follows: 

Definition 1. Rainstorm event. A “rainstorm event” eventi(xi, yi, ti)
refers to a phenomenon in which heavy rainfall occurs at a specific time 
ti and location (xi,yi). The study area is divided into nw × nh grids and the 
precipitation over a specific time period (i.e., one hour) before time t for 
all grids is denoted as Rt ∈ Rnw×nh . The precipitation over a one-hour 
time period before time t for a grid (x, y) centered at longitude “lon.” 
and latitude “lat.” is denoted as rx,y,t. When rx,y,t < 16 mm, it is 
considered that no rainstorm event has occurred on the grid (x, y) at 
time t. When rx,y,t ≥ 16 mm, it is considered that a rainstorm event has 
occurred on the grid (x, y) at time t. Whenrx,y,t ≥ 20.5 mm, it is 
considered that a heavy rainstorm event has occurred on the grid (x, y) 
at time t. 

⎧
⎨

⎩

rx,y,t < 16mm, no rainstorm
16mm ≤ rx,y,t < 20.5mm, rainstorm events
20.5mm ≤ rx,y,t, heavy rainstorm events

(1)  

Definition 2. Rainstorm process. The rainstorm process refers to the 
spatial and temporal process of rainstorm formation, development, 
dissipation and termination in a specific region. It is a collection of 
rainstorm events that describe spatio-temporal changes in rainstorm 
coverage and precipitation. Figs. 1 and 2 depict the entire process of a 
rainstorm in terms of spatial coverage and temporal variation of pre-
cipitation, respectively. 

The chronologically-arranged sub-figures in Fig. 1 show the coverage 
of the rainstorm during the stages of formation, development, and 
dissipation. The formation stage occurs when rainstorm events begin to 
occur in the region as precipitation exceeds the threshold of 16 mm. The 
development stage is characterized by an increase in the number of 
rainstorm events in the region, as indicated by a gradual increase in the 
number of grid cells in which rainstorms occur. The dissipation stage 
begins when the number of rainstorm events decreases, eventually 
leading to the termination of all rainstorm events. 

Fig. 2 demonstrates that when the precipitation reaches 16 mm, the 
location is considered to be in the rainstorm formation stage; as the 
precipitation continues to rise, the rainstorm enters the development 
stage; once the precipitation starts to fall, the rainstorm enters the 
dissipation stage. When the precipitation continues to decrease to less 
than 16 mm, the storm is considered to have ended. To generalize a 
reliable model, it is necessary to utilize both rainstorm events and non- 
rainstorm events for training the prediction model, as relying solely on a 
small number of rainstorm samples may not be sufficient. 

The rainstorm process contains rich spatio-temporal information. As 
shown in Fig. 3, there are clear spatio-temporal correlations in rainfall 
between neighboring grid cells, with stronger correlations observed in 

Fig. 1. Spatial changes of the coverage of a rainstorm from 19:00 to 24:00 on July 5, 2018.  

Fig. 2. Variation of precipitation with time during a rainstorm from 21:00 on 
July 5 to 11:00 on July 6, 2018. 
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heavy rainstorms. Neglecting these correlations in rainstorm events may 
result in poor predictions that are not spatially-temporally coherent. 
Therefore, it is crucial to explicitly model and represent the entire 
rainstorm process in order to capture these rainfall correlations in space 
and time. While purely data-driven prediction models may fail to 
generate robust forecasting results that are physically consistent with 
real-world rainstorm development patterns, this study proposes to 
develop a prior-guided neural network to effectively represent historical 
rainstorm and non-rainstorm events, thereby improving the ability of 
data-driven models to capture complex spatio-temporal correlations in 
rainstorms. 

2.2. Rainstorm prediction problem 

According to the definitions of rainstorm events and processes, the 

problem of rainstorm prediction can be formally defined as follows: 

R̂t+1,⋯, R̂t+h = F (Rt− m+1,⋯,Rt;At− m+1,⋯,At) (2)  

where R̂t+1,⋯, R̂t+h ∈ RN denote the amounts of predicted precipitation 
at each of the next h time steps for all N grid cells in the study region. 
Rt− m+1,⋯,Rt denote the precipitations of these grid cells at the previous 
m time steps. At− m+1,⋯,At ∈ Rk×N are k-dimensional tensors that encode 
historical atmospheric attributes for all grid cells, including critical 
meteorological variables for rainstorm forecasting, such as temperature, 
precipitation, wind, and humidity. F (⋅) is a data-driven predictor that 
learns the spatio-temporal dynamics of rainstorm development. Ac-
cording to Eq.(2), grid cells are the basic spatial units for rainstorm 
forecasting. The output of the model is the forecasted rainfall for each 
grid cell for each of the next h time steps. This study sets m = 6, h = 3, 

Fig. 3. Rainfall forecasts that are not consistent with typical development patterns of rainstorm. Abrupt transitions between rainstorm cells and non-rainstorm cells 
are observed. 

Fig. 4. Workflow of the prior-informed gated convolutional network for short-term rainstorm process forecasting.  
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meaning that the prediction model makes rainstorm forecasts in the next 
3 hours based on meteorological data of the previous 6 hours. By 
applying the pre-defined rainstorm thresholds, the location, coverage, 
and intensity of future rainstorms can be identified, which provide 
essential information for studying the development of rainstorm events. 

3. Method 

3.1. Overview 

The substantial derivative equation is a fundamental equation for 
describing atmospheric flows. Since many meteorological quantities 
vary in time and space, the substantial derivative equations are used to 
represent the fundamental physical prior, i.e., how atmospheric dy-
namics change along the path of a rainstorm. It is assumed that the 
development of rainstorms follows the substantial derivative equation. 
The spatio-temporal statistics of rainstorms are assumed to encode 
spatio-temporal development patterns, and should also be used as priors 
and integrated into the forecasting model. The substantial derivative 
equation and spatio-temporal statistics of rainstorms are incorporated 
into a data-driven deep rainstorm forecasting model to better capture 
the spatio-temporal variability of meteorological quantities. The inte-
gration of substantive derivatives also contributes to the generation of 
physically consistent forecasts by constraining the model to obey basic 
physical principles that govern atmospheric dynamics. 

As shown in Fig. 4, the proposed rainstorm forecasting method 
consists of two modules: 1) substantial derivative-guided rainstorm 
prior representation; and 2) spatio-temporal prior-informed rainstorm 
process forecasting. The underlying rationale is simple: this method first 
extracts meaningful representations from historical rainstorm events as 
physical priors, and then integrates these priors into a deep learning- 
based model to perform prior-informed rainstorm forecasting. The two 
modules are briefly described as follows:  

1) Substantial derivative-guided rainstorm prior representation. This 
module is essentially a prior representation network that produces 
comprehensive representations (embeddings) of atmospheric prop-
erties and rainstorm statistics for the previous m time steps. The prior 
representation module is a 3-layer encoder-decoder network that 
includes multiple Substantial Derivative Guided Gated Convolutional 
Units (SDGiUs). These SDGiUs update the latent states in a 
physically-consistent manner. A multi-level reconstruction loss is 
proposed to retain as much spatio-temporal and attributed infor-
mation as possible during representation learning.  

2) Spatio-temporal prior-informed rainstorm process forecasting. 
Rainstorm event embeddings are used to construct an event affinity 
graph based on their similarity. The historical pattern-aware prior 
embeddings are obtained by performing spatio-temporal graph 
convolution on the event affinity graph, which essentially aggregates 
the embeddings of similar events. A prior activation layer is devel-
oped to fuse historical pattern-aware embedding with the current 
event embedding. The resulting activated embeddings are fed into 
multiple SDGiUs to forecast rainfall values for each grid cell over the 
next h time steps. In addition to the traditional Mean Squared Error 
(MSE) loss, a spatio-temporal coherence loss is proposed to enforce 
pattern constraints so that the predicted rainstorms follow the 
development patterns of typical rainstorm process. 

During training, a comprehensive loss function consisting of the 
multi-level reconstruction loss, the MSE loss, and the spatio-temporal 
coherence loss is used to integrate the two modules into a unified end- 
to-end framework. 

The entire training, validation, and testing workflow described in 
Fig. A1 of the Appendices. The training process of the proposed Prior- 
guided Gated Convolutional Network (PGCN) model mainly consists 
of three components, i.e., substantial derivative-guide rainstorm prior 
representation, spatio-temporal prior-informed rainstorm forecasting, 
and the overall representation-prediction loss computation, which will 
be elaborated in Sections 3.3, 3.4, and 3.5, respectively. The 

Fig. 5. Substantial derivative-guided encoder-decoder network (SDGiU-EDN).  
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computation procedure of SDGiU-EDN is described in Algorithms A1 
and A2 in the Appendices. 

3.2. Substantial derivative-guided rainstorm prior representation 

3.2.1. Prior representation network 
We develop a substantial derivative-guided prior representation 

network to characterize rainstorm events in a manner consistent with 
the physical laws of atmospheric motion, with the goal of accounting for 
the complex spatio-temporal nonlinear relationships of multiple atmo-
spheric properties. The prior representation network extracts spatio- 
temporal dynamic features of both atmospheric and rainstorm proper-
ties, enabling reliable and generalizable rainstorm prediction. The prior 
representation model is an encoder-decoder network consisting of 
multiple SDGiUs in three layers. Therefore, the substantial derivative- 
guided representation network can be termed as SDGiU-EDN (i.e. 
Encoder-Decoder Network based on SDGiUs). The encoder takes atmo-
spheric features as inputs and generates event representation vectors at 
three levels. These representation vectors contain rich spatio-temporal 
and attributed features for both rainstorm and non-rainstorm events. 
The decoder then uses these representation vectors to reconstruct at-
mospheric features. 

As shown in Fig. 5, SDGiU-EDN has a typical encoder-decoder ar-
chitecture. The encoder (decoder) consists of multiple layers, with each 
layer containing m recurrent SDGiUs. Each SDGiU corresponds to the 
original (reconstructed) atmospheric attributes at one of the previous m 
time steps. In the encoder, the input is the atmospheric attributes At− m+1,

⋯,At ∈ Rca×N of the last m time steps. The hidden state matrix H1,0 ∈

Rch×N of layer 1 is initialized as an all-zero matrix. The outputs of the m 
SDGiUs in layer 1 are the embeddings of At− m+1,⋯,At, i.e., the spatio- 
temporal features of layer 1 (S1,t− m+1, ⋯, S1,t). The hidden states of 
layer 1 (i.e., H1,t) and the spatio-temporal statistics of the rainstorms 
Ft ∈ Rcf×N (see section 3.2.2 for detailed description) are concatenated 
and fused by convolution to obtain the event representation of layer 1 
(E1,t ∈ Rc1×N). E1,t can be used as part of the prior representation of the 
spatio-temporal patterns of rainstorms and as the initial hidden state of 

the decoder of layer 3. 
The second and third layers of the encoder follow a similar procedure 

as layer 1 to produce their respective event representations 
E2,t∈ ℝc2×N and E3,t ∈ ℝc3×N. The event representation embeddings E1,t ,

E2,t and E3,t contain rich prior information for studying the development 
and evolution of rainstorms in the study region. Each layer of the 
decoder uses the event representation of the corresponding layer of the 
encoder as the initial hidden state, and reconstructs embeddings of that 
layer based on the reconstruction results of the previous layer. Finally 
the decoder reconstructs the vectors of atmospheric attributes Ât− m+1,⋯,

Ât ∈ Rca×N. 

3.2.2. Incorporating additional spatio-temporal statistics of rainstorms as 
priors 

In addition to atmospheric attributes, the spatio-temporal statistics 
of rainstorms are also incorporated as priors and feed into the substan-
tial derivative-guided representation module. Table 1 shows the statis-
tical variables used to describe the development patterns of rainstorm 
events. These statistics are recorded as multi-dimensional time series 
data for each grid cell and can be represented as Ft ∈ Rcf×N, where cf =

193 is the dimensionality of all the statistics and N is the number of grid 
cells in the study region. For each grid cell, we collect temporal statistics 
for the previous 6 time steps, as well as spatial statistics for its 3 × 3 and 
4 × 4 neighboring cells. Including these spatio-temporal statistics en-
riches the representation of rainstorm patterns and improves the effi-
ciency of limited rainstorm samples. Additionally, the spatial 
morphology of rainstorm events is described using the minimum 
bounding rectangle, as shown in Fig. 6. Intuitively, the rainfall intensity 
is positively proportional to the size of the convective cloud system, 
which can be roughly represented by the minimum bound rectangle of a 
rainstorm. 

3.2.3. Substantial derivative-guided gated convolutional units 
The proposed SDGiU extends the convolutional gated recurrent unit 

(ConvGRU, Shi et al., 2017) by introducing a new gating mechanism, 
which regulates the updating of temporal hidden states in recurrent 
networks. The new gating mechanism is guided by the substantial de-
rivative equation (see Appendices 1), which enforces the physical con-
straints on the latent space and improve the representative capability. 
Eq. (A1) can be rewritten as, 

dH
dt

− w
∂H
∂z

= u
∂H
∂x

+ v
∂H
∂y

+
∂H
∂t

(3) 

Since the total substantial derivative dH
dt and the convective derivative 

∂H
∂z of the meteorological variables in z direction are difficult to describe 
and compute, we combine them into the adaptive residual term Res. The 
computation of local derivative ∂H

∂t can be further simplified by repre-
senting them as the difference between the physical quantities at two 
connected time steps Hl − Hl− 1. ∂H

∂x and ∂H
∂y can be computed as the 

Table 1 
Spatio-temporal statistics of rainstorm events.   

Temporal Spatial 

Precipitation Maximum, minimum, medium, mode, mean, standard deviation, 
skewness, kurtosis, coefficient variation 

Rainstorm Average increase of 
rainfall 

Average increase of rainfalls in 
north–south and east–west directions 

Average rainfall 
amount 

Average rainfall amount 

Duration of continuous 
rainstorm 

Length and width of minimum bounding 
rectangle 

Total accumulated time 
span 

Total coverage area  

Fig. 6. Minimum bounding rectangles of rainstorms. White rectangles indicate the current spatial coverage of rainstorm events.  
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difference between the physical quantities of a grid point and the a 
adjacent grid point in x and y directions, respectively. Practically, the 
computation of ∂H

∂x and ∂H
∂y can be done by setting the weights of convo-

lution, i.e., gradx(Hl− 1) = conv(Hl− 1,weight = [1, − 1] ), grady(Hl− 1) =

conv
(
Hl− 1,weight = [1, − 1]T

)
, where conv(⋅) denotes the convolution 

operation. By replacing the corresponding terms with these simplified 
counterparts, Eq. (A1) can be re-written as, 

Hl − Hl− 1 + u⋅gradx(Hl− 1) + v⋅grady(Hl− 1) + Res = 0 (4) 

According to Eq. (4), the computation of the updated hidden states 
H″

l− 1 can be written as: 
{

Ul− 1,Vl− 1,Resl− 1 = uvr(Al,Hl− 1)

H″
l− 1 = Hl− 1 − U◦

l− 1gradx(Hl− 1) − V◦

l− 1grady(Hl− 1) − Resl− 1
(5)  

where uvr ( • ) is a two-layer convolutional network,Ul− 1,Vl− 1,Resl− 1 are 
learnable gating parameters and ◦ is Hadamard product. By integrating 
the simplified substantial derivative equation, this method can perform 
physically-constrained updating of the hidden state for the current time 

Fig. 7. Workflow of SDGiU.  

Fig. 8. The workflow of the forecasting module.  
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step l. The results of uvr ( • ) include the residual matrix Res and the 
velocity components of the hidden state in x and y directions (U,V). 

The embedding of the updated hidden state H″
l− 1 is fed into the 

ConvGRU to extract the hidden state representation Hl, as described in 
Eq.(6), 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Zl = σ
(
convaz(Al) + convhz

(
H″

l− 1

) )

Rl = σ
(
convar(Al) + convhr

(
H″

l− 1

) )

H′
l = ι

(
convah(Al) + R◦

l convhh
(
H″

l− 1

))

Hl = (1 − Zl)
◦

H′
l + Z◦

l Hl− 1

(6)  

Al is a tensor that describes the atmospheric properties at time l. Zl+1 
denotes a update gate, which controls the retention of previous memory. 
Rl is a reset gate that determines how the updated state H″

l− 1 is inte-
grated with Al. H′

l is the candidate hidden state. The subscripts of conv( •
), a, z, h, r, indicate the inputs and outputs of convolutional operations. 
For example, convaz denotes the input of conv( • ) is Al and the output is 
part of Zl. σ is the sigmoid function and ι is the leakyRelu function. 

Fig. 7 shows the addition of a new state updating gate before per-
forming memory updating using the classical ConvGRU (Shi et al., 
2017). Fig. 7(b) depicts the detailed internal workflow of the new sub-
stantial derivative-guided updating gate. 

In summary, the lth SDGiU takes the atmospheric attribute tensor Al 
and the hidden state Hl− 1 of the previous SDGiU as input, performing 
substantial derivative-guided updating based on Eq. (5). Then using Eq. 
(6), we can derive the hidden state Hl of the lth SDGiU and use it as the 
input for the next SDGiU. Each layer of SDGiU-EDN consists of m 
recurrent SDGiUs that embed the atmospheric attribute tensor At− m+1,⋯ 
,At and an all-zero matrix H0 into the hidden state Ht. Ht is then fused 
with the spatio-temporal statistics tensor Ft to obtain event represen-
tation Et . 

3.3. Spatio-temporal prior-informed rainstorm process forecasting 

3.3.1. The forecasting network 
Based on the event embeddings results, prior-informed rainstorm 

process forecasting can be performed. Fig. 8 illustrates the workflow of 
the forecasting module. The historical event representations are inte-
grated with the current event representations to predict the rainfall 
values for the next h time steps using a substantial derivative-guided 
gated convolutional network. 

In the forecasting network, the embeddings of historical events are 
integrated as spatio-temporal pattern priors. As shown in Fig. 8, there 
are three key steps in generating activated prior-informed embeddings, 
which integrate the representations of both historical events and current 
events: (1) constructing an event affinity graph based on the similarity 
between the current event embeddings and all the historical events 
embeddings in the training dataset; 2) aggregating pattern-aware em-
beddings via spatio-temporal graph convolution; and 3) integrating 
pattern-aware embeddings with the current event embeddings Ẽl,t(l =
1, 2, 3) via prior activation layers. Details of these three steps are given 
in sections 3.3.2, 3.3.3, and 3.3.4, respectively. 

The forecasting network has the same structure as the decoder of 
SDGiU-EDN and consists of three layers of SDGiU modules. The only 
difference is that each module of the forecasting network uses h SDGiU 
while SDGiU-EDN uses m SDGiU because the outputs of the two net-
works have different time steps. The output of the forecasting network is 
the rainfall value after h time steps in the future. 

The forecasting network takes Ẽl,t(l = 1, 2,3) as the only input. Ẽ3,t is 
fed into the first layer as the initial hidden state, which is decoded as 
R̂1,t+1,⋯, R̂1,t+h as the output of the first layer. Then the second layer 
uses R̂1,t+1,⋯, R̂1,t+h as input and produces R̂2,t+1, ⋯, R̂2,t+h. Finally, 
R̂2,t+1,⋯, R̂2,t+h are fed into the third layer to generate predicted rainfall 

values R̂t+1,⋯, R̂t+h. 
In addition to the commonly used MSE loss, a spatio-temporal 

coherence loss is also developed to promote spatio-temporal consis-
tency between the predicted results (R̂t+1,⋯, R̂t+h) and the actual 
rainfalls (Rt+1, ⋯, Rt+h). Details of the loss function is introduced in 
section 3.4. 

3.3.2. Constructing event affinity graph 
To address the challenge of sparse and limited rainstorm samples, an 

event affinity graph is constructed based on the similarity between the 
embeddings of each event and its historical events. 

Definition 3. Attributed spatio-temporal similarity. For any two 

atmospheric events eventi(xi, yi, ti) and eventj

(
xj, yj, tj

)
, we define a 

comprehensive attributed spatio-temporal similarity metric pi,j, which 
captures similarities in the dimensions of attribute, space, and time. 

pi,j = cosine
(

e(xi ,yi ,ti), e(xj ,yj ,tj)

)
(7)  

where e(xi ,yi ,ti) is the learned event embedding of SDGiU-EDN. Inter-event 
similarity can be directly computed based on the learned event em-

beddings. Note that Eventi(xi, yi, ti) and Eventj

(
xj, yj, tj

)
are not neces-

sarily adjacent in space or time. 

Definition 4. Event affinity graph. An event affinity graph G is 
defined on the nw × nh grid of the study region, spanning the time period 
[0,t]. Each node in the graph represents an atmospheric event (including 
both rainstorm and non-rainstorm events). Links between nodes repre-
sent virtual pairwise spatio-temporal correlations between events. 
Therefore, G has a total of N = |t| × nw × nh spatio-temporal nodes. 
Each spatio-temporal node vi denotes an atmospheric event Event(xi,yi,

ti), which occurs at time ti in the grid cell (xi, yi). The attribute of each 
node is its embedding e(xi ,yi ,ti), which is computed by SDGiU-EDN. The 
attributed spatio-temporal affinity matrix P ∈ RN×N measures the 
comprehensive correlations between events. Each element pi,j describes 
the attributed spatio-temporal similarity between event(xi, yi, ti) and 
event(xj,yj,tj). Note that in order to produce a compact graph, each node 
keeps only the most nref similar events as neighbors. In this way, the 
attributed spatio-temporal affinity matrix becomes Pl,t ∈ R(nw×nh)×nref . 

3.3.3. Deriving pattern-aware embedding via spatio-temporal graph 
convolution 

Based on the constructed event affinity graph, this study uses spatio- 
temporal graph convolution to aggregate meaningful embeddings of 
similar events into integrated pattern-aware embeddings. These em-
beddings incorporate the development pattern priors of rainstorms and 
can be used to support accurate rainstorm prediction. Each node in the 
event affinity graph G , has nref neighbors that have complex attributed 
spatio-temporal correlations with itself. To improve the representa-
tiveness of nodal embeddings, we can use spatio-temporal convolution 
to aggregate the embeddings of neighboring nodes. 

Definition 5. Spatio-temporal convolution. Based on the event af-
finity graph G and its associated attributed spatio-temporal affinity 
matrix Pl,t ∈ R(nw×nh)×nref , we can compute the integrated pattern-aware 
embeddings at the node level by the following equation: 

Ẽ
sim
l,t = PEsim

l,t Wg + bg (8)  

where Wg ∈ Rcl×cl , bg ∈ Rcl denote the learnable weights. Esim
l,t ∈ Rnref×cl 

represents the embeddings of neighboring nodes. Eq. (8) can be written 
in vector matrix form: 
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ẽsim
l,(xi ,yi ,ti) =

∑nref

0
pi,jesim

l,(xj ,yj ,tj)
Wg + bg (9)  

where ẽsim
l,(xi ,yi ,ti) ∈ Rcl is the integrated pattern-aware embedding of 

eventi
(
xi, yi, ti

)
, and esim

l,(xj ,yj ,tj) denotes the embedding of the jth similar 
event of eventi(xi,yi, ti). 

The idea of performing the spatio-temporal convolution on the event 
affinity graph is to perform a data-driven weighted summation of the 
embeddings of neighboring nodes Esim

l,t based on the attributed spatio- 
temporal affinity matrix Pl,t . The result of the spatio-temporal convo-

lution Ẽ
sim
l,t ∈ Rcs×(nw×nh) integrates the comprehensive correlations be-

tween similar events, thereby effectively capturing spatio-temporal 
pattern priors of historical rainstorms. 

Fig. 9 illustrates the procedure of computing the integrated pattern- 
aware embeddings. Based on the attributed spatio-temporal affinity 
matrix Pl,t and the embeddings of similar historical events Esim

l,t , spatio- 
temporal graph convolution is performed to aggregate the embeddings 
of similar historical events. Note that a fully connected layer is used to 
align the dimension of Esim

l,t with the results of the spatio-temporal graph 
convolution. The results of the fully connected layer and the spatio- 
temporal graph convolution are summed to generate more meaningful 

pattern-aware embeddings. Finally, leakyRELU can be used as the acti-
vation function to obtain the aggregated integrated pattern-aware em-

beddings Ẽ
sim
l,t ∈ Rcs×(nw×nh). 

3.3.4. Prior activation layers 
The predictions of future rainstorm events depend on the embed-

dings of both current event and historical events. To effectively fuse 
these embeddings, we develop prior activation layers to activate the two 
embeddings as two types of attributed spatio-temporal priors. As shown 
in Fig. 10, there are two activation layers that learns activated embed-

dings from El,t and Ẽ
sim
l,t . The resulting activated embeddings are then 

concatenated to obtain the activated prior-informed embeddings Ẽl,t . 
The computation of the first prior activation layer is described as 
follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gatee,Gatep = σ
([

El,t, Ẽ
sim
l,t

]

Wa + Ba

)

El,t
′ = Gate

◦

eEl,t

Ẽ
sim
l,t

′
= Gate◦

pẼ
sim
l,t

O′ = El,t
′ + Ẽ

sim
l,t

′

(10) 

Fig. 9. The computation of integrated pattern-aware embeddings.  

Fig. 10. Prior activation layers.  
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where Wa,Ba are learnable parameters. Gatee,Gatep are the learnable 
activation gates for the embeddings of current events and historical 
events, respectively. σ denotes the sigmoid activation function. ◦ rep-
resents the Hadamard product. 

The inputs of the prior activation layers include the embeddings of 
the current events at time t El,t(l = 1, 2,3) and their corresponding in-

tegrated pattern-aware embeddings Ẽ
sim
l,t . Firstly, the current event 

activation gate Gatee and the spatio-temporal prior activation gate Gatep 

are computed based on the first equation in Eq. (10) (Gatee,

Gatep ∈ Rca×(nw×nh)). Then using the second and third equations in Eq. 
(10), the two learned activation gates Gateeand Gatep are used to 
compute the activated event representation El,t

′ and the prior embedding 

Ẽ
sim
l,t

′ 
by applying the Hadamard product. El,t

′ and Ẽ
sim
l,t

′ 
are used as the 

inputs for the second layer. Once the computation of the second layer is 
completed, the activated prior-informed embedding Ẽl,t = [O′,O″] can be 
used to predict rainstorm process. 

3.4. Loss function 

The entire forecasting network is trained end-to-end using three loss 
functions: a three-level reconstruction loss for SDGiU-EDN to retain 
detailed rainstorm information, a standard MSE loss to measure pre-
diction errors, and a spatio-temporal coherence loss with the substantial 
derivative as a soft constraint to generate physically consistent forecasts. 
The representation and the forecasting modules are jointly trained by 
minimizing the overall loss. 

As the network structure deepens, the representation loses some 
detailed spatio-temporal and attributed information. The multi-level 
reconstruction loss is designed to reduce the information loss during 
the SDGiU-EDN representation. For each layer, the MSE loss is used to 
align the input features of the encoder 
([At− m+1,⋯,At ],[S1,t− m+1,⋯,S1,t ], and [S2,t− m+1,⋯,S2,t ]) with the recon-
structed features of the decoder ([Ât− m+1,⋯, Ât ], [Ŝ1,t− m+1,⋯, Ŝ1,t ], and 
[Ŝ2,t− m+1,⋯, Ŝ2,t ]), ensuring that the representation results preserve the 
original spatio-temporal and attributed information as much as possible. 
The three-level reconstruction loss can be written as: 

Lrec = Lrec1 + Lrec2 + Lrec3

= wr0MSE([At− m+1,⋯,At], [Ât− m+1,⋯, Ât])

+wr1MSE
( [

S1,t− m+1,⋯,S1,t
]
,
[
Ŝ1,t− m+1,⋯, Ŝ1,t

])

+wr2MSE
( [

S2,t− m+1,⋯,S2,t
]
,
[
Ŝ2,t− m+1,⋯, Ŝ2,t

])

(11)  

where S1,t− m+1,⋯,S1,t and S2,t− m+1,⋯,S2,t are the intermediate features 
of layer 1 and 2 of the encoder, respectively. Ŝ1,t− m+1,⋯, Ŝ1,t and 
Ŝ2,t− m+1,⋯, Ŝ2,t are the reconstructed features of layer 2 and 3 of the 

decoder, respectively. wr0,wr1,wr2 are weights for integrating the MSE 
losses at the three layers. Equal weights wr0 = wr1 = wr2 = 1

3 were set 
because this configuration empirically yields the best results. 

The spatio-temporal coherence loss is based on the substantial de-
rivative equation, which helps to generate forecasts that are physically 
consistent with the actual formation, development and dissipation pat-
terns of rainstorms. The actual spatio-temporal variations of precipita-
tion can be computed as, 

Ct+1 = Rt+2 − Rt+1 +Ut+1gradx(Rt+1)+Vt+1grady(Rt+1) (12)  

where Ut+1 and Vt+1 are the actual moving velocity components of the 
rainstorm in the x and y directions, respectively. These two vectors are 
computed using the optical flow method (Farnebäck, 2003) based on the 
actual precipitation for all grid cells in the study region at two consec-
utive time steps Rt+1 and Rt+2. Similarly, the predicted spatio-temporal 
variations of precipitation can be computed as, 

Ĉ t+1 = R̂t+2 − R̂t+1 +Ut+1gradx(R̂t+1)+Vt+1grady(R̂t+1) (13)  

where R̂t+2 and R̂t+1 are the predicted precipitations for all grid cells in 
the study region at two consecutive time steps. Note that Ut+1 and Vt+1 
are still used in Eq. (13) to reduce the errors introduced by the predicted 
values because the predicted rainfall is close to the actual rainfall under 
the constraint of the MSE loss. 

The spatio-temporal coherence loss is then defined to ensure that the 
forecasted rainfall is consistent with the actual rainfall in terms of spatial 
and temporal variations: 

Lstc = MSE(Ct+1:t+h− 1, Ĉ t+1:t+h− 1) (14)  

where Ct+1:t+h− 1 and Ĉt+1:t+h− 1 denote the spatio-temporal variations of 
actual and predicted precipitation during [t + 1, t + h-1], respectively. 
This loss ensures that the spatial and temporal variations of the fore-
casting results should be close to the spatio-temporal variations of the 
actual precipitation. 

Finally, the overall representation-prediction loss is defined as the 
weighted sum of the three-level reconstruction loss of the SDGiU-EDN 
Lrec, the standard MSE loss that measures the prediction error LMSE, 
and the spatio-temporal coherence loss Lstc: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lrec = wr0MSE([At− m+1,⋯,At], [Ât− m+1,⋯, Ât])

+wr1MSE
( [

S1,t− m+1,⋯,S1,t
]
,
[
Ŝ1,t− m+1,⋯, Ŝ1,t

])

+wr2MSE
( [

S2,t− m+1,⋯,S2,t
]
,
[
Ŝ2,t− m+1,⋯, Ŝ2,t

])

LMSE = MSE(Rt+1:t+h, R̂t+1:t+h)

Lstc = MSE(Ct+1:t+h− 1, Ĉ t+1:t+h− 1)

Lcom = wmsLMSE + wstLstc + wreLrec

(15)  

where wms,wst ,wre are weights and wms = wst = 1,wre = 0.1 were set 
because this configuration leads to good results in empirical studies. 

4. Experimental results 

4.1. Data 

Because the quality of observational rainstorm data is not compa-
rable to the reanalysis datasets, which have been widely used in weather 
forecasting (Scher and Messori, 2019; Rasp et al., 2020; Bi et al., 2023), 
This study evaluated the proposed rainstorm forecasting model on two 
widely used reanalysis datasets: the 5th generation European Centre for 
Medium-range Weather Forecasts Reanalysis dataset (ERA5, Hersbach 
et al., 2018) and the National Centre for Environmental Prediction 
Climate Forecast System version 2 selected hourly time-series products 
(NCEP, Saha et al., 2011). The ERA5 (NCEP) dataset provides data of 

Table 2 
Variables of the two datasets used in the experiments.  

ERA5 dataset NCEP dataset 

Variable Unit Variable Unit 

Total precipitation m Total precipitation kg 
m− 2 

2 m temperature K Temperature K 
2 m dewpoint temperature K Dewpoint temperature K 
Mean sea level pressure Pa Pressure reduced to mean sea 

level 
Pa 

Surface Pressure Pa u-component of wind m s− 1 

10 m u-component of wind m s− 1 v-component of wind m s− 1 

10 m v-component of wind m s− 1 Relative humidity % 
100 m u-component of 

wind 
m s− 1   

100 m v-component of 
wind 

m s− 1    
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atmospheric variables on a global scale from 1959 (1979) to the present 
and has been widely utilized in various studies, including data-driven 
weather forecasting (Rasp et al., 2020; Pathak et al., 2022; Bi et al., 
2023) and climate analysis (Steinhoff et al., 2018; Maillard et al., 2022). 
The two datasets contain fundamental atmospheric properties such as 
temperature, pressure, humidity, and wind speed. Table 2 shows the 
meteorological variables used for event representation. 

The spatial extent is presented in Fig. 11. Since most of the rain-
storms in the study region occur during the summer months, data from 
June to August over multiple years was used as the training dataset, one 
year’s data as the validation dataset, and data from another year as the 
test dataset. The description of the data is given in Table 3. 

4.2. Comparison results 

The model was implemented in pytorch and trained using an NVIDIA 
GTX 2080Ti GPU. The initial learning rate was set to 1 × 10-4. The 
performance of rainfall prediction was evaluated using Mean Absolute 

Error (MAE). 

MAE =
1

Nn

∑

n

1
N × h

∑

t,i

⃒
⃒rt,i,n − r̂ t,i,n

⃒
⃒ (16)  

where rt,i,n, r̂ t,i,n denote actual and predicted rainfall amounts of the ith 
grid at time t of the nth test sample, N is the number of grids in the test 
dataset, Nn is the total number of samples in the test dataset, and h is the 
number of prediction horizons. 

The MAE metric is not sufficient to evaluate the performance of 
rainstorm prediction due to the low occurrence rate of rainstorms. 
Therefore, two other metrics, i.e., Critical Success Index (CSI) (Gilbert 
1884) and Heidke Skill Score (HSS) (Heidke, 1926), were also used to 
evaluate the performance of the proposed forecasting model. Higher 
values of CSI and HSS indicate better performance. 

CSI =
TP

TP + FP + FN

HSS =
2 × (TP × TN − FN × FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

(17)  

where TP is the number of correctly predicted rainstorms. FP is the 
number of non-rainstorm events that were incorrectly predicted as 
rainstorms. FN is the number of rainstorm events that were not predicted 
by the model. TN denotes the number of non-rainstorm events that were 
correctly predicted. 

We compare the forecasting performance of the proposed method 
with the following baseline models:  

(1) Simmim-Swin (Xie et al., 2022). This baseline is a state-of-the-art 
masked image modeling framework based on the Swin 

Fig. 11. Study region. Blue and red boxes represent the spatial extents covered by the ERA5 and NCEP datasets used in this study, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Description of the datasets used in the experiments.   

ERA5 NCEP 

Study area 28.125◦–33.125◦ N 
113.125◦–118.125◦ E 

25.25◦–35.25◦ N 
107.75◦–117.75◦E 

Spatial resolution 0.25◦ 0.5◦

Temporal resolution 1 h 1 h 
Year of the training data 2010–2016 2011–2017 
Year of the validation data 2017 2018 
Year of the test data 2018 2019  
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Transformer backbone (Liu et al., 2021). It performs well in the 
classification task on ImageNet-1 K;  

(2) TCLR(Dave et al., 2022). TCLR is a contrastive learning-driven 
self-supervised video representation model that uses specially- 
designed local-local and global–local temporal contrastive los-
ses to promote representation capability. TCLR achieves 
competitive results in several video understanding tasks;  

(3) CNN (Zhou et al., 2019). CNN is a six-layer convolutional neural 
network for forecasting severe convective weather based on nu-
merical weather prediction data. It has been practically used as 
an operational model in the National Meteorological Center of 
China;  

(4) TrajGRU (Shi et al., 2017). TrajGRU is a classical precipitation 
nowcasting model with an encoder-forecasting architecture that 
captures local spatio-temporal correlations through structured 
recurrent connections;  

(5) FourCastNet (Pathak et al., 2022). FourCastNet is a state-of-the- 
art global high-resolution weather forecasting model that is 
able to predict extreme weather events. It is claimed to achieve 
comparable performance to state-of-the-art numerical weather 
prediction models;  

(6) STSGCN (Song et al., 2020). STSGCN is a typical spatio-temporal 
prediction model that uses spatial–temporal synchronous graph 
convolutional networks to capture local spatio-temporal corre-
lations and achieves state-of-the-art prediction performance 
among existing graph neural networks. 

The first two baselines are recent advanced visual representation 
networks. The goal of the performance comparison with these two 
baselines is to evaluate the effectiveness of the proposed prior-guided 
representation network SDGiU-EDN. The remaining baselines are 
typical recent spatio-temporal predictors, some of which have been used 
for weather forecasting. 

Tables 4 and 5 present the rainstorm prediction results for the next 3 
hours on the ERA5 and NCEP datasets. Note that “Total CSI” and “Total 
HSS” were computed over the entire 3-step prediction horizon. Rain-
storm and heavy rainstorm events were identified using thresholds of 16 
mm/h and 20.5 mm/h, respectively. The results on the ERA5 dataset is 
presented in Table 4, which indicate that the representation capability of 
SDGiU-EDN helps the proposed model to achieve the best MAE as well as 
the total and step-by-step CSI and HSS metrics. For example, the Total 
CSI is improved by 39.2 % and 150.8 % compared to Simmim-Swin and 
TCLR, respectively. This performance improvement can be attributed to 
representation capability of SDGiU-EDN, which effectively integrates 
atmospheric properties and spatio-temporal statistics of the rainstorm 
events into compact embeddings. 

According to Table 4, the proposed model achieves the best CSI and 
HSS performance. Compared to CNN, TrajGRU, FourcastNet, and 
STSGCN. It improves the overall CSI improvements by 19.7 %, 95.1 %, 
73.6 %, and 65.4 %, respectively. Compared to CNN, the stepwise CSI of 
the prosed model is improved by 7.4 %, 25.2 %, and 88.9 % on steps 1, 2, 
and 3, respectively. CNN has the best overall performance among all the 
compared baseline methods. CNN and FourcastNet have relatively small 

Table 4 
Performance comparison of PGCN and six baseline models on the ERA5 dataset. In addition to MAE between the predicted precipitation and the ground truth, we also 
evaluated them with the total and step-by-step CSI and HSS metrics.   

*MAE ↓ Total 
CSI ↑ 

Total 
HSS ↑ 

CSI ↑ HSS ↑ 

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 

ERA5(16.0 mm/h) 
CNN  0.843  0.264  0.413  0.497  0.218  0.063  0.661  0.353  0.114 
TrajGRU  0.922  0.162  0.274  0.313  0.114  0.030  0.472  0.201  0.057 
FourcastNet  0.840  0.182  0.304  0.376  0.129  0.011  0.543  0.225  0.022 
STSGCN  0.939  0.191  0.314  0.274  0.215  0.047  0.424  0.347  0.086 
Simmim-Swin  0.983  0.227  0.366  0.435  0.149  0.039  0.603  0.255  0.073 
TCLR  1.329  0.126  0.221  0.270  0.040  0.000  0.420  0.075  0.000 
PGCN  0.864  0.316  0.475  0.534  0.273  0.119  0.693  0.423  0.207  

ERA5(20.5 mm/h) 
CNN  0.843  0.178  0.300  0.421  0.077  0.000  0.591  0.142  0.000 
TrajGRU  0.922  0.079  0.146  0.195  0.000  0.000  0.324  0.000  0.000 
FourcastNet  0.840  0.103  0.187  0.273  0.026  0.000  0.427  0.050  0.000 
STSGCN  0.939  0.043  0.079  0.048  0.067  0.000  0.089  0.122  0.000 
Simmim-Swin  0.983  0.138  0.242  0.352  0.024  0.000  0.519  0.045  0.000 
TCLR  1.329  0.074  0.136  0.190  0.000  0.000  0.318  0.000  0.000 
Ours  0.864  0.235  0.379  0.494  0.176  0.021  0.660  0.297  0.040 

* Because the MAE metric is computed using absolute precipitation values, it remains consistent across different rainstorm thresholds. 

Table 5 
Performance comparison PGCN and six baseline models on the NCEP dataset.   

MAE ↓ Total 
CSI ↑ 

Total 
HSS ↑ 

CSI ↑ HSS ↑ 

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 

NCEP(16.0 mm/h) 
CNN  0.533 0.103 0.186 0.273 0.000 0.000 0.427 0.000 0.000 
TrajGRU  1.034 0.039 0.073 0.091 0.000 0.000 0.164 0.000 0.000 
FourcastNet  0.648 0.020 0.038 0.053 0.000 0.000 0.099 0.000 0.000 
STSGCN  0.971 0.030 0.054 0.024 0.022 0.041 0.044 0.040 0.075 
Simmim-Swin  0.634 0.100 0.180 0.189 0.042 0.000 0.316 0.078 0.000 
TCLR*  1.424 – – – – – – – – 
Ours  0.713 0.218 0.356 0.429 0.129 0.107 0.599 0.226 0.191 

* Because TCLR failed to predict any rainstorms, it did not report any CSI and HSS metrics. Since there was only one heavy rainstorm (≥ 20.5mm/h) in the NCEP test 
dataset and none of the baseline methods were able to predict it, the prediction results for the heavy rainstorm are not included in Table 5.  
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precipitation errors (MAE), but their rainstorm prediction results are not 
as good, suggesting a tendency to underestimate extreme rainstorm 
events. 

In Table 4, it can be seen that when the precipitation threshold is 
20.5 mm/h, all methods perform worse than when the threshold is 16 

mm/h. This indicates that predicting heavy rainstorms becomes more 
challenging when they are rarer. In this case, the proposed method still 
provides the best CSI and HSS performance. The total CSI is improved by 
70.3 % and 217.6 % compared to Simmim-Swin and TCLR, respectively. 
While all the baseline methods fail to predict the heavy rainstorms three 

Fig. 12. Comparison of actual (upper row) and predicted (bottom row) rainfalls over the formation (a), development (b), dissipation (c), and termination (d) of a 
rainstorm process from 21:00 July 5, to 7:00 July 6, 2018. Grid cells with a black dot indicate rainstorm events (precipitation exceeds the threshold of 16 mm/h). 
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steps ahead (h = 3), the proposed method manages to make some correct 
predictions, suggesting that our method performs better in capturing 
spatio-temporal correlation of meteorological events with very limited 
rainstorm samples. 

According to the prediction results reported in Table 5, it can be 
noted that the overall performance of all methods on the NCEP dataset is 
worse than that of ERA5, probably due to the relatively smaller rain-
storm samples. The proposed forecasting method outperforms all the 

Fig. 12. (continued). 
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baselines. Compared to the total CSI in Table 4, the prediction perfor-
mance based on Simmim-Swin is reduced by 55.9 % in the NCEP dataset. 
TCLR is unable to predict any rainstorm. The performance of the SDGiU- 
EDN-based predictor is reduced by only 31.0 %, suggesting that the 
scarcity of training samples has less negative effect on the proposed 
method. Although Simmim-Swin achieved the best MAE, it performed 
much worse in terms of CSI and HSS, which are more informative 
metrics for rainstorm prediction than MAE. 

The comparison experiments demonstrate that the proposed method 
outperforms all baselines on both the ERA5 and NCEP datasets at two 
rainstorm thresholds (16 mm/h and 20.5 mm/h), in terms of overall 
prediction accuracy as well as step-by-step accuracy. Two key mecha-
nisms of the proposed method may contribute to the performance 
improvement: (1) the effective integration of substantial derivatives of 
meteorological variables in the gated convolutional network; and (2) the 
full integration of spatio-temporal and attributed information via the 
multi-layer reconstruction loss and the spatio-temporal coherence loss. 
The two developments empower the predictor with the ability to char-
acterize the spatio-temporal dynamics of rainstorms with limited 
training data. More experimental results can be found in the Appendices. 

4.3. Qualitative analysis 

Fig. 12 illustrates an example of how the proposed model can predict 
the process of formation, development, dissipation and termination of a 
rainstorm, which occurred during the 2018 monsoon season. It can be 
seen that the coverage of rainstorm increased/decreased rapidly as the 
rainstorm developed/dissipated, making it challenging to capture 
changes in in rainstorm events. From this example, it can be seen that 
the proposed model successfully predicts the entire lifecycle of a rain-
storm event including formation, development, dissipation, and 

termination. It can accurately predict the coverage of rainstorms up to 1 
h. 

In July, rainstorms are likely to occur under sufficient water vapor 
conditions due to the convergence of the south-west monsoon and cold 
air from the north (Guan et al., 2020). After 20:00 on 5 July, water vapor 
convergence can be observed in the south-eastern part of the study re-
gion, with a low-pressure center in the vicinity of the water vapor 
convergence zone, which provided favorable water vapor conditions for 
the formation and development of the rainstorm. The predicted rain-
storm area was close to the water vapor convergence zone. After 2:00 on 
6 July, the water vapor convergence gradually weakened and was un-
able to provide sufficient water vapor for the continuous development of 
the rainstorm. This dissipation of the rainstorm was also successfully 
predicted by the proposed model. The results indicate that the proposed 
model can utilize spatio-temporal pattern and substantial derivative 
priors to guide the gated convolutional network to learn integrated 
spatio-temporal-attributed representations of rainstorm events even 
when there are limited training samples. With the substantial derivative 
equation and the spatio-temporal coherence loss, the model can 
generate non-linear latent representations to encode complex and 
meaningful spatio-temporal-attributed correlations. 

4.4. Ablation studies 

To evaluate the effectiveness of the proposed SDGiU, the spatio- 
temporal coherence loss, and activated prior-informed embeddings, 
we performed ablation studies using four variants of the proposed 
model:  

1) -R-SDGiU: this variant replaces all SDGiUs in SDGiU-EDN with the 
classical ConvGRU (Shi et al., 2017); 

Table 6 
Performance comparison of the full PGCN model and four variant models on the ERA5 dataset at two rainstorm thresholds (16 mm/h and 20.5 mm/h) in terms of 
overall prediction accuracy and step-by-step accuracy.   

MAE ↓ Total 
CSI ↑ 

Total 
HSS ↑ 

CSI ↑ HSS ↑ 

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 

ERA5(16.0 mm/h) 
-R-SDGiU  0.764  0.307  0.466  0.592  0.234  0.069  0.742  0.376  0.126 
-SDGiU  0.824  0.289  0.443  0.533  0.240  0.118  0.692  0.381  0.205 
-STCLoss  0.816  0.272  0.424  0.485  0.235  0.075  0.650  0.375  0.135 
-APIE  0.846  0.290  0.446  0.490  0.246  0.109  0.654  0.389  0.191 
Full model  0.864  0.316  0.475  0.534  0.273  0.119  0.693  0.423  0.207  

ERA5(20.5 mm/h) 
-R-SDGiU  0.764  0.218  0.356  0.529  0.098  0.000  0.690  0.177  0.000 
-SDGiU  0.824  0.221  0.360  0.476  0.161  0.036  0.643  0.275  0.067 
-STCLoss  0.816  0.187  0.314  0.418  0.104  0.000  0.588  0.187  0.000 
-APIE  0.846  0.220  0.359  0.461  0.168  0.007  0.629  0.285  0.012 
Full model  0.864  0.235  0.379  0.494  0.176  0.021  0.660  0.297  0.040  

Table 7 
Performance comparison of the full PGCN model and four variant models on the NCEP dataset at the 16 mm/h rainstorm thresholds in terms of overall prediction 
accuracy and step-by-step accuracy.   

MAE ↓ Total 
CSI ↑ 

Total 
HSS ↑ 

CSI ↑ HSS ↑ 

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 

NCEP(16.0 mm/h) 
-R-SDGiU  0.715  0.183  0.307  0.283  0.135  0.108  0.438  0.235  0.192 
-SDGiU  0.625  0.155  0.267  0.346  0.000  0.000  0.513  0.000  0.000 
-STCLoss  0.660  0.104  0.187  0.166  0.115  0.000  0.284  0.205  0.000 
-APIE  0.648  0.194  0.334  0.389  0.000  0.000  0.558  0.000  0.000 
Full model  0.713  0.218  0.356  0.429  0.129  0.107  0.599  0.226  0.191 

* Since there was only one heavy rainstorm (≥ 20.5mm/h) in the NCEP test dataset and none of the variants were able to predict it, the prediction results for the heavy 
rainstorm are not included in Table 7.  
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2) -SDGiU: this variant replaces all SDGiUs in both SDGiU-EDN and the 
forecasting network with the classical ConvGRU (Shi et al., 2017);  

3) -STCLoss: in this variant, the spatial temporal coherence loss is not 
used.  

4) -APIE: this variant does not implement spatio-temporal convolution 
and the prior activation layers, which means Activated Prior- 
Informed Embeddings are not produced and used in forecasting. 

Tables 6 and 7 reports the results of applying the full model and its 
variants to predict rainstorms for the next 3 hours. Compared to the 
results of Tables 4 and 5, all four variants of the proposed model show 
better total CSI and HSS scores than all the compared baselines, proving 
the validity of the proposed prior-informed modules and the loss func-
tion. -STCLoss exhibits relatively large performance degradation, 
implying that the spatio-temporal coherence loss function plays a more 
important role than the other components in capturing the spatio- 
temporal variation patterns of rainstorms. 

Table 7 shows that all variants perform worse than the full model, 
due to very limited sample size of the NCEP dataset. -SDGiU and -APIE 

performed worse than other variants in steps 2 and 3, meaning that 
effective representation and integration of spatio-temporal-attributed 
rainstorm features are critical for longer horizon predictions. –R- 
SDGiU performed worse than -SDGiU at step 1, but better at steps 2 and 
3, indicating an overestimation of precipitation. Compared to the results 
of Table 6, it can be observed that the performance gap between -SDGiU 
and –APIE is much larger, suggesting that that SDGiUs can use physical 
priors to mitigate the shortage of rainstorm samples. 

The ablation studies show a significant performance degradation 
when SDGiU is not incorporated in the model, suggesting that the the 
prior representation network, and SDGiU in particular, is vital to the 
overall performance of the PNCN model, which supports the claim of the 
second contribution. The integrated loss function also plays a critical 
role in promoting the forecasting performance (as shown in Tables 6-7) 
and reproducing the development patterns of rainstorm (as shown in the 
qualitative analysis in Section 4.3), which corroborates the claim of the 
third contribution. In summary, the PGCN model can effectively models 
the substantial derivatives and spatio-temporal statistics of atmospheric 
dynamics as physical priors. By combining these priors with gate 

Fig. A1. Workflow of the proposed rainstorm prediction model.  
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convolutional networks, it improves sample efficiency and generaliz-
ability, which substantiate the claim of the first contribution. 

5. Discussion and conclusion 

We have presented a prior-guided rainstorm forecasting method that 
integrates learnable event representations based on a gated convolu-
tional network, addressing the challenges of complex spatio-temporal 
correlations and the heterogeneous influences of atmospheric factors 
on rainstorm development. The substantial derivative equation is used 
to guide the embedding of rainstorm events by enforcing physical con-
straints in specially-designed gated convolutional units, which also 
incorporate spatio-temporal statistics to capture the spatio-temporal 
development patterns of historical rainstorms. The experimental re-
sults have demonstrated that the proposed prediction model can 
generate physically more consistent and spatially-temporally more 
coherent predictions than compared baselines. Although the proposed 
model was evaluated using the rainstorm data of China, it can be applied 
worldwide by applying a local criterion to identify rainstorm events and 
using them as training samples. The proposed prior-guided gated con-
volutional network is built based on generic physical priors and widely 
used deep learning models, making it generalizable to data collected 
from other countries. 

The results of this study show that prior-guided machine learning 
models have the potential to effectively integrate various physical priors 
into automated data-driven learning frameworks to emulate complex 
atmospheric dynamics of rainstorms and address the challenges of 
rainstorm forecasting. It can be expected that more resources, including 
benchmark datasets, computational systems and domain expertise, will 
be devoted to develop more robust and scalable prior-guided deep 
learning models for high-resolution rainstorm modeling and skillful 
prediction. We also anticipate the prediction accuracy of these models 
will surpass that of the current NWP models and will be used opera-
tionally in the near future. Joint efforts of different disciplines, such as 
meteorology, computer science, and remote sensing, can be coordinated 
to achieve this goal. To cost-effectively utilize the accumulated expertise 
and knowledge of meteorologists, we recommend integrating legacy 
NWP models with deep learning models. 

The main limitations of the proposed methodology are: 1) the case 
studies were based on reanalysis datasets rather than observational 
rainstorm data or other meteorological data sources (e.g., radar echo 
data). There is a risk that realistic rainstorms development patterns may 
not be fully captured; 2) this study only accounts for some elementary 
forms of rainstorm priors. The priors of rainstorms are not sufficiently 
modelled, which may have a negative impact on the generalization 
ability of the proposed model. 

Additional data, such as radar, observational precipitation, and to-
pological data can be incorporated into the proposed forecasting 
framework to improve the forecasting performance of rainstorm events. 
More advanced priors can be modeled and incorporated into data-driven 

forecasting frameworks, such as the governing equations of atmospheric 
motion or statistical constraints based on the spatio-temporal structures 
of rainstorm processes. Future studies can also explore to combine 
operational NWP models with the proposed model and evaluate the 
applicability of such hybrid models for high-resolution rainstorm pre-
diction. In the future, the proposed “event representation-prediction” 
framework can also be applied to the prediction of other extreme climate 
events, such as floods or droughts, which is vital to mitigate the impacts 
of climate change and achieve global Sustainable Development Goals 
(SDGs) (United Nations, 2015). 
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Appendix 

1. Workflow of the entire prediction method 

Fig. A1 illustrates the training, validation, and test phrases in an integrated workflow. The training of the model focuses on the two modules of 
substantial derivative-guide rainstorm prior representation and spatio-temporal prior-informed rainstorm forecasting. The model is trained by the overall 
representation-prediction loss. Once the loss converges, the training is stopped and the trained model (outlined with dash line) can be used for 
validation and testing. During the validation stage, the goal is to search for the best hyper-parameters using a validation dataset. Once the config-
uration of hyper-parameters is determined, we can proceed to test the model and produce forecasting for the next h hours based on the inputs of 
atmospheric attributes of previous m hours. In summary, the trained representation and forecasting modules are used in the validation and testing 
phrases. The computation of loss and back-propagation is performed only in the training stage. 

Fig. A1 
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2. Substantial derivatives as physical priors 

In fluid modeling, the substantial derivative is used to describe the rate of change of a physical quantity along a particular path of flowing fluid 
(Anderson, 1992). As shown in Eq. (A1), the substantial derivative of the physical quantity H in 3D Cartesian coordinates (x, y, z) can be written as a 
function of x,y, z, and t, 

dH
dt

= u
∂H
∂x

+ v
∂H
∂y

+w
∂H
∂z

+
∂H
∂t

(A1)  

where u, v and w represent the velocity components in x,y, and z directions, respectively. ∂H
∂t denotes the local derivative, which represents the change 

rate observed from a fixed location in the 3D coordinate system. u ∂H
∂x +v ∂H

∂y +w ∂H
∂z can be regarded as the convective derivative, which describes the 

change caused by the transport of the physical quantity in the fluid. Eq. (A1) can be also simplified as, 

dH
dt

= (V • ∇)H +
∂H
∂t

,

(

∇H = i
∂H
∂x

+ j
∂H
∂y

+ k
∂H
∂z

)

(A2)  

where V is a velocity vector with the components of u, v and w in x,y, and z directions, respectively. ∇ denotes the gradient operator. 
From Eqs. (A1) and (A2), it can be seen that the substantial derivative of a physical quantity can be computed as the summation of local and 

convective derivatives. Some recent data-driven weather forecasting studies have incorporated the basic principle of the substantial derivative 
equation into deep learning models to better capture the spatio-temporal variability of meteorological quantities. For example, Bézenac et al. (2019) 
develop a differentiable warping scheme based on the advection–diffusion equation for predicting future sea surface temperature. 

The concept and equations of the substantial derivative can be used to describe the fundamental physical laws governing the motion of atmo-
spheric fluid. Since many meteorological quantities vary in time and space, the substantial derivative equations are used to represent the fundamental 
physical prior, which describes how atmospheric dynamics change along the path of a rainstorm. This study incorporates them into a data-driven deep 
rainstorm forecasting model, with the aim of improving the capability to capture dynamic motion patterns and spatio-temporal correlations of 
rainstorms. 

The integration of substantive derivatives also contributes to the generation of physically consistent forecasts by constraining the model to obey 
basic physical principles that govern atmospheric dynamics. Specifically, a substantial derivative-guided gated convolutional encoder-decoder 
network is developed to effectively represent historical rainstorm events and alleviate the problem of limited training samples. This study also de-
velops a spatio-temporal coherence loss with the substantial derivative as a soft constraint to generate forecasts that are more consistent with the 
spatial and temporal patterns of the rainstorm event development process. 

3. Computation of SDGiU-EDN 

Using the atmospheric attributes (including precipitation data) of the last m steps as input, SDGiU-EDN produces embeddings of historical rain-
storm events from the training dataset. Once the training is completed, the encoder of SDGiU-EDN (Lines 1–5 in Algorithm A1) can be used to generate 
representations for both non-rainstorm and rainstorm events for the last m steps before the current time t. The decoder (Lines 6–10 in Algorithm A1) 
reconstructs the vectors of atmospheric attributes.   

Algorithm A1. Substantial derivative-guided event representation (SDGiU-EDN) 

Input:At− m+1,⋯,At 

//atmospheric attribute data of the last m steps (including precipitation data) 
Ft//spatio-temporal statistics of rainstorms of the last m steps 
Output: 
El,t , l = 1,2,3// learned event embedding 
Ât− m+1,⋯, Ât// reconstructed atmospheric attribute data(including precipitation data) 
1 A = At− m+1:t 

2 for l:=1 to 3 step 1 // the encoder has three layers 
3 A,H : = SDGiU[l](A, 0) //hidden state matrix is initialized to all zeros 
4 El,t := conv(H+Ft) //compute event embeddings 
5 end for 
6 A := None 
7 for l:=3 to 1 step − 1 // the decoder has three layers 
8 A,H : = SDGiU[l]

(
A,El,t

)

9 end for 
10 Ât− m+1,⋯, Ât: ¼A  

Each layer of the encoder and decoder consists of m recurrent SDGiUs, which are guided by the substantial derivative equation to update the temporal 
hidden states. The specific procedure of one SDGiU module in an encoder/decoder layer is illustrated in Algorithm A2. Each layer consists of m 
recurrent SDGiUs (line 3). In line 4, the algorithm computes the residual matrix Res and the velocity components in the hidden state in x and y di-
rections (U,V). In line 5, the state is updated based on Res and (U,V) according to Eq. (5). Lines 6–9 implement Eq. (6) to compute the update and reset 
gates and produce the final hidden state representation of the SDGiU module.  
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Algorithm A2. Computation of the SDGiU（Substantial derivative-guided gated convolutional unit）module within each 
encoder/decoder layers 

Input:At− m+1,⋯,At 

//atmospheric attribute data of the last m steps (including precipitation data) 
Output: 
H1,⋯Hm// Hidden states of each SDGiU, Hm is the final hidden state of the current layer 
1 A1:m := At− m+1:t 

2 H0 := 0 // hidden state matrix is initialized to all zeros 
3 for l:=1 to m //each module has m recurrent SDGiUs 
4 U,V,Res := uvr (Al ,Hl− 1)

5 H″
l− 1 := Hl− 1 − U◦ gradx(Hl− 1) − V◦ grady(Hl− 1) − Res 

6 Zl := σ
(
convaz(Al)+convhz

(
H″

l− 1
) )

7 Rl := σ
(
conv(Al)+convhr

(
H″

l− 1
) )

8 H′
l := ι

(
convah(Al)+R◦

l convhh
(
H″

l− 1
) )

9 Hl := (1 − Zl)
◦

H′
l + Z◦

l Hl− 1 

10 end for 
11 A1:m := H1:m // the final hidden state of each SDGiU module is fed into the next layer as input  

4. More experimental results 

To comprehensively evaluate the performance of the proposed model, this study compares it to the baselines in terms of Probability of Detection 
(POD), Miss Alarm Rate (MAR) and False Alarm Rate (FAR) (Eq. A(3)). POD is the rate of the number of correctly predicted rainstorms to the number 
of actual rainstorms. MAR is the rate of the number of rainstorm events that were not predicted by the model to the number of rainstorms. FAR is the 
rate of the number of non-rainstorm events that were incorrectly predicted as rainstorms to the number of predicted rainstorms. Higher POD values 
and lower MAR/FAR values indicate better performance. 

POD =
TP

TP + FN

MAR =
FN

TP + FN

FAR =
FP

TP + FP

(A3)  

where TP is the number of correctly predicted rainstorms. FP is the number of non-rainstorm events that were incorrectly predicted as rainstorms. FN 
is the number of rainstorm events that were not predicted by the model. TN denotes the number of non-rainstorm events that were correctly predicted. 
Note that POD + MAR = 1.  Table A1 

Comparison of prediction reliability on ERA5.   

POD ↑ MAR ↓ FAR ↓ 

ERA5(16 mm/h) 
CNN  0.326  0.674  0.385 
TrajGRU  0.201  0.799  0.551 
FourcastNet  0.199  0.801  0.327 
STSGCN  0.299  0.701  0.656 
Simmim-Swin  0.288  0.712  0.484 
TCLR  0.080  0.920  0.580 
PGCN  0.444  0.556  0.478   

Table A2 
Comparison of prediction reliability on NCEP.   

POD ↑ MAR ↓ FAR ↓ 

NCEP(16.0 mm/h) 
CNN 0.125 0.875 0.625 
TrajGRU 0.063 0.936 0.906 
FourcastNet 0.021 0.979 0.750 
STSGCN 0.083 0.917 0.956 
Simmim-Swin 0.167 0.833 0.800 
TCLR – – – 
PGCN 0.396 0.604 0.672  

According to Tables A1 and A2, the proposed PGCN model substantially outperforms the comparison method in terms of POD and MAR, indicating a 
relatively high detection rate and low miss rate. However, the proposed method does not perform as well as CNN or FourcastNet in the FAR metric, 
suggesting a tendency to overestimate precipitation compared to CNN and FourcastNet. The proposed method has the best performance in CSI, which 
is a widely used metric in rainstorm prediction. Therefore, we argue that the proposed method has achieved a better balance in terms of accuracy, false 
alarm, and miss alarm. In future research, we will continue to improve the rainstorm prediction performance by reducing the false alarm rate. 
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