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A B S T R A C T   

Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to 
urban planning and management. At present, there are many attempts to predict the spatiotemporal state of 
systems using various deep learning models. However, most existing models tend to improve prediction accuracy 
with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this 
question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with 
satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated 
convolution operator and integrate it into traditional causal convolutional networks and graph convolutional 
networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can 
significantly reduce the depth of the model, thereby reducing the parameter scale and improving the compu-
tational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets 
(traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed 
STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable 
prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parame-
ters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.   

1. Introduction 

With the rapid development of the Internet of Things, urban sensor 
data show explosive growth, such as traffic data, air quality data, and 
meteorological data (Liu et al., 2023b; Zhang & Farooq, 2023; Zhang 
et al., 2022a, 2022b). For these urban sensor data with fixed 
geographical locations, how to construct accurate and reliable spatio-
temporal prediction models is a fundamental research topic and one of 
the key challenges in urban computing (Jin et al., 2023; Liang et al, 
2018; Wang et al, 2024). 

Existing spatiotemporal prediction models can be roughly divided 
into knowledge-driven and data-driven spatiotemporal prediction 
models (McMillan et al., 2023; Wang et al., 2022a; Zhang et al., 2023). 
Compared with the knowledge-driven spatiotemporal prediction 

models, the data-driven spatiotemporal prediction models have become 
the mainstream prediction methods due to their high prediction accu-
racy (Fang et al., 2021a; Janowicz et al., 2020). The data-driven models 
establish a nonlinear function mapping between input and output data 
by training complex machine learning or deep learning models, thereby 
significantly improving the prediction accuracy (Xu et al., 2021; Zhang 
et al., 2022a). However, most existing models focus on improving the 
prediction accuracy, but ignore the ease of use (Cheng et al., 2020). The 
improvement of prediction accuracy is often accompanied by an in-
crease in model complexity, which results in the difficulty of model 
implementation and makes the models computationally ineffi-
cient/parameter oversized (Wang et al., 2023). In real-world scenarios, 
improving prediction accuracy without significantly increasing time 
consumption and model parameter scale is paramount in urban 
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computing (Zheng et al., 2014). The spatiotemporal prediction models 
are challenging to balance the accuracy of model prediction and ease of 
use. 

The causal dilated convolution network (CDC) provides a potential 
solution for lightweight spatiotemporal prediction tasks (Bai et al., 
2018). Previous studies have shown that the CDC model has the ad-
vantages of high prediction accuracy, low time consumption and small 
parameter scale (Yan et al., 2020). However, the CDC model is mainly 
used for time series prediction tasks currently rather than spatiotem-
poral prediction tasks (especially spatiotemporal prediction tasks based 
on graph structures). Dealing with the spatial dependence in data is a big 
obstacle for the CDC model. In this paper, we propose a novel spatio-
temporal graph dilated convolutional network (STGDN) based on CDC 
for spatiotemporal prediction tasks. The main contributions of this study 
are summarized as follows:  

(1) The proposed STGDN is a lightweight spatiotemporal prediction 
model rather than a time series prediction model. It inherits the 
advantages of the CDC model and directly serve the spatiotem-
poral prediction of urban sensor states.  

(2) Similar to the CDC operator, a novel graph dilated convolution 
operator is designed. The graph dilated convolution operator can 
effectively and quickly capture spatial dependencies in data 
without significantly increasing the computation time or 
parameter scale.  

(3) We used the traffic, PM2.5 and temperature datasets to evaluate 
the prediction performance of the STGDN model, including pre-
diction accuracy, computation time and parameter scale. In 
addition, we opened the code of the STGDN model to ensure the 
reproducibility of the experimental results. 

2. Literature review 

In this section, we reviewed knowledge-driven and data-driven 
spatiotemporal prediction models, and analyzed the shortcomings of 
existing models. 

2.1. Knowledge-driven spatiotemporal prediction models 

Knowledge-driven spatiotemporal prediction models assume that 
spatiotemporal data obey explicit mathematical laws in spatial or tem-
poral dimension, so as to build specific parametric expression to predict 
the future spatiotemporal state (Campbell & Thompson, 2008). For 
example, Kriging interpolation uses the covariance function to obtain an 
optimal linear unbiased estimate of the unknown spatiotemporal state 
based on the second-order smoothness of the spatial distribution (Pes-
quer et al., 2011). Kalman filtering assumes that the variance of the 
observed data is fixed in the time dimension, and uses linear equations 
to establish a functional mapping between the observed data and the 
unknown data (Guo et al., 2014). Autoregressive integrated moving 
average (ARIMA) assumes that the observed data satisfy temporal 
smoothness in the time dimension and relies on observations from 
previous times to infer the future spatiotemporal state (Yozgatligil et al., 
2013). In addition, many scholars have proposed hybrid spatiotemporal 
prediction models based on ARIMA and Kriging models, such as 
spatiotemporal kriging (ST-Kriging) (Aryaputera et al., 2015) and 
spatiotemporal ARIMA (ST-ARIMA) (Duan et al., 2016). Although the 
above knowledge-driven prediction models can be used for spatiotem-
poral prediction tasks, the prediction accuracy of the models is poor. 
First, the knowledge-driven spatiotemporal prediction models are based 
on strict prior assumptions, and the actual spatiotemporal environment 
is often challenging to meet the premise assumptions of the model. 
Second, the knowledge-driven spatiotemporal prediction models are 
parametric models, and it is difficult for parametric models to describe 
the complex nonlinear relationships in spatiotemporal data (Wang et al., 
2020). 

2.2. Data-driven spatiotemporal prediction models 

With the rapid development of artificial intelligence and high- 
performance computing, data-driven spatiotemporal prediction models 
have become the mainstream prediction methods (Liu et al., 2023a). 
Unlike knowledge-driven models, data-driven spatiotemporal predic-
tion models do not require the dataset to obey specific mathematical 
laws, but use non-parametric operation (such as machine learning or 
deep learning) to predict future spatiotemporal states (Li et al., 2022; 
Zhang et al., 2023), such as the spatiotemporal k-nearest neighbor 
(ST-KNN) (Cheng et al., 2018; Wu et al., 2014), Bayesian temporal 
matrix factorization model (BTMF) (Chen & Sun, 2022), spatiotemporal 
residual network model (ST-ResNet) (Zhang et al., 2017), regression 
updated semi-supervised learning method (RUSSL) (Jiang et al., 2022), 
and hybrid CNN_LSTM_WDTD model (Mengfan et al., 2022). In recent 
years, given the universality of graph structures, graph convolutional 
neural networks (GCN) have been gradually applied to spatiotemporal 
data modeling and further improve the accuracy of prediction tasks 
(Niepert et al., 2016). Typical graph-based spatiotemporal prediction 
models include temporal graph convolutional network (T-GCN) (Zhao 
et al., 2020), bidirectional spatiotemporal graph network (BiSTGN) 
(Wang et al., 2022b), attention based spatiotemporal graph convolu-
tional neural network (ASTGCN) (Guo et al., 2019), subgraph parti-
tioning and multi-scale GNN (SGMS-GNN) model (Liu et al., 2023b), and 
dynamic spatiotemporal aware graph neural network (DSTAGNN) (Lan 
et al., 2022). Although the above models have achieved superior accu-
racy in spatiotemporal prediction tasks, the high complexity of the 
models increases the difficulty of implementation and makes the models 
computationally inefficient/parameter oversized. Most existing spatio-
temporal prediction models still struggle to balance the prediction ac-
curacy and ease of use. 

Therefore, we propose a novel lightweight spatiotemporal prediction 
model, i.e., the STGDN model. It aims to improve the prediction accu-
racy without significantly increasing the computation time and model 
parameter scale. 

3. Preliminaries 

Definition 1 (Graph). As shown in Fig. 1 (a) and (b), the study area 
can be abstracted as a graph structure G = 〈V,E,A〉, where V = {vi}

n
i=1 

represents n sensors in G (n graph nodes), E indicates the relationship 
between graph nodes. For simplicity, the connection relationships be-
tween sensors can be represented by an adjacency matrix A ∈ R n×n, 
where Aij indicates the connection relationship between node vi and 
node vj. 

Fig. 1. Related definitions: (a) study area, (b) graph structure, and (c) spatio-
temporal prediction task. 
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Definition 2 (Spatiotemporal State Matrix). The spatiotemporal 
data monitored by all sensors in all time windows can be expressed as a 
spatiotemporal state matrix X ∈ R n×T, where xt

i indicates the spatio-
temporal value (traffic volume and air quality per unit time) monitored 
by sensor vi in the tth time window, xt = {xt

i}
n
i=1 ∈ R n× 1 represents the 

spatial sequence monitored by all sensors in the tth time window. 

As shown in Fig. 1 (c), our research goal is to establish a functional 
model F (⋅) that can mine spatiotemporal patterns in the matrix X based 
on graph structure G and accurately predict future spatiotemporal data. 
Specifically, given a spatiotemporal state matrix X, the process is shown 
in Eq. (1). 

x̂ t+q = F

(
Xt
t− p+1,G;W

)
(1)  

where, F (⋅) represents the proposed STGDN model; Xt
t− p+1 =

{xτ}t
τ=t− p+1 ∈ R n×p represents the historical spatiotemporal data that 

the STGDN model needs to input; p represents the time-dependent step; 
x̂t+q represents future spatiotemporal data; q represents the prediction 
step, q = 1 indicates single-step prediction, and q > 1 indicates multi- 
step prediction; W represents learnable parameters in the STGDN model. 

4. Methodology 

In this section, we describe the proposed STGDN model for spatio-
temporal prediction. As shown in Fig. 2, the proposed STGDN model 
mainly consists of multiple STGDNCell blocks. Among them, each 
STGDNCell block contains a causal dilated convolutional module (CDC), 
and a graph dilated convolutional module (GDC), where the CDC 
module is used to mine temporal correlations in urban sensor data 
(discussed in Section 4.1), and the GDC module is used to mine spatial 
correlation relationships in urban sensor data (discussed in Section 4.2). 
More specifically, the process of the STGDN model can be described as 
follows. The original spatiotemporal data is used as the input of the CDC 
module to obtain a temporary state. Then, the temporary state is used as 
the input of the GDC module to obtain the output of the STGDNCell 
block, and the output of the last STGDNCell block is the final prediction 
result. In addition, to improve the nonlinear fitting ability of the model, 
we introduce the skip connection (i.e., the 1 × 1 convolution) within the 
CDC module, and between the original spatiotemporal data and output 

of the GDC module. 

4.1. Causal dilated convolution module 

Existing time correlation mining models can be divided into iterative 
and non-iterative models. Specifically, iterative models include recur-
rent neural networks (RNN) and their variants (Chung et al, 2014; Shi 
et al., 2015; Zhao et al., 2020). Non-iterative models include causal 
convolutional neural network (Causal CNN) and their variants (Bai 
et al., 2018; Wang et al., 2019;Yu et al., 2018). The two types of models 
have advantages and disadvantages. For example, iterative models such 
as RNN have fewer model parameters but slower computational effi-
ciency(iterative models allow model parameter sharing but can only 
perform serial operations). In comparison, non-iterative models such as 
Causal CNN have faster computational efficiency but more model pa-
rameters (non-iterative models allow parallel operations but require 
deeper network layers). To simultaneously reduce the time complexity 
(improve model computational efficiency) and the space complexity 
(reduce model parameter scale) of the model, inspired by Zhang et al. 
(2021), we use a novel lightweight causal dilated convolutional network 
to mine the time correlation in data, namely the CDC module in STGDN. 

The core of the CDC module is the causal dilated convolution oper-
ator. Compared with the causal convolution operator, the causal dilated 
convolution operator can significantly reduce the depth of the model, 
thereby reducing the parameter scale of the model. Taking the time 
series {xτi }

t
τ=t− p+1 ∈ R 1 × 9 containing nine timestamps as an example, 

Fig. 3 further illustrates the difference between causal convolution and 
causal dilated convolution. If we use convolutional kernel {wk}

3
k=1 ∈

R 1 × 3 to perform causal convolution operations on time series 
{xτi }

t
τ=t− p+1 ∈ R 1 × 9, we need to establish a four-layer causal convolu-

tional neural network. If we perform causal dilation convolution oper-
ations with dilation factor d, we only need to establish a two-layer causal 
dilated convolutional neural network. Therefore, the causal dilated 
convolution operator reduces the parameter scale by reducing the depth 
of the neural network. Taking time series {xτi }

t
τ=t− p+1 ∈ R 1 ×p as an 

example, the forward propagation process of the causal dilated convo-
lution operator is shown in Eq. (2). 

Fig. 2. Workflow of the STGDN model.  
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(
F∗d
{
xτi
}t
τ=t− p+1

)

(xτi )
=
∑K

k=1
wkx

τ− (K− k)d
i (2)  

where, (F∗d{xτi }
t
τ=t− p+1)(xτi )

denotes a causal dilated operation on xτi with 
dilation factor d; xτi represents the observed value of graph node vi in the 
τth time window; {wk}

K
k=1 represents convolution kernel; K represents 

the size of the convolutional kernel. 
Based on the causal dilated convolution operator, we further define 

the forward propagation process of the CDC module. In the CDC module, 
inspired by He et al. (2016), we use skip connection and parametric 
regularization to improve the prediction accuracy of the model. Taking 
the time series {xτi }

t
τ=t− p+1 ∈ R 1 ×p as an example, the forward propa-

gation process of the CDC module is shown in Eq. (3). 

CDC
({
xτi
}t
τ=t− p+1

)
:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H′
i = F∗d

{
xτi
}t
τ=t− p+1

H″
i = Relu

(
Norm

(
H′

i

))

Hi = Relu
(
Norm

(
F∗dH″

i

))
+ F ∗

{
xτi
}t
τ=t− p+1

(3)  

where, CDC({xτi }
t
τ=t− p+1) represents the forward propagation of CDC 

module on input data; H′
i, H″

i ∈ R eh×p represents the temporary state of 
the graph node vi in the CDC module; Hi represents the output state of 
the graph node vi in the CDC module; eh represents the number of 
convolutional kernels; F∗d{xτi }

t
τ=t− p+1 represents causal dilated convo-

lution operator; F ∗ {xτi }
t
τ=t− p+1 represents causal convolution operator, 

used for residual connections; Norm indicates parameter regularization 
function; Relu indicates the activation function. 

4.2. Graph dilated convolution module 

After the CDC module, a spatiotemporal tensor H = {Hi}
n
i=1 ∈

R n×eh×p can be obtained for all graph nodes. To mine the spatial cor-
relation in spatiotemporal tensors, we propose a novel lightweight graph 
dilated convolutional network, namely the GDC module in STGDN. The 
core of the GDC module is the graph dilated convolution operator. 
Similar to the causal dilated convolution operator, the graph dilated 
convolution operator can also significantly reduce the parameter scale of 
the model by reducing the depth of the model. As the dilation factor d 
increases, it is possible to model long-range spatial dependencies using 
fewer layers of the neural network. 

As shown in Fig. 4, the difficulty of the graph dilated convolution 
operator lies in efficiently discovering the dilated adjacency relation-
ships of graph nodes. In practice, the dilated neighbors of the target node 
with an expansion factor d can be obtained by the matrix Ad. Specif-
ically, we can find the dilated neighbors of the target node through the 
position where matrix Ad is equal to 1. As shown in Fig. 5, through 
matrix A2, we can find that the dilated neighbors of target node v5 are v4,

v6, and v7 with dilation factor d = 2. Similarly, when the dilation factor 
is three, the dilated neighbors of target node v5 are v4 and v6. Based on 
this property, the method of calculating the dilated adjacency matrix 
with dilated factor d can be defined by Eq. (4). 

Adilation=d
ij =

⎧
⎪⎪⎨

⎪⎪⎩

1 i = j
0 i ∕= j and Ad

ij ∕= 1

1 i ∕= j and Ad
ij = 1

(4)  

where, Adilation=d represents the dilated adjacency matrix; Adilation=d
ij rep-

resents the dilated adjacency between graph node vi and graph node vj; d 
represents the dilation factor; Ad represents the d power of the first-order 
topological adjacency matrix. 

After obtaining the dilated adjacency matrix, we further defined the 
graph dilated convolution operator. Inspired by graph attention 
(Veličković et al., 2018), the graph dilated convolution operator ag-
gregates spatial information through weighting. Specifically, the 
calculation method for the graph dilated convolution operator is shown 
in Eq. (5). 

(F ∗ Gd)(vi) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Oi =
∑

j∈Adilation=d
i

γjiHiW

γji =
exp
(
Relu

( [
Hi‖Hj

]
Wq
))

∑

k∈Adilation=d
i

exp
(
Relu

( [
Hi‖Hk

]
Wq
))

(5)  

where (F ∗ Gd)(vi)
represents the graph dilated convolution operation 

with dilation factor d for graph node vi; Hi is the Hi in Eq. (3); Adilation=d
i 

Fig. 3. Forward propagation of causal convolution and causal dilated convolution: (a) causal convolution, and (b) causal dilated convolution.  

Fig. 4. Dilated adjacency relationships of the target node: when the dilation 
factor d = 1, the dilated adjacent neighbors are the first-order topological 
neighbors of the target node. when the dilation factor d = 2, the dilated 
adjacent neighbors are the second-order topological neighbors of the 
target node. 
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represents the dilated adjacency matrix with dilation factor d; Wq and 
Wv represent the learnable parameter; Relu indicates the activation 
function; exp represents the exponential function; [⋅ ‖ ⋅] stands for matrix 
concatenation function. 

Based on the graph dilated convolution operator, we further define 
the forward propagation of the GDC module. As the GDC module con-
tains only one graph dilated convolution operator, the forward propa-
gation of the graph dilated convolution operator is the forward 
propagation process of the GDC module, as shown in Eq. (6). 

GDC
(
{Hi}

n
i=1

)
= (F ∗Gd) (6)  

where, H = {Hi}
n
i=1 ∈ R n×eh×p represents a spatiotemporal tensor, 

which is the output of the CDC module. 

4.3. Optimization of the STGDN 

The output of a single STGDNCell will be obtained from the spatio-
temporal data Xt

t− p+1 = {xt− p+1, xt− p+2,……, xt} through the CDC mod-
ule and the GDC module, and the final prediction result can be obtained 
from the output of the last STGDNCell. Assume that O = {Oi}

n
i=1 ∈

R n×eh×p is the output result of the last STGDNCell, and the final pre-
diction result is shown in Eq. (7). 
{

x̂ t+1
, x̂t+2

,……, x̂t+q
}
= F ∗ O = F ∗ {Oi}

n
i=1 (7)  

where, {x̂t+1
, x̂t+2

,……, x̂t+q
} represents the final prediction result of 

the STGCN model; q represents the prediction step; F ∗O represents the 
convolution operation on the spatiotemporal tensor O =

{Oi}
n
i=1 ∈ R n×eh×p, p represents the time-dependent step. 

The STGDN model predicts future spatiotemporal data {x̂t+1
, x̂t+2

,… 
…, x̂t+q

} through historical spatiotemporal data Xt
t− p+1 = {xt− p+1,xt− p+2,

……,xt}. In model optimization, we use the mean square error to opti-
mize the loss between the prediction value {x̂t+1

, x̂t+2
,……, x̂t+q

} and 
the ground truth {xt+1,xt+2,……,xt+q}. The loss function of the STGDN 
model is shown in Eq. (8). 

L (W) = min
W

(
∑q

j=1
‖ x̂ t+j − xt+j ‖

2
2

)

(8)  

where, xt+j ∈ R n× 1 represents the ground truth of all node within the 
(t+ j)th time window; x̂t+j ∈ R n× 1 represents the prediction values of 
all node within the (t+ j)th time window. 

4.4. Algorithm and training 

In Sections 4.1–4.3, we have discussed the forward propagation and 
backpropagation of the STGDN model in detail. In this section, we 
further introduce the training process of the STGDN model. The basic 
principle of the STGDN model is to establish a supervised learning 
method, using the spatiotemporal patterns contained in the historical 
spatiotemporal data to predict future spatiotemporal data. To train the 
STGDN model, we divide the spatiotemporal data into training samples 
and test samples, where the training samples are used to train the pa-
rameters of the STGDN model, and the test samples are used to test the 
prediction performance of the STGDN model. Algorithm 1 shows the 
training process of the STGDN model. First, we build training instances 
of the model M based on the spatiotemporal state matrix (lines 1–3). 
Second, based on the training instances, we obtain the prediction results 
of the STGDN model (lines 6–10). Finally, the STGDN model is obtained 
by optimizing the error loss until the model converges (line 11). 

5. Experimental results and analysis 

5.1. Data preparation 

5.1.1. Data sources 
Three spatiotemporal datasets are used to evaluate the prediction 

performance of the STGDN model, namely, traffic, PM2.5 and tempera-
ture dataset. Table 1 shows the statistical characteristics of three 
datasets. 

The traffic dataset comes from 71 monitoring cameras in Wuhan, 
China, and records the traffic volume of a single camera at a specific 
time window (the time window size is 5 min). Fig. 6 (a) shows the spatial 

Fig. 5. Calculation of dilated adjacency matrix: (a) d=1, (b) d=2, and (c) d=3.  
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distribution of monitoring cameras. Each traffic data contains the 
unique identification of the monitoring camera, the coordinates of the 
monitoring camera, the monitoring time window, and the traffic volume 
within the time window. 

The PM2.5 dataset comes from 36 air quality monitoring stations in 
Beijing, China (the time window size is 60 min) (Zheng et al., 2015). 
Fig. 6(b) shows the spatial distribution of air quality monitoring stations. 
Each record contains the unique identification of the monitoring station, 
the coordinates of the monitoring station, the monitoring time window, 
and the PM2.5 concentration within the time window. 

The temperature dataset comes from the Copernicus climate data-
base (Hersbach et al., 2018), and records the air temperature at 2 m 
above the surface of inland waters (the time window size is 60 min). As 
shown in Fig. 6(c), we select 45 grids in Beijing for the experiment, and 
the grid resolution is 0.25◦ × 0.25◦. Each temperature data contains the 

unique identification of the grid, the center coordinates of the grid, the 
monitoring time window, and the average temperature in the time 
window. 

5.1.2. Data preprocessing 
To support this work, we preprocessed three spatiotemporal datasets 

as follows:  

(1) There are natural missing values in the collected spatiotemporal 
data. Considering the impact of natural missing values on sub-
sequent modeling, we used the BTTF model to estimate the nat-
ural missing values in spatiotemporal data (Chen & Sun, 2022).  

(2) We constructed first-order topological adjacency matrices for 
three spatiotemporal datasets. In this study, the first-order to-
pological adjacency matrix is constructed by a similarity matrix, 
and we use the ten most similar spatial objects as the first-order 
topological neighbors of the target spatial object.  

(3) The manually processed data were divided into training and test 
instances. According to the 20–80 criterion, the training instances 
account for 80 %, and the test instances account for 20 %. 

5.2. Evaluation metrics 

In the spatiotemporal prediction task, a critical problem is how to 
evaluate the performance of the prediction model. In this study, the 
mean absolute error (MAE), root mean square error (RMSE), and mean 
absolute percentage error (MAPE) are used as quantitative indicators to 
verify the prediction accuracy of the proposed STGDN model. The 
calculation methods for MAE, RMSE, and MAPE are shown in Eqs. (9)– 
(11). 

MAE =
1

n ∗ q
∑n

i=1

∑q

j=1

⃒
⃒xt+ji − x̂t+ji

⃒
⃒ (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n ∗ q

∑n

i=1

∑q

j=1

(
xt+ji − x̂t+ji

)2

√
√
√
√ (10)  

MAPE =
100
n ∗ q

∑n

i=1

∑q

j=1

⃒
⃒
⃒
⃒
xt+ji − x̂t+ji

xt+ji

⃒
⃒
⃒
⃒ (11)  

where, xt+j
i represents the ground truth of graph node vi within the (t+ j) 

th time window; x̂t+j
i represents the prediction value of graph node vi 

within the (t+ j)th time window; n represents the total number of graph 
nodes in the study area; q represents the prediction step. 

Algorithm 1 
Training process of STGDN.  

Require: Spatiotemporal state matrix: X = {xt}
T
t=1 

Time dependent step: p 
Prediction step: q 
Number of STGDNCell: nb 

Ensure:STGDN model: M 

//construct training instances of STGDN 
1: D ←∅ 
2: for next t ∈ [p, 2, …, T − q] do 
3: put a training instance 〈{xt− p+1,……, xt}, {xt+1 ,……, xt+q}〉 into D 

//train STGDN model 
4: initialize the parameters W of STGDN 
5: repeat 
6: randomly select a training instance D b from D 

7: for next i ∈ [1, 2, …, nb] do 
8: if i = 1: datain = D b else: datain = O 

9: obtain spatiotemporal tensor O by Eqs. (5), (6), and datain 

10: obtain {x̂t+1
, x̂t+2

,……, x̂t+q
} by Eq. (7) 

11: find W by minimizing the Eq. (8) 
12: until M converges 
13: output the learned models M  

Table 1 
Description of the datasets.  

Dataset Traffic volume PM2.5 Temperature 

Location Wuhan Beijing Beijing 
Size of time window 5 min 60 min 60 min 
Number of spatial 

objects 
71 36 45 

Number of temporal 
objects 

8064 2208 2184 

Time span 2021/3/ 
1–2021/3/28 

2014/10/ 
1–2014/12/31 

2023/4/1–2023/ 
6/30  

Fig. 6. Study area: (a) monitoring cameras in traffic flow data, (b) monitoring sites in PM2.5 data, and (c) experimental grids in temperature data.  
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5.3. Hyper-parameter selection 

In this subsection, we describe the experimental environment 
(hardware and software environment) and hyper-parameter setting 
information. 

In this study, the spatiotemporal data is processed on a PC (Intel(R) 
Core(TM) i7-8700 CPU @ 3.20GHz, memory: 32.0GB). Moreover, we 
built our model based on PyTorch and Python3.7 on a Graphics Pro-
cessing Unit (GPU) platform with 24GB of GPU memory. 

The hyper-parameters of the STGDN model mainly include the time- 
dependent step p and number of STGDNCell nb. In this study, the control 
variable method is used to obtain the optimal combination of hyper- 
parameters. More specifically, Fig. 7 shows the calibration process for 
the number of STGDNcells in three datasets. In the traffic and temper-
ature datasets, the indicator MAE shows a trend of first decreasing and 
then stabilizing with the increase of nb. In the PM2.5 dataset, as nb in-
creases, the trend of MAE changes is not significant. The result indicates 
that the prediction results in the traffic and the temperature datasets are 
influenced by long-term dependence, whereas the prediction results in 
the pm2.5 data are mainly influenced by short-term dependence. At the 
same time, through the change curve of MAE, we can determine the 
value of nb, namely nb=3 in the traffic dataset, nb=2 in the PM2.5 
dataset, and nb=2 in the temperature dataset. 

5.4. Comparison with baselines 

As the prediction performance of knowledge-driven models is often 
lower than that of data-driven models, we mainly compare STGDN 
model with data-driven models. There are nine baseline methods which 
can be roughly divided into two categories. The first category is machine 
learning models, including ST-KNN model (Zheng & Su, 2014) and 
BTMF model (Chen & Sun, 2022). The second category is deep learning 
models, including T-GCN model (Zhao et al., 2020), BiSTGN model 
(Wang et al., 2022b), STGODE model (Fang et al., 2021b), STA-ODE 
model, GDGCN model (Xu et al., 2023), ASTGCN model (Guo et al., 
2019), and DSTAGNN model (Lan et al., 2022). For the ASTGCN model, 
we use only recent component to perform prediction tasks. 

5.4.1. Comparison results of prediction accuracy 
The comparison results of the prediction accuracy between the 

STGDN model and the baselines are shown in Table 2. The results show 
that on the three datasets, the prediction accuracy of the second type 
model is higher than that of the first type model, i.e., the prediction 
performance of deep learning models is higher than that of machine 
learning. Specifically, on the traffic and PM2.5 datasets, the prediction 
accuracy of the STGDN model is higher than that of the ST-KNN, BTMF, 
T-GCN, BiSTGN, STGODE, and ASTGCN models, and is close to the 

prediction accuracy of the STA-ODE, DSTAGNN, and GDGCN models. 
On the temperature dataset, the prediction accuracy of the STGDN 
model is higher than that of the ST-KNN, BTMF, T-GCN, BiSTGN, 
STGODE, ASTGCN, and DSTAGNN models, and is close to the prediction 
accuracy of the STA-ODE and GDGCN models. In addition, we further 
analyzed the prediction accuracy of STGDN and benchmark experiments 
under different random seeds, as shown in Fig. 8. Among them, the dots 
represent the prediction accuracy of the model under different random 
seeds, and the box line represents the center position and spread range of 
the dot. The results indicate that the proposed STGDN model has rela-
tively stable prediction accuracy under different random seeds and can 
obtain the same conclusions as before. The above results indicate that 
the proposed STGDN model has achieved or outperformed the baseline 
prediction accuracy without considering the computational efficiency 
and model parameter scale. 

Fig. 7. Parameter tuning of STGCNCell Block: (a) traffic dataset, (b) PM2.5 dataset, and (c) temperature dataset.  

Table 2 
Comparison results (in MAE/RMSE/MAPE) of prediction accuracy between 
STGDN and baselines.  

Model Traffic Volume PM 2.5 Temperature 

1-step 3-steps 1-step 3-steps 1-step 3-steps 

ST-KNN 5.44/ 
8.69/ 
24.25 

5.81/ 
9.37/ 
25.64 

23.80/ 
41.11/ 
62.66 

28.92/ 
48.82/ 
83.60 

1.45/ 
1.94/ 
5.52 

1.71/ 
2.61/ 
6.49 

BTMF 6.41/ 
10.48/ 
35.41 

6.70/ 
10.98/ 
36.3 

18.59/ 
32.23/ 
50.04 

24.37/ 
40.83/ 
74.53 

1.12/ 
1.49/ 
4.29 

1.55/ 
1.97/ 
5.83 

T-GCN 5.49/ 
11.39/ 
23.29 

5.57/ 
11.9/ 
25.89 

14.29/ 
30.44/ 
32.09 

23.03/ 
45.92/ 
55.26 

1.08/ 
1.43/ 
3.89 

1.40/ 
1.80/ 
5.09 

BiSTGN 4.72/ 
8.32/ 
20.41 

4.96/ 
8.36/ 
23.91 

13.04/ 
24.99/ 
31.56 

21.65/ 
39.75/ 
52.69 

0.87/ 
1.17/ 
3.18 

1.27/ 
1.66/ 
4.68 

STGODE 4.65/ 
7.45/ 
20.82 

4.88/ 
7.82/ 
23.13 

12.53/ 
24.28/ 
29.13 

20.40/ 
38.27/ 
52.83 

0.82/ 
1.13/ 
3.01 

1.19/ 
1.56/ 
4.39 

STA-ODE 4.50/ 
7.09/ 
19.97 

4.82/ 
7.74/ 
21.75 

12.20/ 
23.78/ 
28.99 

20.09/ 
37.63/ 
52.35 

0.78/ 
1.07/ 
2.88 

1.09/ 
1.45/ 
4.10 

ASTGCN 4.61/ 
7.45/ 
20.43 

4.85/ 
7.75/ 
22.27 

12.53/ 
24.94/ 
30.77 

20.33/ 
38.15/ 
52.26 

1.02/ 
1.39/ 
3.66 

1.51/ 
1.95/ 
5.47 

DSTAGNN 4.48/ 
7.05/ 
19.32 

4.81/ 
7.71/ 
21.86 

12.24/ 
23.32/ 
28.70 

19.92/ 
37.23/ 
51.82 

0.94/ 
1.31/ 
3.37 

1.45/ 
1.87/ 
5.26 

GDGCN 4.47/ 
7.03/ 
19.61 

4.80/ 
7.69/ 
21.03 

12.19/ 
23.43/ 
29.70 

19.82/ 
37.23/ 
50.73 

0.74/ 
1.04/ 
2.72 

1.07/ 
1.41/ 
4.01 

STGDN 4.46/ 
7.03/ 
19.09 

4.80/ 
7.67/ 
21.17 

12.17/ 
23.10/ 
28.52 

19.84/ 
37.42/ 
51.32 

0.74/ 
1.03/ 
2.72 

1.07/ 
1.42/ 
4.03  
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5.4.2. Comparison results of model complexity 
In this subsection, we further analyzed the model complexity of the 

STGDN model. Considering that the STGDN model is a deep learning 
model, we only compared the STGDN model with seven deep learning 
methods. 

Table 3 shows the comparison results of the running time between 
the STGDN model and the baselines. Among them, the time required for 
forward and backward propagation (FBP) is mainly used to reflect the 
offline training speed of the STGDN model, and the time required for 
forward propagation (FP) is mainly used to reflect the online prediction 
speed of the STGDN model. The results show that compared to STGODE, 
STA-ODE, ASTGCN, DSTAGNN, and GDGCN models, the proposed 
STGDN model has significant advantages in forward propagation time, 
indicating that the STGDN model is expected to be applied to online 
prediction applications with high real-time requirements. In addition, 
compared to early T-GCN and BiSTGN models, the proposed STGDN 
model did not significantly increase the computational time of the 
model, further proving that the proposed STGDN model has significant 
advantages in computational efficiency. In addition to the model run-
time, Fig. 9 shows the advantages of the STGDN model in terms of model 
parameter scale. The results indicate that the proposed STGDN model 
has superior prediction accuracy and fewer model parameters, proving 
that the proposed STGDN model has lower spatial complexity than 
baselines. 

In general, the proposed STGDN model outperformed or achieved 

comparable prediction accuracy of baselines with faster time efficiency 
and fewer model parameters. 

5.5. Qualitative analysis of prediction results 

In this subsection, we qualitatively analyzed the spatial and temporal 
distribution of prediction errors using line charts and maps. Fig. 10 
shows the temporal distribution characteristics of prediction errors in 
three datasets. The results show that the prediction error of the three- 
step prediction is slightly higher than that of the single-step prediction 
(the gray area at the bottom of the line chart). The cumulative effect of 
errors often causes the large errors in multi-step prediction. In addition, 
the area with large prediction error is mainly concentrated where the 
curve fluctuates violently (blue area). The reason why the error in the 
blue region is large is that the sudden change of the observed values in a 
short time tends to increase the difficulty of the prediction model. For 
example, in the traffic dataset, the traffic volume during rush hour is 
more difficult to predict than during off-peak hours, which aligns with 
our common sense. 

Fig. 11 further shows the spatial distribution characteristics of pre-
diction errors in three datasets. Similar to the prediction error in the 
temporal dimension, the areas with large prediction errors are mainly 
concentrated in locations with large data fluctuations in the spatial 
dimension. For example, areas with large prediction errors in traffic 
datasets are mainly concentrated on main roads. The reason is that the 

Fig. 8. Prediction accuracy under different random seeds: (a) traffic dataset, (b) PM2.5 dataset, and (c) temperature dataset.  
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traffic volume on the main road fluctuates greatly, making it difficult for 
the model to predict accurately. In the PM2.5 and temperature datasets, 
the areas with large prediction errors are mainly concentrated in the 
main urban areas of Beijing, China. The main reason is that the main 
urban area is the main area for human activities. Human activities may 
cause significant fluctuations in PM2.5 levels and temperatures, making 
it difficult to predict accurately. In addition, we further calculated the 
correlation coefficient between prediction error and error standard de-
viation to quantify the relationship between data fluctuations and pre-
diction difficulty. The results indicate that there is a significant positive 
correlation between error standard deviation and prediction accuracy 
on the three datasets, proving that large observation fluctuations may 
lead to low prediction accuracy. The above results are also consistent 
with the findings of Wang et al. (2023). When fluctuations are large, the 

spatiotemporal patterns in the data are also more complex. Overly 
complex spatiotemporal patterns may not be captured by the proposed 
model. In addition, larger fluctuations may also introduce additional 
observational errors that may worsen the model’s predictions. 

Overall, the proposed STGDN model has superior prediction accu-
racy and accurately predicts the trend of the three datasets in both the 
time dimension and the spatial dimension. 

5.6. Effects of different modules on prediction results 

In this section, we further analyzed the impact of different modules 
on the prediction results, as shown in Table 4. Among them, CDC rep-
resents the CDC module in the STGDN model, and GDC represents the 
GDC module in the STGDN model. The results show that the prediction 
accuracy of the CDC module is better than that of the GDC module, 
meaning that the prediction results are more affected by the temporal 
correlation than the spatial correlation. In addition, the prediction ac-
curacy of the STGDN model is better than that of the CDC module, 
indicating that introducing spatiotemporal correlation is beneficial for 
improving the prediction accuracy of the model. At the same time, the 
results also demonstrate the rationality of introducing spatiotemporal 
correlation. 

6. Discussion 

Spatiotemporal prediction is one attractive research topic in urban 
computing, which is significant to urban planning and intelligent 
transportation. However, most existing spatiotemporal prediction 
models are challenging to balance prediction accuracy and model ease 
of use. Specifically, although most of the existing spatiotemporal pre-
diction models have high prediction accuracy, the high complexity of 
the existing models not only increases the difficulty of the model 
implementation, but also makes the models computationally inefficient 
and parameter oversized. Therefore, we propose a novel lightweight 
spatiotemporal prediction model (i.e., the STGDN model) to address the 
above challenges. 

Compared to existing spatiotemporal prediction models, the pro-
posed STGDN model has significant advantages. For machine learning 
models such as the ST-KNN model and the BTMF model, the proposed 
STGDN model significantly improves the prediction accuracy of 
spatiotemporal prediction models. For deep learning models such as the 
T-GCN model, the BiSTGN model, the STGODE model, the STA-ODE 
model, the GDGCN model, the ASTGCN model, and the DSTAGNN 
model, the proposed STGDN model not only achieves superior predic-
tion accuracy, but also simultaneously reduces the model‘s parameter 
scale and improves the model‘s computational efficiency. In addition, 
we provide a simple implementation of the STGDN model to help users 
efficiently accomplish spatiotemporal prediction tasks. In conclusion, 
we can believe that the proposed STGDN model is an advanced 

Table 3 
Comparison results (milliseconds, ms) of running time between STGDN and 
baselines (batch size is 64).  

Model Traffic Volume PM 2.5 Temperature 

1-step 3- 
steps 

1-step 3- 
steps 

1-step 3- 
steps 

T-GCN FP 
(ms) 

36.4 
±2.39 

45.3 
±2.13 

18.9 
±2.36 

23.2 
±2.34 

22.6 
±3.41 

27.6 
±3.61 

FBP 
(ms) 

63.5 
±2.77 

80.1 
±3.42 

32.9 
±2.77 

42.1 
±2.63 

39.1 
±3.68 

47.9 
±4.01 

BiSTGN FP 
(ms) 

54.8 
±3.04 

68.2 
±3.52 

27.8 
±2.47 

36.4 
±2.85 

32.9 
±3.10 

42.5 
±2.17 

FBP 
(ms) 

70.5 
±3.84 

87.2 
±4.13 

40.5 
±3.11 

52.4 
±3.02 

46.1 
±3.64 

57.6 
±3.27 

STGODE FP 
(ms) 

138.4 
±5.38 

178.3 
±8.21 

71.3 
±3.14 

90.1 
±5.14 

93.4 
±6.43 

116.2 
±7.18 

FBP 
(ms) 

207.6 
±10.8 

251.2 
±11.8 

95.6 
±7.23 

124.6 
±6.74 

134.6 
±8.19 

165.4 
±9.24 

STA-ODE FP 
(ms) 

310.8 
±11.4 

388.4 
±12.4 

40.3 
±2.84 

51.4 
±3.03 

95.2 
±4.32 

123.5 
±6.18 

FBP 
(ms) 

360.4 
±13.2 

453.6 
±14.1 

61.8 
±3.43 

79.2 
±3.62 

113.4 
±6.16 

143.4 
±8.13 

ASTGCN FP 
(ms) 

226.9 
±5.46 

235.2 
±5.89 

22.6 
±1.02 

22.8 
±1.07 

75.2 
±8.98 

77.8 
±9.24 

FBP 
(ms) 

253.6 
±6.67 

262.2 
±6.57 

31.8 
±1.03 

32.1 
±1.12 

93.7 
±9.42 

95.6 
±10.1 

DSTAGNN FP 
(ms) 

329.8 
±12.4 

334.2 
±11.7 

39.9 
±2.64 

41.3 
±2.28 

128.9 
±10.4 

128.9 
±10.4 

FBP 
(ms) 

379.8 
±14.3 

386.4 
±12.6 

59.6 
±3.83 

61.3 
±3.42 

169.6 
±11.8 

175.3 
±11.6 

GDGCN FP 
(ms) 

152.5 
±6.18 

159.3 
±8.42 

83.7 
±5.34 

88.2 
±6.03 

105.7 
±9.18 

118.7 
±8.24 

FBP 
(ms) 

475.7 
±12.8 

493.2 
±13.2 

254.3 
±8.23 

262.1 
±8.65 

315.1 
±12.4 

338.2 
±14.3 

STGDN FP 
(ms) 

77.43 
±1.67 

79.89 
±2.01 

7.91 
±0.69 

8.12 
±0.87 

25.2 
±2.12 

26.9 
±2.19 

FBP 
(ms) 

126.7 
±3.91 

129.7 
±3.89 

16.2 
±1.00 

16.4 
±1.04 

48.9 
±4.55 

49.4 
±4.60 

* The format of the numbers is mean ± standard deviation, i.e., mean ± std. 

Fig. 9. Model parameter scale vs MAE: (a) traffic dataset, (b) PM2.5 dataset, and (c) temperature dataset.  
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Fig. 10. Prediction error of temporal dimension: (a) one-step prediction on traffic dataset, (b) three-step prediction on traffic dataset, (c) one-step prediction on 
PM2.5 dataset, (d) three-step prediction on PM2.5 dataset, (e) one-step prediction on temperature dataset, and (f) three-step prediction on temperature dataset. 

Fig. 11. Prediction error of spatial dimension: (a) one-step prediction on traffic dataset, (b) three-step prediction on traffic dataset, (c) one-step prediction on PM2.5 
dataset, (d) three-step prediction on PM2.5 dataset, (e) one-step prediction on temperature dataset, and (f) three-step prediction on temperature dataset. 
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spatiotemporal prediction model. 
The limitations of this study are as follows: We only empirically 

tested the prediction performance of the STGDN model on small graph 
structures. For example, the traffic dataset has only 71 graph nodes, the 
PM2.5 dataset has only 36 graph nodes, and the temperature dataset has 
only 45 graph nodes. However, in actual scenarios, the scale of the graph 
structure is often large. For example, an urban road network may 
contain thousands of graph nodes (thousands of road segments). In 
future work, the prediction performance (prediction accuracy, compu-
tational efficiency, and model parameter scale) of the STGDN model will 
be further validated in large-scale graph structures. 

7. Conclusion 

At present, most existing spatiotemporal prediction models are 
challenging to balance prediction accuracy and model ease of use. we 
propose a novel lightweight spatiotemporal prediction model, i.e., the 
STGDN model. In the experimental section, three real spatiotemporal 
datasets (traffic dataset, PM2.5 dataset, and temperature dataset) are 
used to verify the prediction performance of the STGDN model. First, the 
control variable method was used to obtain the optimal combination of 
parameters for the STGDN model. Second, we conducted a comparison 
with nine existing data-driven baselines, including STKNN, BTMF, T- 
GCN, BiSTGN, STGODE, STA-ODE, GDGCN, ASTGCN, and DSTAGNN 
models. The experimental results showed that the proposed STGDN 
model outperformed or achieved comparable prediction accuracy of the 
existing nine baselines with faster time efficiency and fewer model pa-
rameters. Finally, the influence of different components in STGDN on 
prediction accuracy was tested, proving that the proposed method is 
suitable for spatiotemporal prediction. 
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