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A B S T R A C T

Accurately and quickly forecasting the future state of urban sensors is crucial for urban monitoring and man-
agement. Although many forecasting approaches have been proposed, existing models still face two major 
challenges. First, most approaches do not have the ability to automatically handle missing data. Second, most 
approaches have high complexity, neglecting the usability and lightweight of the approach. Therefore, we 
present a lightweight spatiotemporal dilation approach tolerating missing data (STDM) to address the afore-
mentioned challenges. First, we integrate a missing data handling mechanism into the STDM approach to 
enhance its forecasting capability under missing scenarios. Second, we present a lightweight spatiotemporal 
dilation component to enhance the inference speed of the STDM approach. Finally, we design the STDM 
approach as a separable architecture and define a corresponding loss function, allowing the STDM approach to be 
compatible with both forecasting tasks under missing and non-missing scenarios. The approach underwent 
validation using traffic, PM2.5, and temperature datasets. It exhibited superior forecasting accuracy and inference 
speed across four missing scenarios, outperforming eight baselines. Codes and data are available at link on https 
://doi.org/10.6084/m9.figshare.24289456.

1. Introduction

In the age of the Internet of Things, sensor networks have expanded 
significantly, allowing for fine-grained monitoring of the state of cities 
(Zhao et al., 2019; Yu, 2021; Z. Xu et al., 2023). With the explosion of 
sensor data in urban, how to use sensor data to forecast the future state 
of cities has attracted attention (Jiang et al., 2022; Liu et al., 2023; 
Zheng et al., 2014).

As depicted in Fig. 1, the core of urban state forecasting involves 
establishing a mapping function between input and output. This func-
tion is then utilized to extrapolate unknown data to forecast time points 
(Khaled et al., 2024; Liu et al., 2022; Qu et al., 2023). Building upon 
these modeling concepts, various approaches are proposed for urban 
state forecasting (P. Wang et al., 2024; Z. Wang et al., 2024; B. Zhang 
et al., 2023). However, most forecasting approaches still encounter two 
significant challenges: 

(1) Lack of ability to automatically handle missing data: Most 
existing forecasting approaches are unable to handle missing 
data, as they are typically tested on datasets that assume no data 
is missing (Chen & Sun, 2022; Cui et al., 2020). In real-world 
scenarios, however, missing data is frequent and often exhibits 
complex patterns, such as random or block missing (Li et al., 
2020). This limitation reduces the applicability and accuracy of 
many forecasting models.

(2) Neglecting the usability and lightweight of the approach: 
Although most existing forecasting approaches improve the 
forecasting accuracy, they also suffer from overly complex 
models (M. Xu et al., 2021; Zhang et al., 2020). In real scenarios, 
it is crucial to quickly forecast the future state of the city. How-
ever, excessive model complexity limits the forecasting speed of 
the existing approaches (Do et al., 2019; Li et al., 2023).
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Overall, we urgently need to develop new urban state forecasting 
approaches that can automatically handle missing data and are efficient 
and user-friendly. Therefore, this study presented a lightweight spatio-
temporal dilation approach tolerating missing data (STDM), with the 
following contributions: 

(1) This study introduced a new Missing Data Handling component 
(MDH) to enable STDM approach to automatically manage 
missing values based on their patterns. Additionally, this study 
presented a lightweight spatiotemporal dilation component 
(STD) that allows the STDM approach to quickly infer the future 
state of urban sensors.

(2) To ensure the adaptability of the STDM approach across spatio-
temporal forecasting tasks, whether data is incomplete or com-
plete, this study structured it with an Imputer-Predictor 
architecture. Moreover, this study designed a corresponding loss 
to train learnable weights by addressing both imputation and 
forecasting tasks concurrently.

(3) The STDM approach underwent validation using traffic, PM2.5, 
and temperature datasets, assessing its forecasting accuracy and 
forecasting speed, especially in missing scenes. Additionally, this 
study has open-sourced the code for the STDM approach to 
ensure reproducibility.

2. Literature review

Urban sensor state forecasting is essentially spatio-temporal fore-
casting. This section mainly reviewed the current research status from 
the perspective of whether spatiotemporal forecasting approaches 
tolerate missing data.

2.1. Spatiotemporal forecasting approaches without tolerating missing 
data

Missing-data-intolerant spatiotemporal forecasting approaches are 
currently the mainstream approaches, which build the function mapping 
relationship between input data and output data based on complete 
spatiotemporal data (or spatiotemporal data without missing data) (L. 
Xu et al., 2021). The missing-data-intolerant spatiotemporal forecasting 
approaches are often modeled in multiple stages to handle missing data 
in the spatiotemporal data. Specifically, relevant scholars first estimated 
missing data in spatiotemporal data (or deleted spatiotemporal data 
containing missing data), and then established forecasting approaches 
based on the processed spatiotemporal data (Du et al., 2021; Fang et al., 
2022; Liu et al., 2022). Common missing-data-intolerant forecasting 

approaches include the ST-KNN approach (Cheng et al., 2018), the 
ST-GCN approach (Diao et al., 2019), the ST-ResNet approach (Zhang 
et al., 2017), the T-GCN approach (Zhao et al., 2020), the ASTGCN 
approach (Guo et al., 2019), and the GDGCN approach (Y. Xu et al., 
2023). At present, missing-data-intolerant forecasting approaches have 
achieved high forecasting accuracy in spatiotemporal datasets without 
missing data, but there are still shortcomings. For example, the above 
approaches accomplish the forecasting tasks under missing scenarios 
with the help of preprocessing operations (introducing imputation 
models or deleting partial spatiotemporal data) (Cheng et al., 2018). The 
former increases computational burden, with imputation accuracy 
directly impacting forecasting approach performance, while the latter 
may result in insufficient training data, failing to capture reliable 
spatiotemporal patterns (P. Wang, Zhang, Hu et al., 2023).

2.2. Spatiotemporal forecasting approaches with tolerating missing data

In contrast to approaches intolerant to missing data, those tolerant to 
missing data directly utilize raw incomplete data (or spatiotemporal 
data with missing values) to build mapping function between input and 
output (Mei et al., 2023). Early missing-data-tolerant forecasting ap-
proaches, like the GRU-D approach (Che et al., 2018) and the LSTM-M 
approach (Tian et al., 2018), suffer from limited forecasting accuracy 
because of the challenge in uncovering the complexity of spatial re-
lationships. In recent years, to improve the forecasting accuracy under 
missing scenarios, some scholars further proposed forecasting models 
that simultaneously depict spatial and temporal information, including 
the TRMF approach (Yu et al., 2016), the BTMF approach (Chen & Sun, 
2022), the Causal-GCNM approach (P. Wang, Zhang, Nie et al., 2023), 
and the D-TGNM approach (P. Wang, Zhang, Hu et al., 2023). In general, 
compared to missing-data-intolerant forecasting approaches, the 
missing-data-tolerant forecasting approaches are very limited. In addi-
tion, most of the above forecasting approaches suffer from overly com-
plex models, affecting the inference speed of forecasting approaches (Li 
et al., 2023; P. Wang et al., 2024). In real scenarios, the inference speed 
of the approach is crucial. However, the existing approaches are difficult 
to balance inference speed and forecasting accuracy.

To address the shortcomings of the above approaches, this study 
presented a new forecasting approach for fast forecasting of urban 
sensor states in missing scenes. Compared with the existing approaches, 
the proposed STDM approach can not only directly complete forecasting 
tasks in missing scenarios, but also has a faster inference speed.

Fig. 1. Basic process of urban state forecasting.
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3. Methodology

3.1. Preliminaries

Considering the generality of the graph structure, this study con-
structed the STDM method based on the graph structure. In this section, 
this study first provided the necessary definitions for the STDM 
approach and describe the mathematical formulation of the urban 
sensor state forecasting.

Definition 1. The sensors within the study area collectively form a 
graph structure, denoted as G =

〈
{vi}

n
i=1, A ∈ R n×n, X ∈ R n×T 〉, 

where vi indicates the ith sensor, with n being the total number of sen-
sors; A indicates the adjacency matrix between sensors; X ∈ R n×T sig-
nifies the spatiotemporal data of n sensors across T time windows. 
Additionally, this study defined xt =

{
xt

i
}n

i=1 ∈ X as the space vector of n 
sensors in the tth time window, with xt

i ∈ X representing the data of ith 
sensor.

Definition 2. An indicator matrix M ∈ R n×T is utilized to differentiate 
missing data from non-missing data in matrix X ∈ R n×T. If mt

i = 0, the 
spatiotemporal data xt

i is missing, and if mt
i = 1, the spatiotemporal data 

xt
i is not missing. Similarly, mt =

{
mt

i
}n

i=1 ∈ R n× 1 is utilized to differ-
entiate missing data from non-missing data in vector xt =
{
xt

i
}n

i=1 ∈ R n× 1.

This study aims to develop a novel forecasting approach, which can 
model spatiotemporal data with missing values and quickly infer future 
spatiotemporal data, as depicted in Eq. (1)

X̂
t+q
t+1 =

{
x̂t+1

, x̂t+2
,……, x̂t+q}

= M ←
〈

Xt
t− p+1,M

t
t− p+1;W

〉
(1) 

where M signifies the proposed STDM approach; Xt
t− p+1 = {xτ}t

τ=t− p+1 

represents the historical data, with p being the time-dependent step; 
Mt

t− p+1 = {mτ}t
τ=t− p+1 indicates the indicator matrix of Xt

t− p+1; x̂t+q in-
dicates the future data, with q being the forecasting step; W signifies the 
learnable parameters.

3.2. Proposed STDM approach

3.2.1. Architecture and forward propagation of the STDM
Fig. 2 depicts the STDM approach, presenting an Imputer-Predictor 

architecture that can be employed for two prediction tasks in both 
missing and non-missing scenarios. In non-missing scenarios, the pre-
diction task can be completed using only the Predictor. In contrast, for 
missing scenarios, it is only necessary to add the Imputer to the Pre-
dictor. This design enables the STDM to effectively adapt to both missing 
and non-missing scenarios. Moreover, the Imputer and Predictor are 
structurally identical, differing only in their loss function definitions and 
inputs. On the left, a MDH component autonomously handles missing 
data based on missing patterns (as discussed in Section 3.2.2). On the 
right, multiple STD components extract spatiotemporal correlations 
from data and quickly infer the future state of urban sensors (as dis-
cussed in Section 3.2.3).

Supplementary Figure S1 provides a detailed depiction of the inter-
nal structure of the STDM approach. Typically, the data gathered by 
sensors are fed into Imputer, producing a temporary variable. Subse-
quently, this variable serves as input for Predictor, culminating in the 
ultimate forecasting. Since Imputer and Predictor have identical internal 
structures, their input data processing is analogous, involving one MDH 
component and NI/NP STD components, as shown in Eqs. (2) and (3). 

Fig. 2. The overarching framework of the proposed approach.
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Imputer :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt
t− p+1 = MDH

(
Xt

t− p+1,X
t
t− p+1,M

t
t− p+1;W

)

O
l:t
l:t− p+1 =

⎧
⎨

⎩

STD
(

Xt
t− p+1;W

)
l = 1

STD
(

O
l− 1:t
l− 1:t− p+1;W

)
l < NI

{
x̂Imputer:τ}t

τ=t− p+1 = Conv
(

O
NI :t
NI :t− p+1

)

(2) 

Predictor :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt
t− p+1 = MDH

(
Xt

t− p+1,
{

x̂Imputer:τ}t

τ=t− p+1,M
t
t− p+1;W

)

O
l:t
l:t− p+1 =

⎧
⎨

⎩

STD
(

Xt
t− p+1;W

)
l = 1

STD
(

O
l− 1:t
l− 1:t− p+1;W

)
l < NP

{
x̂Predictor:τ}t+q

τ=t+1 = Conv
(

O
NP :t
NP :t− p+1

)

(3) 

where Xt
t− p+1 ∈ R n×p, Mt

t− p+1 ∈ R n×p, p, q, and W represent the same 

meaning as in Equation (1); 
{

x̂Predictor:τ}t+q
τ=t+1 ∈ R n×q denotes the ulti-

mate forecasting result of the STDM approach, equivalent to X̂
t+q
t+1 in 

Equation (1); 
{

x̂Imputer:τ}t
τ=t− p+1 ∈ R n×p denotes the outcome of the 

Imputer; Xt
t− p+1 = {xτ}t

τ=t− p+1 ∈ R n×p signifies the outcome of the MDH; 

O l:t
l:t− p+1 ∈ R n×p×e signifies the outcome of the lth STD, with e being the 

data dimension; Conv signifies the convolution function for dimension 
alignment. Eqs. (2) and (3) illustrate that the primary distinction be-
tween Imputer and Predictor is their respective inputs and outcomes. 
Additionally, these equations highlight that the MDH and STD compo-
nents are central to both the Imputer and Predictor.

3.2.2. Missing data handling component of the STDM
The crux of the MDH component lies in identifying missing patterns 

accurately. Therefore, this study defined an auxiliary quantity ut =
{
ut

i
}n

i=1 to identify different types of missing patterns, with ut
i being the 

time step of xt
i from the nearest observation (positive or negative di-

rections of the timeline). Note: this study considers the minimum value 
of ut

i in both directions.
Take xt− 1

i as an example (red node), Fig. 3 illustrates the calculation 
process for ut− 1

i . If the data xt− 1
i is missing, ut− 1

i equals 2 along the for-
ward direction of the timeline and 1 along the reverse direction. Taking 
the minimum in both directions results in ut− 1

i being equal to 1. When 
ut− 1

i is obtained, we can judge the type of missing pattern of xt− 1
i by the 

ut− 1
i . For instance, if ut− 1

i = 1, it suggests that xt− 1
i tends to be random 

missing, whereas ut− 1
i > 1 indicates that xt− 1

i tends to be block missing. 
As an example, Eq. (4) demonstrates the computation process of the ut =
{
ut

i
}n

i=1 in the forward direction along the time axis. 

ut
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 + ut− 1
i t > 1,mt− 1

i = 0
1 t > 1,mt− 1

i = 1
0 t = 1

(4) 

where ut
i and mt− 1

i represent the same meaning as before.
Upon ut is obtained, we extend the functionality of the MDH 

component to autonomously address missing data. Broadly speaking, 
when confronted with random missing patterns, the correlation between 
missing data and temporal observations tends to outweigh that with 
spatial observations. However, as the pattern shifts towards block 
missing, this correlation with temporal observations gradually wanes, 
while the connection with spatial observations strengthens (P. Wang, 
Zhang, Hu et al., 2023). This adaptive behavior is crucial for effectively 
handling missing data across diverse patterns, ensuring robust estima-
tions within our model framework. Drawing inspiration from these 
concepts, we adopt a methodology where the estimation of missing data 
involves a weighted aggregation of the spatially most similar observa-
tion and the temporally closest observation, as shown in Eq. (5). 

MDH :

{
xt = mt ⊙ xt + (1 − mt) ⊙ (βt ⊙ xt:tm + (1 − βt) ⊙ xt:sm)

βt = exp{ − max(0,Wδut + bδ)}
(5) 

where xt signifies processed spatiotemporal data through the MDH, and 
the processed data within p time windows is encapsulated by Xt

t− p+1 =

{xτ}t
τ=t− p+1 ∈ R n×p; xt:tm ∈ R n× 1 signifies the nearest data of target 

nodes in the time dimension; xt:sm ∈ R n× 1 represents the most akin data 
of target nodes in the spatial dimension; βt represents the probability of 
the missing pattern type calculated by ut for automatic processing of 
missing data. Note: Eq. (5) solely delineates the forward propagation 
process of the MDH component and does not really impute the missing 
data. The imputation strategy of the MDH component will be learned 
automatically during model optimization.

3.2.3. Spatiotemporal dilation component of the STDM
Following processing by the MDH component, the STD component 

extractes spatiotemporal correlations from data and quickly infer the 
future state of urban sensors. Illustrated in Figure 4(b), the STD 
component primarily includes temporal dilation convolution operator 
(TDC) and graph dilation convolution operator (GDC). Compared to the 
normal operator, the TDC operator and GDC operator enhance the 
computational efficiency by reducing the number of forward propaga-
tion (P. Wang et al., 2024). Eq. (6) explicitly details the forward prop-
agation mechanism inherent to the T-GA component. 

Fig. 3. llustration of missing data handling component.
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STD :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H = TDCd

(
Xt

t− p+1

)

H
ʹ
= Relu(Norm(H ))

H
ʹ́
= Relu(Norm(TDCd(H

ʹ
))) + Conv

(
Xt

t− p+1

)

O = GDCd(H
ʹ́
)

(6) 

where H ∈ R n×p×e, H
ʹ ∈ R n×p×e, and H

ʹ́ ∈ R n×p×e represent the 
temporary states; Taking H as an example, it can be decomposed into 
{Hi}

n
i=1 along the space dimension and {Hτ}t

τ=t− p+1 along the time 
dimension; Here, {Hi}

n
i=1 is utilized for modeling of space dimension, 

while {Hτ}t
τ=t− p+1 is employed for modeling of time dimension; O ∈

R n×p×e denotes the output of STD Component; Conv
(

Xt
t− p+1

)
represents 

performing convolution operations on Xt
t− p+1.

Figs. 4(a) and (c) further illustrate the computational details of the 
TDC and GDC operators. In the TDC operator, the dilatation factor is 
used to expand the receptive field of the convolution operation along the 
time dimension to improve the operational efficiency of the proposed 
approach. Similarly, the GDC operator utilizes the dilatation factor to 
improve the computational efficiency. In addition, in order to improve 
the forecasting accuracy of the proposed approach, we define the for-
ward propagation of the GDC operator based on graph attention. More 
specifically, Eqs. (7) and (8) further show the calculation process of the 
TDC operator and the GA operator. 

TDCd

(
Xt

t− p+1

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑L

l=1

wlx(t− p− 1)− (L− l)d
n ⋯

∑L

l=1

wlxt− (L− l)d
n

⋮ ⋱ ⋮
∑L

l=1

wlx(t− p− 1)− (L− l)d
1 ⋯

∑L

l=1

wlxt− (L− l)d
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7) 

GDCd(H
ʹ́
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Oi =
∑

j∈Ad
i

γjiH
ʹ́
i Wv

γji =
exp

(
Relu

([
Hʹ́

i

⃒
⃒
⃒

⃒
⃒
⃒H

ʹ́
j

]
Wq

))

∑
k∈Ad

i
exp

(
Relu

( [
Hʹ́

i

⃒
⃒
⃒
⃒Hʹ́

k
]
Wq

))

(8) 

where TDCd

(
Xt

t− p+1

)
denotes the temporal dilation convolution opera-

tion on Xt
t− p+1 with dilation factor d; {wl}

L
l=1 denotes the convolution 

kernel in the TDC operator, with L being kernel size; For dimensional 
alignment during operations, the TDC tends to contain e convolution 
kernel; GDCd(H

ʹ́ ) denotes the graph dilation convolution operation on 
H ʹ́  with dilation factor d; γji indicates the influence weight of graph 

node vj on graph node vi; The meaning of Hʹ́
i is the same as that of Hʹ́

i in 
Equation (6); Ad

i represents the dilation adjacency matrix, calculated 
using the method provided by P. Wang et al. (2024); Wq and Wv 

represent learnable parameters in the GDC; Relu stands for activation 
function; [•||•] represents the matrix join function.

3.2.4. Loss function of the STDM

In the previous context, the imputation result 
{

x̂Imputer:τ}t
τ=t− p+1 for p 

time windows is first obtained through the Imputer, and then the 

spatiotemporal data 
{

x̂Predictor:τ}t+q
τ=t+1 for future q time windows is ob-

tained through the Predictor. In the general forecasting task, the final 
STDM approach can be obtained by optimizing the square loss between 

the truth value {xτ}
t+q
τ=t+1 and the forecasting value 

{
x̂Predictor:τ}t+q

τ=t+1. 
However, in this study, optimizing only the square loss between 

{xτ}
t+q
τ=t+1 and 

{
x̂Predictor:τ}t+q

τ=t+1 often fails to obtain better forecasting 
accuracy. The reason is that the above loss ignores the effect of the 
Imputer (or missing data) on the forecasting results. Therefore, this 
study designed a new loss to optimize learnable parameters.

In Fig. 5, the designed loss function primarily includes the loss of the 
Predictor, ensuring the accuracy of forecasting results, and the loss of 
the Imputer, accounting for missing data’s impact on forecasting results. 
Eq. (9) further shows this function, with additional details on model 
training provided in Appendix A. 

L (W) = min
W

⎛

⎜
⎜
⎜
⎝

∑p

i=1

( (
1 − mt− i+1)x̂Imputer:t− i+1

−
(
1 − mt− i+1)xt− i+1)2

+
∑q

i=1

(
x̂Predictor:t+i

− xt+i)2

⎞

⎟
⎟
⎟
⎠

(9) 

where 
∑p

i=1
( (

1 − mt− i+1)x̂Imputer:t− i+1
−
(
1 − mt− i+1)xt− i+1)2 represents 

the loss of Imputer; 
∑q

i=1
(
x̂Predictor:t+i

− xt+i)2 represents the loss of 
Predictor.

4. Experiment

4.1. Data sources and preprocessing

The traffic, PM2.5, and temperature datasets are widely used urban 
sensor datasets. Numerous studies currently utilize these three types of 
data to investigate traffic conditions, air quality, and climate change in 
urban areas(Palanisamy et al., 2024; Rabie et al., 2024; Soudeep et al., 
2024; M. Zhang et al., 2023). Therefore, we utilize these datasets to 
validate the performance of the STDM approach. Fig. 6 illustrates the 

Fig. 4. llustration of spatiotemporal dilation component: (a) temporal dilatation convolution operator, (b) forward propagation of the STD component, and (c) graph 
dilatation convolution operator.

P. Wang et al.                                                                                                                                                                                                                                   Sustainable Cities and Society 118 (2025) 106044 

5 



spatial distribution of these three datasets, while Table 1 presents their 
statistical characteristics. In addition, we mainly preprocess the raw 
data as follows. 

(1) Natural Missing Data Estimation: The raw data contained natural 
missing data. In this study, we first utilized the BTTF model to 
estimate them (Chen & Sun, 2022).

(2) Missing Data Generation: Following the methods outlined by 
Wang et al. (2023) and Cui et al. (2020), we introduced two types 
of missing data—random missing and block missing—by 
removing some spatiotemporal data with missing rates of 20 % 
and 40 %. For instance, in the PM2.5 dataset, Fig. 7 illustrates the 
processed spatiotemporal data information.

(3) Adjacency Matrix Construction: We established adjacency re-
lationships for the three datasets. In this process, the adjacency 
relationships were derived from a similarity matrix, wherein the 
ten most similar spatial objects were designated as neighbors for 
each target spatial object.

4.2. Calibration of hyper-parameters

This subsection outlines the experimental settings, including the 
hardware setting, software setting, and hyper-parameter setting.

The processing of spatiotemporal data took place on a PC featuring 
an Intel(R) Core(TM) i7-11,700 CPU @ 2.50 GHz and 16GB of memory. 
Furthermore, our model was developed using PyTorch and Python 3.7, 
and executed on a GPU platform with 24GB of GPU memory.

The hyper-parameters of the STDM approach primarily include the 
time-dependent step p, hidden state dimension e, kernel size K, dilata-
tion factor d, number of T-GA in Imputer NI, and number of STD in 
Predictor NP. Since the STDM approach is an Imputer-Predictor archi-
tecture, we can first calibrate the hyper-parameters in the Imputer, and 
then calibrate the hyper-parameters in the Predictor. In this study, we 
first set the time-dependent step to 10, the kernel size to 3, and the 
dilation factor to 2. Then, we calibrated the hidden state dimension e, 
the number NI of STD in Imputer, and the number NP of STD in Pre-
dictor. Fig. 8 illustrates the calibration process of the hyper-parameters 
on complete traffic dataset. The results indicate that model prediction 
accuracy gradually improves and stabilizes as the hyperparameters in-
crease. Based on these findings, the hidden state dimension was set to 
32, the number of STD in Imputer to 2, and the number of STD in Pre-
dictor to 2.

4.3. Quantitative analysis of forecasting accuracy

4.3.1. Selection of baseline methods
In this study, we employ RMSE and MAPE as metrics to evaluate the 

accuracy of the proposed approach. Given that classical statistical ap-
proaches often exhibit lower performance on spatiotemporal forecasting 
tasks compared to data-driven approaches, our primary comparison 
focuses on evaluating the STDM approach against popular data-driven 
approaches, falling into two categories: 

Fig. 5. Loss function illustration of the STDM.

Fig. 6. Spatial distribution of datasets: (a) traffic dataset, (b) PM2.5 dataset, and (c) temperature dataset.

Table 1 
Statistical characteristics of the datasets.

Dataset Traffic PM2.5 Temperature

Spatial 
distribution

Fig. 6(a) Fig. 6(b) Fig. 6(c)

Indicator Traffic Volume PM2.5 

Concentration
Air Temperature

Spatial objects 67 36 64
Temporal 

objects
8064 2952 2208

Natural missing 
rate

8.94 % 10.35 % 0 %

Time window 5 min 60 min 60 min
Time span 2021/3/ 

1~2021/3/28
2014/5/1~2014/ 
8/31

2018/6/1~2018/ 
8/31
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• Forecasting approaches without tolerating missing data: ST-KNN 
approach (Cheng et al., 2018), T-GCN approach (Zhao et al., 
2020), ASTGCN approach (Guo et al., 2019) and GDGCN approach 
(Y. Xu et al., 2023).

• Forecasting approaches with tolerating missing data: LSTM-M 
approach (Tian et al., 2018), BTMF approach (Chen & Sun, 2022), 
SGMN approach (Cui et al., 2020) and D-TGNM approach (P. Wang, 
Zhang, Hu et al., 2023).

4.3.2. Comparison results of forecasting accuracy on complete data
In scenarios without missing data, we only need to use the Predictor 

to address the spatiotemporal forecasting task, as shown in Table 2. 
Overall, under these no-missing scenarios, the forecasting accuracy of 
the second-category approaches surpasses that of the first-category ap-
proaches. Notably, the Predictor not only outperforms the baselines but 
also achieves comparable forecasting accuracy in some cases. Addi-
tionally, the results indicate that the Predictor exhibits superior gener-
alization ability compared to the baselines, consistently achieving better 
forecasting accuracy across all three spatiotemporal datasets.

4.3.3. Comparison results of forecasting accuracy on incomplete data
In scenarios with missing data, we utilize the Imputer-Predictor ar-

chitecture to tackle the forecasting task, as shown in Tables 3 and 4. The 
findings reveal notable differences among the two categories of models 
in handling missing scenarios. Particularly noteworthy is the superior 
forecasting accuracy of second-category approaches over first-category 
approaches. The rationale behind this is that fourth-category ap-
proaches possess the capability to automatically handle missing data.

In comparison, the STDM approach surpasses ST-KNN, T-GCN, 
ASTGCN, GDGCN, BTMF, LSTM-M, and SGMN approaches in evaluation 

metrics, closely approaching the D-TGNM approach. Furthermore, 
focusing on the 40 % block missing dataset, we conduct an additional 
analysis comparing the computational efficiency between the STDM 
approach and baselines, as depicted in Fig. 9. The outcomes underscore 
the superior forecasting accuracy and significant computational 

Fig. 7. Location distribution of missing data in the PM2.5 dataset: (a) 20 % missing rate with random missing, (b) 40 % missing rate with random missing, (c) 20 % 
missing rate with block missing, and (d) 40 % missing rate with block missing.

Fig. 8. Hyper-parameter tuning of the STDM approach: (a) hidden state dimension,(b) number of STD in Imputer, and (c) number of STD in Predictor.

Table 2 
Evaluation metrics (RMSE/MAPE) of STDM and baselines under no-missing 
scenarios.

Model Traffic PM2.5 Temperature

1-step 3-steps 1-step 3-steps 1-step 3-steps

ST-KNN 9.36/ 
29.64

10.09/ 
30.82

19.08/ 
37.12

23.13/ 
46.75

1.12/ 
2.91

1.33/ 
3.42

T-GCN 11.69/ 
38.98

13.81/ 
40.84

21.11/ 
40.99

24.16/ 
46.15

1.08/ 
3.27

1.32/ 
3.59

ASTGCN 6.58/ 
25.58

7.97/ 
27.93

13.09/ 
23.88

20.32/ 
36.02

0.85/ 
2.11

1.17/ 
3.06

GDGCN 6.20/ 
22.68

7.09/ 
24.13

11.23/ 
20.97

17.65/ 
32.19

0.49/ 
1.24

0.70/ 
1.76

BTMF 6.23/ 
23.01

7.36/ 
24.65

12.48/ 
22.16

18.64/ 
33.91

0.82/ 
1.99

1.09/ 
2.79

LSTM-M 6.35/ 
23.59

7.46/ 
25.64

12.68/ 
22.34

18.89/ 
34.18

0.58/ 
1.43

0.72/ 
1.81

SGMN 6.22/ 
23.09

7.31/ 
25.18

12.74/ 
22.85

19.15/ 
35.88

0.53/ 
1.32

0.73/ 
1.84

D- 
TGNM

6.19/ 
22.91

7.13/ 
24.04

11.45/ 
21.76

18.08/ 
33.14

0.48/ 
1.23

0.68/ 
1.78

STDM 6.19/ 
22.49

7.02/ 
23.91

10.97/ 
20.34

17.01/ 
31.72

0.46/ 
1.18

0.67/ 
1.71

The data in each cell of this table is separated by a "/" character, where the first 
value represents the model’s RMSE metric and the second value represents the 
model’s MAPE metric.
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efficiency advantage of the STDM approach over baselines.

4.4. Influence of various components on forecasting performance

Taking the 3-steps forecasting under the missing scenario as an 
example, this subsection analyzed the influence of various components 
on forecasting results, as shown in Table 5. Among them, the TDC cor-
responds to Eq. (7), the STD represents the integration of GDC operator 
into TDC operator, and the TDCM represents the integration of MDH 
component into TDC. Additionally, (R) denotes the random missing 
dataset, and (B) denotes the block missing dataset. The results indicate 
that the STD approach outperforms the TDC approach, demonstrating 
the importance of incorporating a graph attention operator to improve 
forecasting accuracy. Furthmore, the TDCM approach surpasses the TDC 
approach, highlighting the necessity of including a missing data 
handling component.

4.5. Influence of loss function on forecasting performance

As mentioned earlier, we design the STDM approach as a separable 
architecture and define a corresponding loss function. Therefore, we 
analyzed the effect of the loss function on the STDM approach, as shown 
in Table 6. Among them, the STDM -NIL denotes the STDM approach 
without loss of Imputer, (R) represents the dataset with random missing 
pattern, and (B) represents the dataset with block missing pattern. The 
results indicate that the STDM approach achieves higher forecasting 
accuracy than the STDM-NIL approach under missing scenarios, 
demonstrating the effectiveness of the loss function design.

4.6. Qualitative analysis

4.6.1. Qualitative analysis of forecasting accuracy
Using datasets with 40 % block-missing and no missing data as ex-

amples, we visualize the difference between the forecasting values and 
ground truth in temporal dimension, as shown in Fig. 9. In general, the 
STDM approach demonstrates the ability to accurately predict data 
trends in the temporal dimension. The results confirm the robust fore-
casting performance of the STDM approach regardless of missing or non- 
missing scenarios. In addition, two situations can cause the forecasting 
accuracy to become less accurate under both missing and non-missing 
scenarios. One is that the trend of the spatiotemporal data changes 
abruptly over a short period, such as the blue areas in Fig. 10(a)–(c). 
Another is that there is missing data in the spatiotemporal data, such as 

Table 3 
Evaluation metrics (RMSE/MAPE) of STDM and baselines with random missing 
data.

Model MR Traffic PM2.5 Temperature

1-step 3-steps 1-step 3-steps 1-step 3-steps

ST-KNN 20 
%

19.40/ 
37.51

19.68/ 
38.36

29.34/ 
44.70

31.64/ 
51.97

7.94/ 
20.66

8.04/ 
21.13

40 
%

30.02/ 
50.37

30.28/ 
51.37

42.72/ 
58.74

44.14/ 
63.78

13.01/ 
38.97

13.17/ 
39.54

T-GCN 20 
%

13.20/ 
34.70

14.72/ 
37.36

18.83/ 
37.10

24.48/ 
44.90

2.12/ 
5.76

3.31/ 
9.58

40 
%

14.11/ 
35.70

15.50/ 
39.08

19.68/ 
39.01

25.06/ 
49.53

2.21/ 
6.03

3.32/ 
9.60

ASTGCN 20 
%

10.34/ 
31.66

11.93/ 
33.67

16.68/ 
28.62

22.27/ 
46.02

1.33/ 
3.54

1.71/ 
4.81

40 
%

11.29/ 
32.87

12.48/ 
35.48

17.64/ 
32.03

23.42/ 
46.39

1.50/ 
4.34

1.84/ 
5.16

GDGCN 20 
%

8.35/ 
29.17

9.04/ 
31.02

14.17/ 
25.04

20.91/ 
45.35

1.03/ 
2.81

1.31/ 
3.45

40 
%

9.43/ 
31.64

10.68/ 
35.91

15.34/ 
29.68

21.09/ 
46.35

1.05/ 
2.85

1.38/ 
3.78

BTMF 20 
%

7.28/ 
26.00

8.41/ 
28.43

12.86/ 
24.03

19.01/ 
35.65

0.84/ 
2.11

1.03/ 
2.79

40 
%

7.89/ 
27.61

8.92/ 
30.19

14.22/ 
26.54

20.65/ 
38.98

0.91/ 
2.62

1.18/ 
3.27

LSTM-M 20 
%

7.43/ 
24.91

8.53/ 
27.79

14.87/ 
26.88

20.68/ 
39.61

0.54/ 
1.86

0.95/ 
2.35

40 
%

8.06/ 
28.42

9.08/ 
29.63

17.52/ 
32.01

22.20/ 
44.46

0.63/ 
2.23

1.15/ 
2.88

SGMN 20 
%

7.31/ 
26.35

8.34/ 
28.63

14.62/ 
25.32

19.31/ 
38.32

0.55/ 
1.43

0.84/ 
2.23

40 
%

7.86/ 
27.63

8.93/ 
31.97

15.56/ 
27.10

21.36/ 
41.65

0.58/ 
1.47

0.86/ 
2.26

D- 
TGNM

20 
%

7.16/ 
24.43

8.16/ 
27.63

12.76/ 
23.36

18.97/ 
36.15

0.54/ 
1.40

0.78/ 
2.09

40 
%

7.83/ 
26.98

8.86/ 
30.39

14.10/ 
25.87

20.34/ 
39.13

0.59/ 
1.49

0.81/ 
2.21

STDM 20 
%

6.96/ 
24.37

7.99/ 
27.69

12.21/ 
22.35

18.31/ 
34.06

0.52/ 
1.34

0.74/ 
1.91

40 
%

7.71/ 
26.72

8.62/ 
29.22

13.56/ 
25.05

19.19/ 
36.76

0.55/ 
1.44

0.76/ 
1.95

The data in each cell of this table is separated by a "/" character, where the first 
value represents the model’s RMSE metric and the second value represents the 
model’s MAPE metric.

Table 4 
Evaluation metrics (RMSE/MAPE) of STDM and baselines with block missing data.

Model MR Traffic PM2.5 Temperature

1-step 3-steps 1-step 3-steps 1-step 3-steps

ST-KNN 20 % 32.51/64.32 35.85/65.17 44.38/65.86 45.83/59.37 11.86/29.20 12.87/32.13
40 % 36.47/79.52 38.30/76.27 49.71/65.56 49.55/69.16 14.30/38.48 14.83/39.94

T-GCN 20 % 17.24/36.70 19.91/41.91 19.31/39.82 29.09/49.89 2.61/7.78 3.53/10.19
40 % 17.90/37.24 20.64/43.26 20.33/44.43 30.52/54.41 2.69/7.85 4.02/11.61

ASTGCN 20 % 11.45/32.14 12.13/34.98 17.39/31.07 24.62/47.59 1.40/3.93 1.79/5.05
40 % 14.98/46.47 15.18/48.94 18.93/36.78 25.96/48.01 1.57/4.59 1.83/5.24

GDGCN 20 % 8.91/29.48 10.75/36.78 14.39/27.17 22.29/45.43 1.08/2.94 1.35/3.52
40 % 12.97/38.47 13.95/40.86 15.95/30.95 22.88/45.48 1.12/3.27 1.39/3.69

BTMF 20 % 9.34/29.34 10.96/32.14 14.19/27.48 20.32/38.31 0.89/2.23 1.18/3.38
40 % 12.68/34.98 13.65/37.69 16.67/33.08 21.69/41.32 0.97/2.81 1.24/3.54

LSTM-M 20 % 13.66/37.76 15.00/46.25 18.91/39.29 23.75/51.89 0.69/2.45 1.32/3.00
40 % 18.17/51.35 18.96/67.43 23.18/51.46 26.43/61.21 0.92/3.27 1.58/3.81

SGMN 20 % 10.32/31.92 13.36/36.71 17.40/28.42 22.65/49.63 0.62/1.61 1.29/3.97
40 % 14.16/36.67 16.64/49.98 22.32/45.31 26.41/56.18 0.86/2.19 1.42/4.03

D-TGNM 20 % 8.02/27.34 10.32/31.36 13.53/26.97 19.32/37.63 0.57/1.49 0.81/2.29
40 % 12.04/33.64 12.57/36.79 15.91/32.07 20.69/41.35 0.70/1.96 0.93/2.52

STDM 20 % 7.71/27.72 8.63/29.22 13.03/25.20 18.65/36.23 0.54/1.43 0.77/2.01
40 % 11.07/31.31 11.54/34.19 14.60/30.12 19.23/40.35 0.66/1.63 0.87/2.18

The data in each cell of this table is separated by a "/" character, where the first value represents the model’s RMSE metric and the second value represents the model’s 
MAPE metric.
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the blue areas in Fig. 10(d)–(f). Both scenarios mentioned above disrupt 
the spatiotemporal patterns in the data, thereby increasing the difficulty 
in model forecasting.

Fig. 11 provides further visualization of the disparity between the 
forecasting values and truth values in spatial dimension. The results 
indicate the STDM approach accurately predicts data changes in the 

spatial dimension, regardless of missing or non-missing scenarios. 
Similarly, like forecasting errors in the temporal dimension, fluctuations 
in spatiotemporal data can also affect forecasting accuracy in the spatial 
dimension. To substantiate this conclusion, we calculated the correla-
tion coefficient between data fluctuations and forecasting difficulty. The 
results show a significant positive correlation between observed vari-
ance and forecasting accuracy across all three datasets. This further 
underscores the impact of data fluctuations on forecasting accuracy.

Overall, the STDM approach has excellent forecasting accuracy 
under both missing and non-missing scenarios, proving that the STDM 
approach can be applied to spatiotemporal forecasting tasks in various 
scenarios.

4.6.2. Qualitative analysis of automatically handing missing data
This subsection delves into the approach’s capability to automati-

cally handle missing data, as depicted in Fig. 12. Among them, the red 
line shows the relationship between ut and βt, and the blue line shows 
the relationship between ut and 1 − βt. We found that noteworthy dis-
tinctions in the approaches to handling missing data among the three 
spatiotemporal datasets, despite employing a consistent forward prop-
agation process. For instance, when the missing type leans towards 
random, the traffic dataset and PM2.5 dataset leverage temporal nearest 
observations to estimate missing data, whereas the temperature dataset 
relies on spatial akin observations. Conversely, when the missing type 
tilts towards blocky, the traffic dataset and PM2.5 dataset resort to spatial 
akin observations, whereas the temperature dataset turns to temporal 
nearest observations. These differences arise from the automatic data 
processing strategies inherent in the STDM approach. This autonomous 
adaptability elucidates why the STDM approach demonstrates superior 
performance in scenarios involving missing data.

4.6.3. Qualitative analysis of integrated graph attention
During the approach construction process, graph attention is used to 

improve the forecasting accuracy. The reason is that graph attention has 
the ability to capture geospatial heterogeneity. In this subsection, we 
analyze the ability of graph attention to capture geospatial heteroge-
neity. As is shown in Fig. 13, there is a significant difference in the 
weight of influence of neighboring spatial objects on the target spatial 
object under a single time window. At the same time, we find that the 
neighboring spatial objects closer to the target spatial objects have 
greater influence weight on the target spatial objects. For example, the 
influence weight of neighboring spatial objects on the target spatial 
object decreases sequentially centered on the target spatial object and 
outward, aligning with our common sense. In addition, Fig. 14 further 
visualizes the geospatial relationships between spatial objects over time. 
The findings reveal significant variations in the influence weights of 
neighboring spatial objects on target spatial objects across multiple time 
windows. These results underscore how the proposed STDM effectively 

Fig. 9. Forecasting accuracy vs. forward propagation runtime under 40 % block missing: (a) traffic dataset, (b) PM2.5 dataset, and (c) temperature dataset.

Table 5 
Evaluation metrics (RMSE/MAPE) of STDM and various components.

Model Traffic PM2.5 Temperature

MR:20 
%

MR:40 % MR:20 % MR:40 % MR:20 
%

MR:40 
%

TDC (R) 10.86/ 
87.27

12.08/ 
107.6

26.61/ 
58.83

27.98/ 
66.49

2.22/ 
6.45

2.50/ 
7.20

TDC (B) 19.59/ 
101.4

24.83/ 
125.6

29.06/ 
77.46

30.93/ 
83.13

2.31/ 
6.66

2.54/ 
7.25

STD (R) 9.32/ 
33.08

10.67/ 
34.68

22.19/ 
44.44

23.01/ 
45.94

1.30/ 
3.52

1.32/ 
3.57

STD (B) 10.94/ 
35.91

13.88/ 
38.17

25.91/ 
47.66

26.28/ 
48.51

1.34/ 
3.65

1.43/ 
3.86

TDCM 
(R)

9.92/ 
48.02

10.56/ 
49.49

20.07/ 
40.82

22.06/ 
44.13

1.33/ 
3.62

1.52/ 
4.09

TDCM 
(B)

16.16/ 
64.85

19.60/ 
74.47

28.61/ 
67.51

28.26/ 
65.47

1.78/ 
4.58

2.01/ 
5.29

STDM 
(R)

7.99/ 
27.69

8.62/ 
29.22

18.31/ 
34.06

19.19/ 
36.76

0.74/ 
1.91

0.76/ 
1.95

STDM 
(B)

8.63/ 
29.22

11.54/ 
34.19

18.65/ 
36.23

19.23/ 
40.35

0.77/ 
2.01

0.87/ 
2.18

The data in each cell of this table is separated by a "/" character, where the first 
value represents the model’s RMSE metric and the second value represents the 
model’s MAPE metric.

Table 6 
Evaluation metrics (RMSE/MAPE) of STDM and STDM-NIL approaches.

Dataset STDM-NIL STDM

MR: 20 % MR: 40 % MR: 20 % MR: 40 %

Traffic Dataset (R) 8.14/29.31 9.40/31.68 7.99/27.69 8.62/29.22
Traffic Dataset (B) 11.14/ 

33.28
13.02/ 
36.43

8.63/29.22 11.54/ 
34.19

PM2.5 Dataset (R) 18.71/ 
34.98

20.04/ 
38.87

18.31/ 
34.06

19.19/ 
36.76

PM2.5 Dataset (B) 19.62/ 
39.27

22.36/ 
45.35

18.65/ 
36.23

19.23/ 
40.35

Temperature Dataset 
(R)

0.77/1.98 0.81/2.18 0.74/1.91 0.76/1.95

Temperature Dataset 
(B)

0.87/2.24 1.01/2.87 0.77/2.01 0.87/2.18

The data in each cell of this table is separated by a "/" character, where the first 
value represents the model’s RMSE metric and the second value represents the 
model’s MAPE metric.
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Fig. 10. Forecasting performance in time dimension: (a) traffic dataset without missing data, (b) PM2.5 dataset without missing data, (c) temperature dataset without 
missing data, (d) traffic dataset with 40 % block missing data, (e) PM2.5 dataset with 40 % block missing data, and (f) temperature dataset with 40 % block 
missing data.

Fig. 11. Forecasting performance in spatial dimension: (a) traffic dataset without missing data, (b) PM2.5 dataset without missing data, (c) temperature dataset 
without missing data, (d) traffic dataset with 40 % block missing data, (e) PM2.5 dataset with 40 % block missing data, and (f) temperature dataset with 40 % block 
missing data.
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captures geospatial heterogeneity, elucidating why it outperforms 
baseline models in non-missing scenarios.

5. Discussion

This study proposed the STDM approach for fast forecasting of urban 
sensor states under missing scenes. Compared to forecasting approaches 
that cannot tolerate missing data (Cheng et al., 2018; Guo et al., 2019; Y. 
Xu et al., 2023; Zhao et al., 2020), the proposed STDM approach 

demonstrates strong robustness in complex missing data scenarios, 
achieving forecasting accuracy improvements of over three times. 
Compared to forecasting approaches that tolerate missing data (Chen & 
Sun, 2022; Cui et al., 2020; Tian et al., 2018; P. Wang, Zhang, Hu et al., 
2023), the proposed STDM approach demonstrates a fast inference 
speed in complex missing data scenarios, surpassing the baselines by a 
factor of 10 or more. In addition, the proposed STDM approach offers 
visualization tools to help users understand the automated processing 
strategies for missing data. Finally, the STDM approach features a 

Fig. 12. Automatic learning of missing data processing strategies:(a) traffic dataset, (b)PM2.5 dataset, and (c) temperature dataset.

Fig. 13. llustration of geospatial heterogeneity under a specific time window:(a) traffic dataset, (b)PM2.5 dataset, and (c) temperature dataset.

Fig. 14. llustration of geospatial heterogeneity under multiple time windows:(a) traffic dataset, (b)PM2.5 dataset, and (c) temperature dataset.
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modular Imputer-Predictor architecture, enabling users to freely select 
either the Predictor module or the full Imputer-Predictor setup based on 
the presence or absence of missing data in real-world scenarios. In 
summary, we can confidently assert that the STDM approach represents 
an advanced forecasting method.

There were also some limitations in this study. For example, there are 
many high missing rate scenarios in practical applications. However, the 
STDM approach was only verified in low missing rate scenarios. Given 
the above problems, future work will apply the STDM approach to 
scenarios with higher missing rates. In addition, the STDM approach is a 
generalized spatiotemporal forecasting model, and future work will 
apply the STDM approach to more spatiotemporal datasets.

6. Conclusion

In this study, we established a new forecasting approach, i.e., the 
STDM approach. In experimental results and analysis section, the fore-
casting performance of the STDM approach was evaluated using three 
real spatiotemporal datasets: traffic, PM2.5, and temperature datasets. 
Initially, we compared the STDM approach with eight baselines and 
demonstrated its forecasting accuracy and inference speed advantages 
under four missing scenarios. Additionally, we conducted an analysis of 
the impact of various components and loss functions on forecasting 
performance, thereby validating the rationale behind the design of 
different components and loss functions in our approach. Finally, we 
explained the reasons behind the performance of the STDM approach 
through visualization.
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