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A B S T R A C T

The accurate prediction of origin-destination (OD) flows is essential for advancing sustainable urban mobility 
and supporting resilient urban planning. However, the inherent heterogeneity of mobility patterns results in 
complex geographic unit relations, diverse spatial organizational structures, and the long-tailed effect on OD flow 
distribution. This study proposes a novel OD flow prediction method based on graph-based deep learning (named 
as HMCG-LGBM). Specifically, 1) a modularity-based graph reconstruction strategy is presented for geographic 
unit relation augmentation by eliminating weak connections; 2) the heterogeneous spatial organization of OD 
flows is captured by combining the community detection approach and graph attention mechanism with the 
introduction of socio-economic and spatial features; and 3) a weighted loss function with distribution smoothing 
paradigm is developed to enhance the prediction for low-probability mobility events, addressing the challenges 
posed by long-tailed distributions. Extensive experiments conducted on real-world datasets show that the pre-
dictive performance of the proposed method is significantly improved, with the RMSE and MAE reduced from the 
baselines by 11.1%–33.3% and 14.1%–22.2%, respectively. The results also demonstrate the robustness of the 
proposed method for dealing with imbalanced OD flow distributions, providing valuable insights for spatial 
interaction predictive modeling in the context of sustainable urban systems.

1. Introduction

The movements of population and materials between origin and 
destination locations reflect the spatial interactions among geographic 
units, which are essential for advancing sustainable urban mobility, 
fostering synchronized regional development, and optimizing trans-
portation management (Barthelemy, 2011; Liu, Yao et al., 2020). 
Origin-destination (OD) flow prediction involves estimating the flow 
volume between geographic units using historical OD flow data and the 
properties and relationships of these units (Barbosa et al., 2018; Rao 
et al., 2018). The prediction is vital for various urban applications, such 
as predicting future patterns of urban mobility, formulating urban 
development strategies, guiding traffic diversion, identifying abnormal 
urban incidents, and planning transportation infrastructure (Davidich 

et al., 2021, Liu et al., 2022; Shi, Wang, Xu, & Wang, 2022; Wang, Zhang 
et al., 2023). Additionally, OD flow prediction plays a supportive role in 
addressing societal issues such as traffic pollution and epidemic 
spreading, thereby supporting the development of resilient and sus-
tainable urban systems (Jia et al., 2020; Xu et al., 2021).

Existing OD flow prediction methods include knowledge-driven 
theoretical models and data-driven machine learning models. Theoret-
ical or mechanistic models are developed from physical principles and 
optimization theories (Lenormand et al., 2016; Schlapfer et al., 2021). 
These models are extensively employed to investigate the mechanisms 
of mobility flows, due to their simplicity and interpretability (Ren, 
Ercsey-Ravasz, Wang, Gonzalez, & Toroczkai, 2014; Zhao, Hu, Zeng, 
Chen, & Ye, 2023, Zhang & Li, 2024). Typical theoretical models include 
the gravity model (Ravenstein, 1885), the radiation model (Simini et al., 
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2012), and the intervention opportunity model (Stouffer, 1940). Ma-
chine learning models include two main categories: classical machine 
learning models and deep learning models. The former employs tradi-
tional machine learning algorithms based on kernel or tree structures, 
such as support vector machines (Sana et al., 2018), gradient boosted 
regression trees (Friedman, 2001), and random forests (Breiman, 2001; 
Spadon et al., 2019). The latter typically employs neutral networks 
based on graph structures, such as GMEL (Liu, Miranda et al., 2020), 
SI-GCN (Yao et al., 2021), SpatialGAT (Cai et al., 2022), ConvGCN-RF 
(Yin et al., 2023), and GODDAG (Rong et al., 2023). The graph neural 
network model has gained popularity for predicting OD flows due to its 
ability to capture complex relations among geographic units and 
perform nonlinear fitting. Recently, efforts on trajectory modeling and 
OD flow prediction have been made by combining theoretical models 
with machine learning and generative AI approaches, such as Deep-
Gravity (Simini et al., 2021), CATS (Rao et al., 2023), and Act2Loc (Liu 
et al., 2024).

However, variations in resource allocation among geographic units 
and disparities in movement demand typically result in heterogeneity in 
the mobility patterns (Yang et al., 2019; Yang et al., 2023). This het-
erogeneity is primarily observed in two aspects: the numerical distri-
bution of the flow volumes and the spatial distribution of the flows. The 
numerical distribution heterogeneity is manifested in the statistical 
long-tailed distribution of flow volumes (Fig. 1(a)). Several geographic 
units exhibit negligible or no flow volume, whereas a minority of 
geographic units display considerable flow volume (Jiang et al., 2023). 
The spatial distribution heterogeneity refers to an imbalanced 
geographical distribution of OD flows, typically characterized by ag-
gregation patterns (Fig. 1(b)). These characteristics of mobility flows 
pose the following challenges for current methods: 

(1) The difficulties in representing the intricate geographic unit re-
lations: The relationships between geographic units are complex 
and diverse, including attribute relations, spatial adjacencies, 
semantic relations, etc. These relationships are critical for OD 
flow prediction, as understanding the interaction between 
geographic units helps in capturing mobility patterns that cannot 
be directly captured from fusing attribute data alone (Yao et al., 
2021; You et al., 2024). Constructing a graph structure is an 
effective approach for representing these relationships, where the 
graph nodes represent geographic units and the edge weights 
indicate the strength of their interactions. Current approaches for 
generating graph structures primarily rely on historical flow data 
(Cai et al., 2022), considering any flow value greater than zero as 
a connection between geographical units. Nevertheless, it is often 

the case that there is extremely little flow volume between 
several geographic units due to the long-tailed distribution (i.e., 
the head of Fig. 1(a)). This leads to the presence of weak con-
nections in the graph (Zhuang et al., 2022). Several weak con-
nections contribute to the complexity and size of the graph 
structure, thus amplifying the difficulties in representing the 
relationship of geographic units and the predictive capabilities of 
the model.

(2) The non-negligible influence of heterogeneous spatial organiza-
tion: One typical type of heterogeneous spatial organization is the 
presence of several independent and internally cohesive sub-
graphs (i.e., communities) (Fig. 1(b)). Distinct subgraphs may 
exhibit notable variations in their mobility patterns. These vari-
ations are influenced by the socioeconomic characteristics and 
spatial relations of the geographic units, such as resources and 
policies (Yang et al., 2024). Current methods mostly apply a 
global model to learn the mobility patterns of OD flows, ignoring 
the variations across subgraphs caused by diverse socioeconomic 
and spatial characteristics of geographic units, resulting in 
limited predictive performance.

(3) The obstacle lies in capturing the long-tailed effect: The hetero-
geneous distribution of OD flow volumes exhibits a long-tailed 
effect (Fig. 1(a)). Existing research has endeavored to enhance 
modeling low-probability OD flows by using the weighted loss 
function, with the inverse of the flow distribution probabilities as 
weights (Cai et al., 2022). However, the density distribution of 
imbalanced OD flows tends to be highly discrete. The probability 
of certain mobility events occurring is nearly negligible, which is 
directly ignored in the training process when using the inverse of 
the distribution probabilities as weights, since their inverse is 
undefined. The discrete problem becomes more apparent when 
the mobility patterns exhibit strong heterogeneity, which makes 
it challenging to fully capture the long-tailed effects of OD flows.

To overcome the above challenges, this study proposes a learning 
framework based on community detection and graph attention mecha-
nisms for OD flow prediction. The framework aims to make the pre-
diction more accurate and reliable by considering the intricate relations 
between geographic units, the heterogeneous spatial organization, and 
the influence of the long-tailed effect. Notably, this study specifically 
focuses on inferring unobserved OD flows using regional attributes and 
observable OD flows, which differs from “future flow prediction,” a task 
that aims to forecast OD flows over a specified period using historical 
data. The main contributions of this study are summarized as follows: 

Figure 1. Diagram of heterogeneous origin - destination (OD) flows, (a) density distribution histogram of OD flow volume, (b) OD flow graph.
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(1) A graph reconstruction strategy is proposed for geographic unit 
relation augmentation, which eliminates weak connections based 
on modularity. The reconstructed graph enables the efficient 
sharing of geographic unit characteristics in graph neural net-
works, thereby enhancing training efficiency and prediction 
quality.

(2) A heterogeneous spatial structure encoding module using graph- 
based deep learning is introduced, which integrates community 
detection and graph attention mechanisms to identify and pri-
oritize various spatial organizations during model training. This 
module boosts the model’s capacity to understand the heteroge-
neous spatial distributions of OD flows.

(3) A weighted loss function with a distribution smoothing paradigm 
is developed, which allows the model to learn low-probability 
mobility events by considering the characteristics of adjacent 
mobility events. This enhances the model’s robustness in 
handling imbalanced flow distributions.

(4) Extensive experiments based on real-world datasets with 
different spatial scales and individuals are conducted to validate 
the performance of the proposed method. The results indicate 
that our method not only surpasses existing methods, but also 
exhibits the robustness for handling imbalanced OD flow 
distributions.

2. Preliminary

Definition 1 (Region). A region R is the spatial unit for carrying the 
mobility flows, typically represented by a city, province, or country. R 

consists of several subregions. Numerous people or objects move be-
tween subregions, forming various kinds of flows.

Definition 2 (Relation Graph). A relation graph G = (V, E) repre-
sents the connection between subregions over region R , where V = {v1,

…, vN} is a set of subregions (nodes) with the size of |V| = N. E =
{
eij |1 ≤ i, j ≤ N} is a set of edges between two nodes. An edge represents 

the connection between two nodes, which can be generated by their 
spatial adjacency or, as referred to in this work, by the existence of the 
historical flows. eij = 1 if there are historical flows between node vi and 
node vj, else eij = 0.

Definition 3 (OD Flows). OD flows is a set of triplets F =
{(

vi, vj,

fij
) ⃒
⃒
⃒1 ≤ i, j ≤ N

}
where flow fij is the number of transitions (i.e., flow 

volume) from the origin vi to the destination vj. Note that the flow 
volume is asymmetrical, i.e., fij ∕= fji.

Definition 4 (Node Indicators). Node indicators is a set of attributes 
A = {a1,…, aM} for each node (subregion). The node indicators A in-
corporates multiple kinds of information from socio-economic data and 
geographic data, which characterizes the profile of the subregion and 
serves as the initial node representation H = {h1,…, hM} of the model. 
The total number of attributes in node indicators is |A| = M.

Problem Statement. Given the relation graph G = (V,E) and node 
indicators A = {a1,…, aN} over the region R , this study aims to develop 
a model to predict the OD flows fij from the origin vi to the destination 
vj. A set of historical OD flows F is available for model training.

3. Methodology

The model consists of two components: a heterogeneous mobility 
pattern learner and a flow predictor. The overall architecture of the 
model is shown in Fig. 2. The heterogeneous mobility pattern learner is 
leveraged to generate node embeddings by modeling diverse mobility 
patterns. The specific steps are as follows: First, a relation graph is built 
using historical mobility data, whereby weak connections are eliminated 
via the concept of modularity. Meanwhile, the community detection 
algorithm Louvain is performed on the initial relation graph to assign a 
community label to each node. The initial node representation is 
composed of community indicators, socio-economic indicators, and 
geographic indicators. Subsequently, the graph attention network (GAT) 
then embeds the node representations to learn the mechanism of the 
mobility patterns through model training. During the training process, a 
bilinear function is utilized to calculate OD flows, and the node repre-
sentations are iteratively updated based on a weighted Huber loss 
function with a distribution smoothing paradigm. The node embeddings 
are ultimately obtained. The flow predictor employs node embeddings, 
as well as spatial adjacency and community relations between nodes, 
into a regression model called Light Gradient Boosting Machine (LGBM) 
for predicting OD flows. The proposed method is named HMCG-LGBM, 
where HMCG represents the Heterogeneous Mobility pattern learner via 
Community detection and GAT, and LGBM represents the flow 
predictor.

Figure 2. The overall architecture of HMCG-LGBM.

Y. Zhao et al.                                                                                                                                                                                                                                    Sustainable Cities and Society 118 (2025) 106015 

3 



3.1. Graph reconstruction for node relation augmentation

Effectively generating graph structure is essential for the graph 
neural network to fully understand intricate relationships among nodes, 
such as spatial, attribute, and semantic relations. Historical flow-based 
methods are among the most popular used for constructing graph 
structures, due to their capacity to thoroughly record the real in-
teractions between nodes and incorporate various types of relations (Cai 
et al., 2022). The approach primarily relies on the presence of historical 
flow data between the nodes. However, the inherent heterogeneity of 
OD flows indicates that most nodes possess near-zero historical flow 
volumes, resulting in the presence of weak connections. The weak 
connections contribute to the complexity and size of the relation graph. 
This not only exerts a negative impact on the representation of node 
relations but also leads to over-smoothing problems during model 
training.

To address this problem, the most straightforward solution to filter 
low flows is a threshold-based filter. However, relying solely on the 
absolute connection strength to eliminate low flows could damage the 
inherent spatial organization of the relation graph, especially in het-
erogeneous flow patterns where flow volumes can differ widely across 
subgraphs. This study develops a novel graph reconstruction strategy 
that aims to simplify the graph structure and augment its representation 
by examining the connection strengths. The core idea of this strategy is 
based on the principle of modularity, which is typically used to evaluate 
the closeness of connections between nodes in the field of complex 
network science (Newman & Girvan, 2004). The modularity metric 
measures node closeness by comparing the actual flow volume with the 
flow volume in a randomized network. This approach not only helps 
filter out weaker connections but also enhances the representation of the 
inherent spatial organization by identifying non-random connection 
patterns. Specifically, the strategy first incorporates the historical OD 
flow set F into the initial relation graph G, then calculates the difference 
qij between the actual and expected flow volume from node vi to node vj. 
The connection is removed when the actual flow volume is lower than 
the expected flow volume. qij is calculated as follows: 

qij = fij + fji −
fi × fj

2 ×
∑

i,jfij
(1) 

fi =
∑

j≤N

(
fij + fji

)

(2) 

ẽij =

{
1, qij < 0
0, qij ≥ 0 (3) 

where 
∑

i,jfij is the sum of flows of the graph, fi×fj
2 ×
∑

i,j
fij 

is the expected 

flow volume between node vi and vj, fi is the sum of flows originating and 
arriving at node vi. The reconstructed graph is denoted as G̃ = (V, Ẽ), 
where Ẽ =

{
ẽij |1 ≤ i, j ≤ N} represents a set of edges in the recon-

structed graph G̃. and ẽij represents the preserved connection that sig-
nifies strong relations between certain nodes. The reconstructed graph 
not only simplifies the structural complexity, but also augments the 
representation of node relations. On this basis, the graph neural network 
could better incorporate the node relation features and generate higher- 
quality node representations during model training.

3.2. Heterogeneous spatial organization encoding

Aggregation is one of the most common forms of heterogeneous 
mobility patterns in the real world, where graph nodes are organized 
into distinct groups, called communities or subgraphs (Fortunato and 
Hric, 2016; Shu et al., 2021). In the field of complex network science, 
community structures can be discovered by applying community 
detection algorithms (Fortunato & Hric, 2016). All nodes in the same 

community develop a homogeneous spatial organization and share the 
same community label, allowing for the model to encode the hetero-
geneous spatial organizations. This study leverages the Louvain algo-
rithm, one of the most widely used approaches in the field of urban 
mobility (Chen et al., 2022; Jia et al., 2021), to detect the community 
structure. This algorithm is implemented based on modularity (Newman 
& Girvan, 2004), which is calculated as follows: 

Q =
1

2
∑

i,jfij

∑

ij

[

fij −
SiSj

2
∑

i,jfij

]

σ
(
ci, cj

)
(4) 

where Q ∈ [− 0.5,1] represents modularity. Q is positive when the flow 
volume of the community surpasses the expected flow volume obtained 
from random assignment. As the value of Q increases, the quality of the 
community improves. ci is the community label of node vi. σ

(
ci, cj

)

represents whether node vi and node vj belong to the same community, 
σ
(
ci, cj

)
= 1 if they do, and σ

(
ci, cj

)
= 0 otherwise. Si represents the 

strength of node vi, i.e., the sum of flows of all connected edges of node 
vi. In this study, the community label is regarded as a part of node in-
dicators, enabling the model to emphasize the heterogeneous spatial 
organization of flows.

Moreover, considering that the formation of the spatial organization 
is closely related to the socio-economic characteristics and spatial 
configuration of geographic units, GAT (Veličković et al., 2018) is 
introduced to encode community labels, socio-economic indicators, and 
geographic indicators. GAT performs well at consolidating the neigh-
borhood information of nodes. It considers both the node’s properties 
and the relations between nodes when encoding node embeddings. This 
effectively examines how different geographic units interact and how 
mobility patterns work. Specifically, the graph attention layer in GAT 
assigns varying attention weights to a node’s neighbors. The input to this 
layer is a set of initial node representations H = {h1,…, hM}, and the 
output is a new set of node representations Hʹ = {hʹ

1,…, hʹ
M}. Unlike the 

original formulation by Veličković et al. (2018), our approach in-
corporates the edge features D =

{
dij |1 ≤ i, j ≤ N} where dij represent 

the great-circle distance between node i and j. By including these edge 
features directly in the attention mechanism, we aim to better capture 
geographic information and account for distance decay in mobility 
patterns (Yang et al., 2019; Schlapfer et al., 2021). Initially, a shared 
linear transformation, parametrized by two weight matrices W and V, is 
applied to each node. The attention coefficient rij for each edge is then 
defined as follows: 

rij = LeakyReLU(Θ[Whi‖ Vdij‖ Whj]) (5) 

where rij indicates the importance of node vj’s features to node vi, 
LeakyReLU is a nonlinear function (with negative input slope set to 0.2), 
Θ is a trainable parameter transforming the concatenated features into a 
scalar, ‖ denotes concatenation. W and V are the corresponding input 
linear transformation’s weight matrices. The attention coefficients rij are 
then normalized across all neighbors of node vi using a softmax function, 
resulting in the attention weight aij: 

αij = softmaxj
(
rij
)
=

exp
(
rij
)

∑
kϵN(i)exp (rik)

(6) 

where αij is the attention weight of vj to vi. N(i) represents the set of 
neighbors of node vi. Note that αl

ij ∕= αl
ji due to the asymmetry of OD 

flows. Fully expanded, the attention weight aij computed by the atten-
tion mechanism is given by: 

αij =
exp

(
LeakyReLU(Θ[Whi‖ Vdij ‖Whj

]
))

∑
kϵN(i)exp

(
LeakyReLU(Θ[Whi‖ Vdij ‖Whk

]
))

(7) 

Finally, the new representation hʹ
i of the node vi in the next layer is 

calculated as a weighted sum of both its neighbor’s representations and 
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its own representation, followed by a nonlinearity σ (e.g., ReLu): 

hʹ
i = σ

(

αiiWhi +
∑

jϵN(i)

αijWhj

)

(8) 

where W is consistent with the W in the Formula (5), ensuring a 
consistent linear transformation across the layer.

3.3. Long-tailed effect capturing

This section aims to achieve capturing long-tailed effect during 
model training. The model performs end-to-end training, where it 
directly learns mobility patterns from the raw data and targets the 
optimization objective on the loss function. By doing so, the original 
information can be thoroughly utilized, and the optimized process 
avoids manual intervention. Specifically, it allows us to target the loss 
function for effectively handling long-tailed flow data.

The study (Cai et al., 2022) formulates a weighted loss function, 
determining the loss weight by the inverse of the associated flow vol-
ume’s distribution probability. According to this operation, the model 
can prioritize low-probability flows during the training process. How-
ever, using the inverse of the distribution probability as the loss weight 
may neglect the learning of certain mobility events due to the highly 
discrete nature of the imbalanced data distribution, especially those 
with probabilities close to zero, as shown in Fig. 3(a) for the case where 
fij ∈ [10,11].

Considering that the probability of a certain flow value occurring is 
similar to the probability of its neighboring flow values occurring (Yang 
et al., 2021), the Gaussian distribution smoothing paradigm is intro-
duced to transform the discrete probability distribution into a contin-
uous one based on a Gaussian kernel. Specifically, the Gaussian kernel is 
convolved with the original data density distribution to produce a 
smoothed data distribution (Fig. 3(b)). In the new distribution, the 
probability of the flow value is not only related to itself, but also affected 
by its neighboring flow values.

The new data distribution is defined as a smoothed density distri-
bution with the following equation: 

p̃
(

fij
ʹ
)Δ
=

∫

Y

k
(

fij, fij
ʹ
)

p
(

fij

)
d
(

fij

)
(9) 

k
(

fij, fij
ʹ
)
= exp

(

−
‖ fij, fij

ʹ‖2

2ε2

)

(10) 

where p
(

fij
)

is the distribution probability of fij in the original dataset, 

k
(

fij, fíj
)

is the Gaussian kernel, which portrays the similarity between 

the target value fijʹ and any other value fij. ‖ fij, fijʹ‖ denotes the Euclidean 
distance between fijʹ and fij. As ‖ fij, fijʹ‖ increases, the value of the 
Gaussian kernel decreases, and the similarity between the flow values 
decreases. The parameter ε determines the bandwidth of the kernel 
function, which governs the speed at which the similarity of flow values 

decreases with increasing distance. p̃
(

fíj
)

is the distribution probability 

of fíj in the smoothed density distribution. The inverse ̃p
(

fíj
)

is the weight 

assigned to the associated flow value in the loss calculation. The loss 
calculation in this method is derived from the Huber function, which is 
defined with the following formula: 

L =
1

p̃
(

fij

)

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
f̂ ij − fij

)2
, if
⃒
⃒
⃒ f̂ ij − fij

⃒
⃒
⃒ ≤ δ

δ⋅
⃒
⃒
⃒ f̂ ij − fij

⃒
⃒
⃒ −

1
2

δ2, if
⃒
⃒
⃒ f̂ ij − fij

⃒
⃒
⃒ > δ

(11) 

where L is the loss function, δ is the control parameter determining the 
threshold at which the loss function switches from mean square error 
(MSE) to absolute error (MAE). L is equivalent to MSE when | f̂ ij −

fij| ≤ δ. Otherwise, L is equivalent to MAE. The balance between MSE 
and MAE makes Huber more robust to outliers and mitigates the po-
tential impact of extreme flow values on model training. Furthermore, 
due to the large variance of data distribution, the weight assigned to 
different flow volumes may vary substantially. To mitigate this issue, 
this study takes the square root of the original data when determining 
the weight of the loss function.

Furthermore, the training process updates parameters using the 
stochastic gradient descent method (Adam). To guide the model in 
learning the interactions between origins and destinations, the bilinear 
function is used to calculate flows, formulated as follows: 

f̂ ij = (hi)
TWbhj (12) 

where f̂ ij is the calculated flow volume using bilinear function, Wb is a 
trainable parameter matrix with dimension N, which is used to model 
the interaction between the origin and the destination.

3.4. OD flow predictor

The OD flow predictor is utilized to predict the OD flow volume from 

Figure 3. The distribution smoothing paradigm convolves the Gaussian kernel k
(

fij, fíj
)

with the initial density distribution (a) to estimate the smoothed density 

distribution (b).
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node vi to node vj. The Gradient boosting machine (GBM) (Natekin & 
Knoll, 2013) is served as the predictor in this study. GBM achieves the 
regression task by integrating multiple weak learners, which can effec-
tively capture intricate relations and minimize the risk of overfitting. 
Recent works have proven that GBM (Spadon et al., 2019; Yin et al., 
2023; Liu, Gong et al., 2020) is efficient for simulating OD flows as a 
regression function. This study uses the Light Gradient Boosting Ma-
chine (LGBM) as the predictor. Compared to other GBMs, the benefits of 
LGBM lie in its ability to handle large-scale datasets and 
high-dimensional features, which is appropriate for practical applica-
tions in the real world (Ke et al., 2017). Specifically, the prediction of OD 
flows is accomplished by LGBM using node embeddings, node distance 
relations, and node community relations as inputs. Notably, the bilinear 
function is not used directly as a predictor for the following reasons: (1) 
Its simple structure, while aiding in training and capturing 
origin-destination interactions, struggles to capture nonlinear relation-
ships between flows and node features. Additionally, it overlooks other 
critical relational characteristics, such as spatial relationship and com-
munity relationship, which LGBM can incorporate as additional inputs 
for greater flexibility; (2) Separating loss computation from final pre-
diction allows each step to focus on different objectives. The mobility 
pattern learner focuses on capturing heterogeneous spatial interaction 
patterns, while the predictor achieves stable and robust final predictions 
using enriched features.

4. Experimental results and discussion

In this section, extensive experiments over two real-world datasets 
are conducted to evaluate the performance of HMCG-LGBM, which are 
summarized to answer the following research questions (RQs):

RQ1. How is the overall performance of HMCG-LGBM as compared to 
baselines?

RQ2. How do the hyper-parameters of the model affect performance?

RQ3. Does the design of each part of the model work?

RQ4. How does the model’s robustness perform when dealing with 
imbalanced flow volumes?

4.1. Experimental Settings

4.1.1. Data description
We collected two real-world mobility datasets with different spatial 

scales and individuals: the intercity truck mobility flow data in China 
and the intracity commuting flow data in New York City (NYC). The 
intercity truck mobility flow data is obtained from the trajectory data of 
heavy trucks in the Global Navigation Satellite System (GNSS) between 
April 15 and May 15, 2018. The data is collected at regular intervals of 

Figure 4. Overview of the two mobility datasets used in our experiments.
Notes: S.D.: Standard deviation.
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2–30 seconds, capturing the location of the truck as it travels. We 
aggregated the trajectory data into city-based OD flow data in our pre-
vious work (Zhao, Cheng et al., 2023), which records the cities that 
trucks visited. The data encompasses a total of 267 cities, 44,421 OD 
pairs, and 12,761,311 OD trips. The intracity commuting flow data in 
NYC are provided by the study (Liu, Miranda et al., 2020) from the 2015 
Longitudinal Employer-Household Dynamics Origin-Destination 
Employment Statistics (LODES) project in the US. The data documents 
the employment location and residence location of workers, as well as 
commuting flows in NYC on an annual basis. The study by Liu, Miranda 
et al. (2020) utilized 2010 NYC census tracts as geographical units to 
aggregate the commuting flow data. The data includes a total of 2,168 
geographic units, 905,837 OD pairs, and 3,031,641 OD trips.

From the statistical profiles of the two datasets (Fig. 4(a), Fig. 4(b)), 
the density distributions of both datasets are long-tailed even after 
taking the logarithm of the original data. This suggests that real-world 
mobility patterns exhibit a heterogeneous nature. The range between 
the minimum and maximum values of intercity truck mobility flows is 
142,376, with a standard deviation of 2,065—338.91 times higher than 
that of New York City commuting flow data (6.903)—indicating much 
greater heterogeneity. From the spatial distribution depicted in Fig. 4(c) 
and Fig. 4(d), both datasets exhibit a certain degree of spatial hetero-
geneity. The aggregation pattern of intercity truck mobility flows is 
more pronounced. These differences can be attributed to the broader 
spatial scope of truck activities, which span across cities and even na-
tionally, and the diversity of decision-makers involved, including pro-
ducers, carriers, and consumers (Zhao et al., 2024). In contrast, 
commuting flows are typically confined to urban areas, with individuals 
being the sole decision-makers. We randomly divide the dataset into a 
training set, a validation set, and a test set (8:1:1).

The socio-economic indicators are obtained from the statistical 
yearbooks of the study area: the socio-economic indicators for intercity 
truck mobility flows are obtained from the 2019 China Statistical 
Yearbook. These indicators are relevant to freight transportation, 
encompassing the gross national product (GDP), the GDP ratio of the 
primary, secondary, and tertiary industries, the imported and exported 
volumes of goods, the number of industrial enterprises, total retail sales 
of consumer goods, the number of employees for each industry, and the 
volume of road freight transportation, etc. The socio-economic in-
dicators of intracity commuting flows are obtained from Liu, Miranda 
et al. (2020), which are based on 2015 land use and infrastructure in-
formation for NYC tax parcels, such as the number of different types of 
buildings, the number of buildings in each built-year interval, and the 
number of tax lots in different land uses. We standardize these data with 
a standard deviation of 1 and a mean of 0 to guarantee consistency in the 
indicator dimensions.

4.1.2. Parameter settings
HMCG-LGBM is implemented with PyTorch and Deep Graph Library. 

We used two sets of parameters for the two datasets due to the different 
individuals and spatial scales. For the intercity truck mobility flow 
dataset, the embeddings dimension is set as 64 and the number of GAT 
layers is set as 5. For the intracity commuting flows dataset, the em-
beddings dimension is set as 256 and the number of GAT layers is set as 
5. The model is trained using Adam optimizer and relying on the 
weighted Huber loss, where key parameters include the bandwidth ε =
2 of the Gaussian kernel function, and the control parameter δ = 1 of the 
Huber function.

4.2. Baselines and metrics

The following 7 models were selected as baselines for comparison 
with HMCG-LGBM, which can be categorized into three groups: 

• Theoretical model: The gravity model (GM) (Anderson, 2011) is one 
of the most widely used theoretical models and is derived from 

Newton’s law of gravity. GM suggests that the flow between two 
places is directly proportional to their mass (e.g., truck flow volume) 
and inversely proportional to their distance. The radiation model 
(RM) (Simini et al., 2012) treats the choice of a moving object as a 
process of radiation emission and absorption in physics. According to 
RM, a moving object tends to choose a destination where the supply 
exceeds the demand at the origin, while minimizing the interaction 
cost, such as distance, between the origin and the destination.

• Machine learning model: Random Forest (RF) (Breiman, 2001) is a 
decision tree-based machine learning model. Due to its robustness to 
missing values and resistance to overfitting, RF is widely utilized for 
regression problems. Numerous previous studies (Spadon et al., 
2019; Yin et al., 2023) have used RF for OD flow prediction. LGBM 
(Ke et al., 2017) has gained popularity in the field of machine 
learning and is specifically employed in this study as an OD flow 
predictor. The ability to effectively handle large-scale datasets makes 
LGBM advantageous for the task in this study. The input features for 
the machine learning models include the attributes of the origin and 
destination.

• Deep learning model: The Gravity neural network (GNN) (Mozolin 
et al., 2000), a type of multilayer perceptron, is one of the earliest 
deep learning models for predicting mobility patterns. Referring to 
the principle of gravity model, the mass of the origin and the desti-
nation, as well as the distance between the two places are embedded 
in the input layer. The flow volume is predicted in the output layer. 
Spatial interaction graph convolutional network (SI-GCN) (Yao et al., 
2021) combines graph convolution with mapping function and em-
beds the geographic units in a local spatial network to model OD 
flows from the perspective of network learning. Geo-contextual 
Multitask Embedding Learner (GMEL) (Liu, Miranda et al., 2020) 
utilizes a geo-adjacency network that contains geographic contextual 
information and models OD flows based on the graph attention 
mechanism and multitasking framework, with the GBRT model as a 
predictor. The HMCG model is a variant of the HMCG-LGBM, where 
the bilinear function (embedded in the heterogeneous mobility 
pattern learner) is used as the final predictor instead of LGBM. The 
inputs for the deep learning model include node attributes A = {a1,

…, aM} and the initial relation graph G = (V,E).

The selection of parameters for baselines is based on the grid search 
algorithm. To ensure the stability of the predicted results, the perfor-
mance of each method is evaluated by taking the average of the results 
from 10 repeated runs.

The predictive performance is assessed using the following four 
metrics: Root mean squared error (RMSE) and mean absolute error 
(MAE) are common error assessment metrics, quantifying how much the 
predicted values deviate from the true values. RMSE is more sensitive to 
extreme values, thus amplifying the contribution of extreme values to 
the overall error. The common part of commuters (CPC) and Spearman 
correlation coefficient (SCC) assess the correlation between predicted 
values and true values. CPC is a metric of the similarity between the two 
flows, which has been widely used in OD flow modeling studies (Simini 
et al., 2021; Wang, Yao et al., 2023; Yin et al., 2023). SCC quantifies the 
degree of concordance between predicted values and true values based 
on changes in their rank. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
|T|
∑

i,j

(
f̂ ij − fij

)2
√

(13) 

MAE =
1
|T|
∑

i,j

⃒
⃒
⃒ f̂ ij − fij

⃒
⃒
⃒ (14) 

CPC =
2
∑

i,jmin
(

f̂ ij, fij

)

∑
i,jfij +

∑
i,j f̂ ij

(15) 
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SCC = 1 −
6
∑

i,j

(
rg
(

f̂ ij

)
− rg

(
fij

))2

n(n2 − 1)
(16) 

where rg
(

fij
)

is the rank of fij in the whole dataset.

4.3. Overall performance (RQ1)

Table 1 shows the performance of the eight methods on the two 
datasets. Overall, the RMSE and MAE applied to the truck mobility flow 
data are much higher than those of the commuting flow data. This is due 
to the higher heterogeneity of the intercity truck mobility patterns, 
indicating that the high heterogeneity of mobility patterns has a 
noticeable impact on OD flow modeling. The RMSE of GM far exceeds 
that of other models in the intercity truck mobility flow data, whereas it 
performs well in the intracity commuting flow data. This suggests that 
GM has limits in datasets with strong heterogeneous mobility patterns. 
RM, in contrast, has relatively lower RMSE and MAE in the intercity 
truck mobility flow data but shows the highest errors in the intercity 
commuting flow data. This suggests that RM is more applicable to large 
spatial-scale datasets with strong heterogeneous mobility patterns. 
Machine learning models outperform others, indicating the effectiveness 
of the node indicators created in this study. It is worth noting that deep 
learning models underperform in the intercity truck mobility flow data, 
with much higher RMSE and MAE compared to the machine learning 
models. One possible explanation is that the initial relation graph con-
sists of numerous weak connections, which poses a challenge for the 
graph neural network to function effectively. Furthermore, HMCG 
underperforms in both datasets, with RMSEs 36.1%–71.9% higher than 
those of HMCG-LGBM. The difference could result from the HMCG’s 
reliance solely on the bilinear predictor, which struggles to capture 
nonlinear flow-node relationships and lacks the ability to incorporate 
relational features. This result suggests that separating the pattern 
learning and prediction stages, as in HMCG-LGBM, enhances the ability 
to capture complex spatial interactions and improves model accuracy.

The HMCG-LGBM demonstrates superior performance across all four 
metrics. In terms of the deviation of the predicted results from the true 
values, RMSE and MAE outperform baselines by 33.3% and 22.2% in the 
intercity truck mobility flow data, and by 11.0% and 14.1% in the 
intracity commuting flow data. In terms of the correlation between the 
predicted results and the true values, CPC and SCC outperform baselines 
by 3.1% and 0.4% in the intercity truck mobility flow data, and by 4.7% 
and 8.2% in the intracity commuting flow data. The results indicate that 

considering the heterogeneous mobility pattern can effectively improve 
the predictive performance. The subsequent experimental analysis is 
conducted using intercity truck mobility flow data due to its apparent 
heterogeneity.

4.4. Hyper-parameter sensitivity analysis (RQ2)

For the hyper-parameter sensitivity analysis, we selected four main 
hyper-parameters, including the main parameters of GAT (embedding 
size, GAT layers) and Huber loss (control parameter δ of Huber function, 
bandwidth parameter ε of Gaussian smoothing kernel). Given that the 
proportion of predicted data may be a key factor influencing the results, 
this section also examines the effect of training set size on model per-
formance. The impact of these hyper-parameters on the predictive per-
formance is demonstrated in Fig. 5. Embedding size represents the depth 
of the node representation by vectors. A relatively low embedding size is 
insufficient for accurately representing node features, thereby resulting 
in an initial rise in model performance as the embedding size increases. 
An excessively large embedding size is prone to overfitting. The results 
show that the model performs optimally with the embedding size of 64 
(Fig. 5 (a)). The number of GAT layers represents the depth of the node 
neighbors considered by the model. The best performance is achieved 
when the number of layers is 5 (Fig. 5 (b)). Insufficient layers hinder the 
full consideration of the node relations. The excessive number of layers 
leads to the consideration of an excessive number of neighbors, which in 
turn diminishes the node relations and increases the likelihood of over- 
smoothing issues. Therefore, the model’s performance is reduced after 
the number of GAT layers exceeded 5. The bandwidth parameter ε of the 
Gaussian smoothing kernel represents the smoothing degree of the data 
distribution. An excessive smoothing degree leads to the convergence of 
the probability distribution of the flow volumes, which eliminates the 
distinctiveness of the flow volumes. Conversely, insufficient smoothing 
makes it challenging to address the issue of discrete distributions. In this 
study, the model performs optimally at ε = 2. The control parameter δ of 
Huber function determines the balance between MSE and MAE. A 
smaller δ indicates that Huber loss is closer to MSE, and a larger δ in-
dicates that the loss is closer to MAE, with the former being more sen-
sitive to outliers compared to the latter. The results show that the 
method performs best when δ = 1 (Fig. 5 (d)). The training set size in-
fluences the completeness of the relation graph and the effectiveness of 
model training. To simulate different levels of data sparsity, we evalu-
ated model performance using training set sizes ranging from 10% to 
90%, while adjusting the portion of data to be imputed (Fig. 5 (e)). As 
expected, larger training sets yield more accurate predictions, as more 
observed flows enable the learner to model node characteristics and 
interactions more accurately. Notably, model performance stabilizes 
once the training set proportion exceeds 70%. For the final evaluation, 
we adopted an 8:1:1 split. The original intercity truck mobility data 
includes 44,421 OD pairs, and using the 10% (4,442 samples) for testing 
ensures a sufficiently large and representative sample to evaluate model 
performance, while still providing an adequate amount of data for 
training the model on heterogeneous mobility patterns.

4.5. Ablation Study (RQ3)

We designed five variants to validate the contribution of each part of 
the model (Fig. 6). Ours means the method proposed in this study 
(HMCG-LGBM). Ours-iniG builds the framework based on the initial 
relation graph instead of the reconstructed graph. Ours-noCom removes 
community labels during node encoding, which means eliminating the 
spatial organization learning module. Ours-noDS deletes the distribu-
tion smoothing module in the training process, and Ours-noW deletes 
the weight in the loss function, both of which are key steps to capture the 
long-tailed effect of flow distribution. To further validate the signifi-
cance of long-tailed effect capturing, we design the variant Ours-noDSW, 
which eliminates both distribution smoothing and loss weights, i.e., the 

Table 1 
Overall performance compared with baselines

Dataset Model RMSE MAE CPC SCC

Intercity truck 
mobility flow 
dataset

GM 10522.156 273.196 0.435 0.825*
RM 718.93 121.190 0.600 0.630*
RF 708.484 98.902 0.748 0.883*
LGBM 665.965 81.465 0.780 0.900*
GNN 825.408 148.396 0.633 0.424*
SI-GCN 1004.835 229.296 0.420 0.435*
GMEL 788.600 140.966 0.632 0.689*
HMCG 763.552 103.961 0.610 0.612*
HMCG- 
LGBM

444.040 76.896 0.804 0.904*

Intracity commuting 
flow dataset

GM 5.752 1.894 0.663 0.597*
RM 12.673 3.535 0.183 0.461*
RF 5.287 2.052 0.697 0.459*
LGBM 5.005 1.974 0.706 0.510*
GNN 5.136 1.851 0.724 0.533*
SI-GCN 4.954 2.069 0.708 0.566*
GMEL 4.887 1.747 0.741 0.607*
HMCG 5.917 1.889 0.650 0.587*
HMCG- 
LGBM

4.349 1.500 0.776 0.657*

* p-value < 0.001.
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Huber function is directly used as the training loss.
The results (Fig. 6) show that the absence of any part negatively 

affects the performance of the model. The RMSE of all variants is around 
50.9% higher than that of Ours and the CPC of all variants is around 
3.5% lower than Ours. These results verified the effectiveness of each 
part of the model. The graph reconstruction part has the most obvious 
impact, with Ours-iniG increasing the RMSE and MAE by 47.8% and 
22.2%, respectively. The effectiveness of the distribution smoothing 
module shows that the distribution probability of a flow volume is not 
only related to itself but also to its neighboring flow volumes. This 
discovery offers an appropriate solution to the issue of discrete flow 
distribution. Furthermore, the improvement in model performance by 
the combination of distribution smoothing and loss weighting is 

noteworthy, as Ours-noDSW has the highest RMSE among all variants, 
with an increase of 61.2% compared to Ours.

4.6. Robustness test for imbalanced flow distribution (RQ4)

To verify the robustness of HMCG-LGBM in handling imbalanced 
flow distribution, we examined the prediction errors of HMCG-LGBM for 
various flow volumes and compared them with four optimal baselines 
(RM, LGBM, RF, GMEL) (Fig. 7). Overall, the prediction errors of all 
models show an upward trend as the flow volume increase. The reason is 
that the data follows a long-tailed distribution, as the flow volume in-
creases, the distribution probability of the flow volume decreases. 
Consequently, it becomes more challenging to effectively modeling OD 

Figure 5. The results of the hyper-parameter sensitivity analysis.

Figure 6. Ablation study of the proposed HMCG-LGBM.
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flows with high volume. The upward trend of RF and LGBM is the most 
obvious, with RMSEs of both being lower than those of the other models 
when the flow volume is less than 20,000 and showing a rapid upward 
trend after the flow volume higher than 20,000. The prediction errors 
(RMSEs) of RF and LGBM for the flow volume of 30,000 is 163.7% and 
286.1% higher than those of flow volume of 20,000, respectively. This 
result indicates that the machine learning models prioritize OD flows 
with high distribution probability and disregard OD flows with low 
distribution probability, leading to diminished reliability of the predic-
tion outcomes. The prediction error for RM and GMEL for the flow 
volume of 30,000 is 104.1% and 65.0% higher than for a flow volume of 
20,000, respectively. In contrast, the trend of prediction error for 
HMCG-LGBM is significantly smoother. The RMSE of HMCG-LGBM for 
the flow volume of 30,000 is 32.4% lower than that for the flow volume 
of 20,000. The above results reveal that HMCG-LGBM can maintain a 
relatively consistent predictive performance, even though the experi-
mental data distribution is highly imbalanced. This experiment validates 
the robustness of the proposed method in handling imbalanced flow 
distributions.

5. Conclusions and future work

To account for the inherent heterogeneous characteristics of real- 
world mobility patterns, this study proposes a novel OD flow predic-
tion framework with graph-based learning strategies that explicitly 
address the impact of heterogeneous mobility patterns on the predicting 
process by considering the complex geographic unit relations, diverse 
spatial organizational structures, and long-tailed effect of flow distri-
butions. Specifically, our proposed method HMCG-LGBM involves three 
key components: 1) a modularity-based graph reconstruction strategy 
for geographic unit relation augmentation by removing weak connec-
tions; 2) a spatial structure encoding module that incorporates com-
munity detection and graph attention mechanisms for emphasizing 
variations in the spatial organizations of the OD flows; and 3) a weighted 
loss with the distribution smoothing paradigm for training low- 
probability mobility events. Extensive experiments are conducted 
based on the intercity truck mobility flow data in China and the intracity 
commuting data in New York City. The results demonstrate that learning 
heterogeneous patterns of OD flows can effectively enhance the pre-
dictive performance of the model. The proposed method reduces the 
RMSE and MAE by 11.1%–33.3% and 14.1%–22.2%, respectively, 
compared to existing methods. The proposed method also demonstrates 
robust capabilities across various flow volumes when handling imbal-
anced flow data. In this study, the accuracy and reliability of the 

prediction results are enhanced by considering the heterogeneous 
mobility patterns of OD flows. This endows the model applicable to 
complex mobility scenarios. As a result, the proposed method offers 
insights on spatial interaction predictive modeling within sustainable 
urban systems, and demonstrates practical advantages in applications 
such as optimizing urban transportation networks and informing policy 
decisions based on mobility big data.

However, there are some limitations in this study: (1) While the 
method aims to ultimately predict OD flows by using geographic unit 
attributes and inter-unit relations without relying on historical flow data 
at detailed time intervals, a certain amount of historical data is still 
necessary for model training. This requirement poses a challenge for 
regions with limited data, particularly in capturing geographic unit re-
lationships and modeling the spatial organization of flows. This limita-
tion might be mitigated by using recent generative AI approaches. (2) 
Due to the black-box nature of the deep learning model, the knowledge 
obtained by the method is implicit. It is difficult to develop a full diag-
nosis on the mechanisms of mobility patterns in specific regions. Future 
research could focus on OD flow prediction in data-poor regions and the 
improvement of method interpretability.
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