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Abstract: Accurate detection of locations of indoor high-density crowds is crucial for early warning
and emergency rescue during indoor safety accidents. The spatial structure of indoor environments
is more complicated than outdoor environments. The locations of indoor high-density crowds are
more likely to be the sites of security accidents. Existing detection methods for high-density crowd
locations mostly focus on outdoor environments, and relatively few detection methods exist for
indoor environments. This study proposes a novel detection framework for high-density indoor
crowd locations termed IndoorSRC (Simplification–Reconstruction–Cluster). In this paper, a novel
indoor spatiotemporal clustering algorithm called Indoor-STAGNES is proposed to detect the indoor
trajectory stay points to simplify indoor movement trajectory. Then, we propose use of a Kalman
filter algorithm to reconstruct the indoor trajectory and properly align and resample the data. Finally,
an indoor spatiotemporal density clustering algorithm called Indoor-STOPTICS is proposed to detect
the locations of high-density crowds in the indoor environment from the reconstructed trajectory.
Extensive experiments were conducted using indoor Wi-Fi positioning datasets collected from a
shopping mall. The results show that the IndoorSRC framework evidently outperforms the existing
baseline method in terms of detection performance.

Keywords: high-density crowd location detection; indoor trajectory; Indoor-STAGNES; Indoor-
STOPTICS

1. Introduction

Indoor environments are the main space for human activities, with research showing that human
activities occur indoors approximately 87% of the time [1]. As a result, many indoor spaces host
large numbers of people at any point in time. High-density crowds are the primary cause of indoor
emergency safety accidents, such as overcrowding and trampling [2,3]. Compared with the outdoor
environment, indoor three-dimensional spatial structures are more complicated, and safety accidents
are more likely to occur there. Therefore, accurately detecting the locations of these high-density
indoor crowds is important for early warning and emergency rescues during instances of indoor
safety accidents.

With the rapid development of the Internet, indoor positioning has gradually become a rigid
demand [4–6]. In recent years, indoor positioning technology has gradually matured and has been
applied in our daily life, such as for indoor navigation and indoor location tracking. Concurrently,
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the available indoor positioning data of indoor users have grown severalfold, becoming a substantial
data source for indoor-related research, such as indoor location prediction [7–9], indoor association
rule mining [10], and indoor positioning methods [11–13]. Existing indoor-related research is mainly
focused on indoor location services, and there are few studies related to detecting high-density indoor
crowd locations. At present, studies related to high-density crowd detection are mainly focused on
the outdoor environment. Compared with outdoor trajectories, indoor trajectories are of poor quality
and have typical three-dimensional characteristics, which makes it difficult for traditional outdoor
high-density crowd detection algorithms to be applied to indoor spaces.

Therefore, a novel high-density location-detection framework for indoor crowds called IndoorSRC
(Simplification–Reconstruction–Cluster) is proposed herein. This study uses clustering algorithms to
find high-density locations of indoor crowds, thereby providing a scientific basis for indoor emergencies.
Based on the characteristics of indoor trajectories, we have made certain improvements to the existing
clustering algorithms. The significant contributions of the study are summarized as follows.

(1) A novel indoor spatiotemporal aggregation hierarchical clustering algorithm called Indoor-
STAGNES is proposed for detecting the stay points of indoor trajectory and for simplifying indoor
movement trajectory.

(2) The Kalman filter algorithm is proposed to reconstruct the indoor trajectory, thereby achieving
the required alignment and resampling.

(3) A new indoor spatiotemporal density clustering algorithm called Indoor-STOPTICS is proposed
for detecting the location of high-density crowds in the indoor environment from the reconstructed
trajectory.

(4) Subsequently, we describe our evaluation of the performance of the IndoorSRC framework using
real indoor trajectories. The results demonstrate the advantages of our approach compared to
the baseline.

The rest of this paper is organized as follows. In Section 2, a review of the literature focusing
on indoor trajectories and detection of high-density locations in outdoor environments is presented.
The basic and problem definitions along with a new methodological framework for detecting
high-density locations of indoor crowds are described in Section 3. The performances of the frameworks
proposed in previous research and this study are compared based on real indoor Wi-Fi positioning
data and are presented in Section 4 along with the results. Section 5 provides the conclusion of the
study and suggestions for possible further studies are presented.

2. Related Work

In this section, we first review the research related to indoor trajectories and, then, review the
detection methods for high-density crowd locations in outdoor environments.

Existing research related to indoor trajectories is mainly focused on indoor positioning technology
and indoor location services. Indoor positioning technology is used to improve the accuracy of
indoor positioning to obtain more accurate indoor movement trajectories. For example, Ye et al. [14]
used a hidden Markov model to improve the accuracy of indoor positioning based on traditional
fingerprint positioning. Tomazic et al. [15] proposed a confidence interval fuzzy-logic model to
improve the accuracy of indoor pedestrian positioning. Indoor location services primarily improve
the indoor user experience from multiple perspectives. For instance, Wang et al. [16,17] proposed the
Indoor-WhereNext and Markov-LSTM models from the perspectives of group users and individual
users based on indoor trajectories of a mall to predict the next location of indoor users and achieved
high prediction performance. Li et al. [18] used uncertain historical indoor mobility data to determine
the top-k popular indoor semantic locations with the highest flow values. Mou et al. [10] proposed
an R-FP-Growth algorithm based on the traditional FP-Growth algorithm to mine association rules
among shops in shopping malls, thereby providing indoor location services. Liu el at. [19] designed
a graph structure (IT-Graph) that captures indoor temporal variations to return the valid shortest
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path. Baba et at. [20] proposed the Indoor RFID Multi-variate Hidden Markov Model (IR-MHMM)
to capture the uncertainties in indoor RFID data as well as the correlation between moving object
locations and object RFID readings. In addition, several scholars have tried to determine high-density
crowd locations from indoor trajectories. For example, Li et al. [21] proposed a data-driven approach
that finds the top-k indoor density regions using indoor positioning data; however, there are only a
few high-density indoor crowd detection methods, making this an ongoing problem in the field.

Detection methods for high-density crowds in outdoor environments are mainly used to find urban
hotspots and alleviate traffic congestion. Identifying urban hotspots can reveal the travel characteristics
of urban residents. For example, Zheng et al. [22] proposed a grid-based clustering algorithm based on
taxi-trajectory data to find popular travel areas and, thus, analyzed the travel patterns of Chongqing
residents. Lu et al. [23] presented a visual analysis system to explore the Origin–Destination patterns
of hotspots to reveal the potential functions of urban regions. Zhao et al. [24] proposed a trajectory
clustering method based on decision graphing and data fields to determine the dynamic pattern of
urban hotspots. Easing traffic congestion mainly provides support for urban traffic planning and
management. For instance, Li et al. [25] proposed a density-based clustering algorithm called FlowScan
to identify high-density traffic locations at road-level to alleviate traffic congestion. Anbaroglu et al. [26]
proposed a Non-Recurrent Congestion (NRC) events detection methodology to support the accurate
detection of NRC events on large urban road networks. Cheng et al. [27,28] used a data-driven approach
to predict changes in traffic flow to alleviate traffic congestion. However, the abovementioned methods
mainly focus on high-density crowd detection in outdoor environments. Due to the low quality and
three-dimensional characteristics of indoor trajectories, it is difficult to apply these methods directly to
indoor environments.

In this study, we propose a novel high-density indoor crowd location detection framework, termed
IndoorSRC. Compared with existing methods, the proposed framework is suitable for indoor spaces.
It is a lightweight framework that is not only easy to implement but also combines the advantages of
multiple clustering algorithms to improve detection performance.

3. Materials and Methods

First, it is necessary to define the terms utilized herein and identify the problems to be addressed.

Definition 1 (Indoor Trajectory). An indoor trajectory, traj =
{
pti

}n
i = 1, is an ordered sequence of points

for pti = (id, ti, xi, yi, fi), where n is the length of the trajectory, id is the length of the trajectory, ti is a unique
user identifier, is the time that pti was collected, and (xi, yi, fi) corresponds to the longitude, latitude, and floor,
respectively, of the user at time ti.

Definition 2 (Simplified Trajectory). A simplified trajectory, sim_traj =
{
sim_pti

}k
i = 1, simplifies the

trajectory points caused by the stay event in the indoor trajectory. As shown in Figure 1b, sim_pti =

(id, sim_ti, sim_xi, sim_yi, fi) is obtained by simplifying the points that are continuous in time and close to each
other, where sim_ti is the average time of the simplified points, (sim_xi, sim_yi) is the center coordinate of the
simplified points, and fi is the floor on which the user is located.
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reconstructed trajectory of a user.
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Definition 3 (Reconstructed Trajectory). A reconstructed trajectory, rec_traj =
{
rec_pti

}l
i = 1 ={

id, ti, x̂i, ŷi, fi
}l
i, reconstructs the missing data in the simplified trajectory. As shown in Figure 1c, ti is the

recording time of the reconstructed point rec_pti, (x̂, ŷ) is the coordinate information of the user at time ti, and fi
is the floor on which the user is located.

Definition 4 (Reconstructed Trajectory Point Set). The reconstructed trajectories of all users form a set of
reconstructed trajectory points DB =

{
rec_pti

}M
i = 1, where M is the total number of reconstructed trajectory

points for all users.

The research object of this study is the trajectories
{
traji

}N
i = 1 of the group users in the indoor

environment. From the trajectories of the group users, the high-density locations of the crowds in the
indoor environment are found, thereby assisting in early warning and emergency rescue during indoor
safety accidents. The problem defined in this study is expressed by Equation (1):

{li}
m
i = 1 = M←

{
traji

}N
i = 1 (1)

where
{
traji

}N
i = 1 represents the group user trajectory for modeling, N represents the total number

of users, M represents the IndoorSRC framework proposed in this study, which is used to detect
high-density crowds in the trajectories of group users, and {li}

m
i = 1 represents the high-density locations

detected by frameworkM.
The IndoorSRC structure is presented in Figure 2. Based on the bottom-up design principle,

our method is divided into three phases: simplification of the indoor movement trajectory; reconstruction
of the indoor movement trajectory; and detection of high-density indoor crowd locations. First, a new
indoor spatiotemporal agglomeration nesting called Indoor-STAGNES is proposed, which is used to
identify the stay point in the indoor trajectory and simplify the indoor movement trajectory. Second,
we propose using a Kalman filter algorithm [29,30] to reconstruct the simplified trajectory to align
and resample the indoor movement trajectory. Finally, an indoor spatiotemporal density clustering
algorithm called Indoor-STOPTICS is proposed to detect the locations of high-density crowds in the
indoor environment from the reconstructed trajectory point set.
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3.1. Simplification of the Indoor Movement Trajectory

The sampling interval of indoor positioning data is heterogeneous; when a user stays in a specific
area for a certain period, the mobile terminal will record more trajectory points in the limited area,
thereby forming a cluster of trajectory points. If the original trajectory traj is used to directly identify
the high-density crowd locations, the high-density point locations are often obtained rather than the
crowd locations. Therefore, we propose a novel Indoor-STAGNES algorithm to simplify the user
trajectory and remove the stay point information from the trajectory.

The Indoor-STAGNES algorithm is an improvement over the traditional agglomerative nesting
(AGNES) algorithm. Two major improvements have been made—the addition of time and floor
constraints and, consequently, the adjacent spatiotemporal trajectory points (clusters) on the same floor
are merged by iteration. Finally, the original traj =

{
pti

}n
i = 1 is divided into k disjointed sequential

clusters {C1, C2, . . . , Ck}. The sim_pti is obtained by simplifying the points in cluster Ci, and k simplified
trajectory points are obtained from k clusters, i.e., sim_traj =

{
sim_pti

}k
i = 1. As shown in Figure 3,

the cluster Ci(pt1, pt2, pt3, pt4) is iterated into a new cluster and, then, simplified into a trajectory point
sim_pti. The calculation methods of the time distance and spatial distance between clusters are shown
in Equations (2) and (3):

spatialdist(Ci,C j)
= ‖pti − pt j‖2, pti =

1
|Ci|

∑
pti∈Ci

pti, (2)

timedist(Ci,C j)
=

∣∣∣Ci.timeave −C j.timeave
∣∣∣, Ci.timeave =

1
|Ci|

∑
pti∈Ci

pti.t, (3)

where spatial_dist is used to calculate the spatial distance between Ci and C j, time_dist is used to calculate
the time distance between Ci and C j, pti represents the mean coordinate of cluster Ci, the number of
points in Ci is represented by |Ci|, and Ci.timeave represents the average recording time of the trajectory
points in cluster Ci.
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The overall process of Indoor-STAGNES is shown in Algorithm 1.

(1) The indoor trajectory traj =
{
pti

}n
i = 1 of the continuous time is input and each trajectory point is

initialized as a cluster.
(2) The spatial distance matrix SD and the time distance matrix TD between the clusters are initialized,

where SDi j represents the spatial distance between Ci and C j, and TDi j represents the time distance
between Ci and C j. If Ci and C j are not on the same floor, SDi j and TDi j are infinity.

(3) The minimum value dmin in the distance matrix SD under the time threshold tthreh is examined.
If dmin is smaller than the distance threshold dthreh, the two nearest clusters are merged, and the
spatial distance matrix SD and the time distance matrix TD are updated. Otherwise, step 4
is followed.
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(4) The cluster {C1, C2, . . . , Ck} is simplified to
{
sim_pt1, sim_pt2, . . . , sim_ptk

}
in chronological order.

Algorithm 1 Indoor Spatiotemporal Agglomerative Nesting

Require: Individual trajectory: traj =
{
pti

}n
i = 1

Time threshold: tthreh
Distance threshold: dthreh
Ensure: Individual simplified trajectory:

{
sim_pt1, sim_pt2, . . . , sim_ptk

}
1. Initialize clusters clsArr = {Ci}

n
i based on traj =

{
pti

}n
i = 1

2. Construct the spatial distance matrix SD and the time distance matrix TD
3. Search dmin under the time threshold tthreh in matrix SD
4. while dmin ≤ dthreh do
5. Search two clusters cls1, cls2 that need to be merged based on dmin
6. Merge cluster cls1 and cluster cls2, and update clsArr
7. Update matrixes SD and TD based on clsArr
8. Search dmin under the time threshold tthreh in matrix SD
9. for each cls ∈ clsArr do
10. Simplify cluster cls into simplified trajectory point sim_pti
11. return

{
sim_pt1, sim_pt2, . . . , sim_ptk

}
3.2. Reconstruction of the Indoor Movement Trajectory

The simplified trajectory sim_traj generally reflects the user mobile skeleton; however, it is not
suitable for detecting high-density indoor crowd locations. The simplified trajectory sim_traj contains
more missing trajectory points. If the simplified trajectory sim_traj is directly used to detect the
desired location, the detection performance will be affected to some extent. Therefore, indoor trajectory
reconstruction is one of the key steps involved in this process. To complete the missing trajectory
points in the simplified trajectory, we proposing using a Kalman filter algorithm to reconstruct the
simplified trajectory.

Kalman filtering is a linear optimal estimation algorithm that comprehensively considers
measurement data and physical motion models and iteratively estimates the optimal location of
a user at each moment, that is, the reconstructed trajectory point rec_pt. The Kalman filtering algorithm
reconstructs the indoor movement trajectory in two main stages:

(1) Identification of the missing trajectory points: The number of missing trajectory points in the
simplified trajectory are determined according to the sampling interval of the simplified trajectory.
As shown in Figure 4, the trajectory interval with a sampling interval that exceeds twice the
average sampling interval in the simplified trajectory is regarded as the missing trajectory interval.
When the sampling interval of the missing trajectory interval is less than the 95th percentile of
the sampling interval, the missing trajectory points need to be reconstructed. The calculation
method of the number and time information of the missing trajectory points are shown in
Equations (4) and (5):

count = f loor
(

missing_interval
ave_interval

)
+ 1, (4)

rec_pti + j.t = rec_pti.t + j × ave_interval, 1 ≤ j ≤ count, (5)

where missing_interval represents the sampling interval of the missing trajectory interval,
ave_interval represents the average sampling interval of the simplified trajectory points, f loor(x)
represents the downward rounding function, count represents the number of missing trajectory
points, and rec_pti + j.t represents the time information of the j-th missing trajectory point in the
missing trajectory interval (for example, rec_pti + 1.t represents the time information of the first
missing trajectory point in the missing trajectory interval).
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(2) Reconstruction of the missing trajectory points: The Kalman filtering algorithm iteratively solves
the location of the reconstructed trajectory point at each moment, which is mainly divided into
two stages: the location prediction and location update stages. In the location prediction stage,
the physical motion model is used to predict the location of the next moment according to the
optimal location of the previous moment. In the location update stage, the optimal location
of the current moment is obtained by correcting the predicted location of the current moment
using measurement data and error of the current moment. The iterative process is shown in
Equations (6) and (7):

rec_pti.x̂ = kalManFilter(rec_pti − 1.x̂, sim_pti.x), (6)

rec_pti.ŷ = kalManFilter(rec_pti − 1.ŷ, sim_pti.y), (7)

where kalManFilter represents the Kalman filter algorithm, (rec_pti.x̂, rec_pti.ŷ) represents the
coordinates of the reconstructed trajectory point at the current moment, (rec_pti−1.x̂, rec_pti − 1.ŷ)
represents the coordinates of the reconstructed trajectory point at the previous moment,
and (sim_pti.x, sim_pti.y) represents the coordinates of the simplified trajectory point at the
current moment.Sensors 2020, 20, x FOR PEER REVIEW 7 of 15 

 

 

Figure 4. Simplified trajectory with missing trajectory points. 

(2) Reconstruction of the missing trajectory points: The Kalman filtering algorithm iteratively solves 

the location of the reconstructed trajectory point at each moment, which is mainly divided into 

two stages: the location prediction and location update stages. In the location prediction stage, 

the physical motion model is used to predict the location of the next moment according to the 

optimal location of the previous moment. In the location update stage, the optimal location of 

the current moment is obtained by correcting the predicted location of the current moment using 

measurement data and error of the current moment. The iterative process is shown in Equations 

(6) and (7): 

𝑟𝑒𝑐_𝑝𝑡𝑖 . �̂�  =  𝑘𝑎𝑙𝑀𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑟𝑒𝑐_𝑝𝑡𝑖 − 1. �̂�, 𝑠𝑖𝑚_𝑝𝑡𝑖 . 𝑥), (6) 

𝑟𝑒𝑐_𝑝𝑡𝑖 . �̂�  =  𝑘𝑎𝑙𝑀𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟(𝑟𝑒𝑐_𝑝𝑡𝑖 − 1. �̂�, 𝑠𝑖𝑚_𝑝𝑡𝑖 . 𝑦), (7) 

where 𝑘𝑎𝑙𝑀𝑎𝑛𝐹𝑖𝑙𝑡𝑒𝑟 represents the Kalman filter algorithm, (𝑟𝑒𝑐_𝑝𝑡𝑖 . �̂�, 𝑟𝑒𝑐_𝑝𝑡𝑖 . �̂�) represents 

the coordinates of the reconstructed trajectory point at the current moment, 

(𝑟𝑒𝑐_𝑝𝑡𝑖−1. �̂�, 𝑟𝑒𝑐_𝑝𝑡𝑖 − 1. �̂�) represents the coordinates of the reconstructed trajectory point at the 

previous moment, and (𝑠𝑖𝑚_𝑝𝑡𝑖 . 𝑥, 𝑠𝑖𝑚_𝑝𝑡𝑖 . 𝑦)  represents the coordinates of the simplified 

trajectory point at the current moment. 

3.3. Detection of High-density Indoor Crowd Locations 

The reconstructed trajectory point 𝑟𝑒𝑐_𝑝𝑡  can accurately reflect the movement of a user’s 

location. By combining all the reconstructed trajectory points of all users, we can analyze the changes 

in the indoor group user’s location, thereby detecting the locations of high-density indoor crowds. 

We regard the high-density clusters in the reconstructed trajectory point set 𝐷𝐵 (Definition 4) as 

these locations. Therefore, we proposed a novel indoor spatiotemporal ordering point to identify the 

cluster structure (Indoor-STOPTICS). 

Definition 5 (Indoor Spatiotemporal Neighborhood). For 𝑟𝑒𝑐_𝑝𝑡𝑖 ∈ 𝐷𝐵,  the indoor spatiotemporal 

neighborhood of its indoor space is defined as a cylinder, with 𝜖1 as its radius and 𝜖2 as its time window; 

𝑟𝑒𝑐_𝑝𝑡𝑖 is the center of the cylinder, 𝑁𝜖1,𝜖2
(𝑝𝑡𝑖) represents a subset of points contained inside the cylinder, 

and the points in 𝑁𝜖1,𝜖2
(𝑝𝑡𝑖) are on the same floor as 𝑝𝑡𝑖, as defined in Equation (8): 

𝑁ϵ1,ϵ2
(𝑟𝑒𝑐_𝑝𝑡𝑖)  =  {𝑟𝑒𝑐_𝑝𝑡𝑗 ∈ 𝐷𝐵 𝑠. 𝑡.

𝑠𝑑(𝑟𝑒𝑐_𝑝𝑡𝑗 , 𝑟𝑒𝑐_𝑝𝑡𝑖)  ≤ ϵ1

𝑡𝑑(𝑟𝑒𝑐_𝑝𝑡𝑗 , 𝑟𝑒𝑐_𝑝𝑡𝑖)  ≤ ϵ2

𝑟𝑒𝑐_𝑝𝑡𝑗 . 𝑓𝑗  ==  𝑟𝑒𝑐_𝑝𝑡𝑖 . 𝑓𝑖

}, (8) 

where 𝑠𝑑 is used to calculate the spatial distance between 𝑟𝑒𝑐_𝑝𝑡𝑖 and 𝑟𝑒𝑐_𝑝𝑡𝑗, 𝑡𝑑 is used to calculate the 

time distance between 𝑟𝑒𝑐_𝑝𝑡𝑖 and 𝑟𝑒𝑐_𝑝𝑡𝑗, and the number of points in 𝑁𝜖1,𝜖2
(𝑟𝑒𝑐_𝑝𝑡𝑖) is represented by 

|𝑁𝜖1,𝜖2
(𝑟𝑒𝑐_𝑝𝑡𝑖)|. 

Definition 6 (Indoor Core Trajectory Point). For 𝑟𝑒𝑐_𝑝𝑡𝑖  ∈  𝐷𝐵 , if its indoor spatiotemporal 

neighborhood 𝑁𝜖1,𝜖2
(𝑟𝑒𝑐_𝑝𝑡𝑖) contains at least 𝑀𝑖𝑛𝑝𝑡 indoor trajectory points, that is, |𝑁𝜖1,𝜖2

(𝑟𝑒𝑐_𝑝𝑡𝑖)|  >

 𝑀𝑖𝑛𝑝𝑡, then, 𝑟𝑒𝑐_𝑝𝑡𝑖 is called the indoor core trajectory point. 

Figure 4. Simplified trajectory with missing trajectory points.

3.3. Detection of High-Density Indoor Crowd Locations

The reconstructed trajectory point rec_pt can accurately reflect the movement of a user’s location.
By combining all the reconstructed trajectory points of all users, we can analyze the changes in the
indoor group user’s location, thereby detecting the locations of high-density indoor crowds. We regard
the high-density clusters in the reconstructed trajectory point set DB (Definition 4) as these locations.
Therefore, we proposed a novel indoor spatiotemporal ordering point to identify the cluster structure
(Indoor-STOPTICS).

Definition 5 (Indoor Spatiotemporal Neighborhood). For rec_pti ∈ DB, the indoor spatiotemporal
neighborhood of its indoor space is defined as a cylinder, with ε1 as ε2 its radius and as its time window; rec_pti
is the center of the cylinder, Nε1,ε2(pti) represents a subset of points contained inside the cylinder, and the points
in Nε1,ε2(pti) are on the same floor as pti, as defined in Equation (8):

Nε1,ε2(rec_pti) =

 rec_pt j ∈ DB s.t.
sd

(
rec_pt j, rec_pti

)
≤ ε1

td
(
rec_pt j, rec_pti

)
≤ ε2

rec_pt j. f j == rec_pti. fi

, (8)

where sd is used to calculate the spatial distance between rec_pti and rec_pt j, td is used to calculate the
time distance between rec_pti and rec_pt j, and the number of points in Nε1,ε2(rec_pti) is represented by∣∣∣Nε1,ε2(rec_pti)

∣∣∣.
Definition 6 (Indoor Core Trajectory Point). For rec_pti ∈ DB, if its indoor spatiotemporal neighborhood
Nε1,ε2(rec_pti) contains at least Minpt indoor trajectory points, that is,

∣∣∣Nε1,ε2(rec_pti)| > Minpt , then, rec_pti
is called the indoor core trajectory point.
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Indoor-STOPTICS is an improved algorithm of spatiotemporal ordering points to identify the
clustering structure [31,32]. Indoor-STOPTICS first considers the three-dimensional characteristics of
indoor trajectories and adds the floor constraint based on ST-OPTICS (Definition 5). Then, it uses
core points (Definition 6) as drivers to determine the set of trajectory points connected with the
maximum density of the same floor under spatiotemporal constraints. Unlike traditional density-based
spatiotemporal clustering algorithms, the Indoor-STOPTICS algorithm does not explicitly generate
clusters, but generates a reachable distance for each data point and an ordered list for analysis to
assist in detecting high-density crowd locations in the DB. The calculation method for the reachable
distance of each point and the ordered list is the same as in ST-OPTICS [31,32]. As shown in
Figure 5, the reconstructed trajectory point set DB =

{
rec_pti

}M
i = 1 generates an ordered point list

orderList =
{
rec_pt j

}M

j = 1
using the Indoor-STOPTICS algorithm. Taking orderList index j as the

horizontal axis and rec_pt j reachable distance as the vertical axis, a decision graph of DB can be
obtained. The auxiliary information of the decision graph can be summarized as follows.

(1) When the spatial radius of the Indoor-STOPTICS algorithm is ε1 = r1, two clusters, ClusterA
and ClusterB, can be detected from the set DB.

(2) When the spatial radius of the Indoor-STOPTICS algorithm is ε1 = r2, ClusterA is split into three
small clusters, namely ClusterA1, ClusterA2, and ClusterA3. Thus, a total of four clusters can be
identified from the set DB.

(3) When the spatial radius of the Indoor-STOPTICS algorithm is ε1 = r2, the trajectory points
included in each cluster can be obtained by the corresponding horizontal axis index sequence.
For example, the horizontal axis index sequence corresponding to ClusterA1 is idxArr and the
trajectory points included in ClusterA1 can be expressed as

{
orderList[i]

}
i∈idxArr.

(4) When the spatial radius of the Indoor-STOPTICS algorithm is ε1 = r2, the cluster density can be
approximated by the width of the cluster. For example, the density of ClusterB can be represented
by w. When w is wider, the density of the cluster is greater.
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Figure 5. Detection process of the Indoor-STOPTICS algorithm: (a) reconstructed trajectory point set
DB and (b) decision graph of point set DB.

4. Results

4.1. Data Preparation

4.1.1. Data Sources

The experimental data mainly included Wi-Fi positioning data from a shopping mall in Jinan City,
China. The indoor Wi-Fi positioning data covered eight floors of the shopping mall from 23 December,
2017, to 30 December 2017. Approximately 2 million indoor movement trajectories and 30 million
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indoor trajectory points were collected every day. The positioning accuracy was approximately 3 m,
and trajectory points with a sampling interval of 1–5 s accounted for more than 70% of the collected data
points. Table 1 lists the unique identifier of the user, record upload time, the user’s (X, Y) coordinates,
and the unique floor identifier.

Table 1. Sample table of user trajectory data.

User ID Date and Time X (m) Y (m) Floor ID

2813BF *** 2017–12–29 09:25:58 130,219 *** 43,904 *** 2
2813BF *** 2017–12–29 09:26:01 130,219 *** 43,903 *** 2
2813BF *** 2017–12–29 09:26:05 130,219 *** 43,904 *** 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2813BF *** 2017–12–29 20:18:48 130,219 *** 43,904 *** 5
2813BF *** 2017–12–29 20:18:51 130,219 *** 43,904 *** 5

*** means data omitted.

4.1.2. Data Preprocessing

The original Wi-Fi data were collected via fingerprint positioning technology. First, multiple Wi-Fi
access points (APs) were deployed in the study area and, then, the coordinate information of each AP
was calculated iteratively. After the determination of coordinate information of each AP, the research
area was divided into multiple grids that do not overlap; then, fingerprint information from each grid
was obtained to construct a fingerprint database. When a mobile terminal enters the coverage area of
APs, the mobile terminal matches the signal strength of received AP with the fingerprint database to
determine the specific location of the terminal. Because of the unstable signal of the mobile terminal
and the artificial shutdown of the Wi-Fi signal, it was easy to generate abnormal, erroneous, and invalid
data. There were three types of noise in our dataset:

(1) The coordinate abnormal point. If the trajectory point fell outside the study area, it was regarded
as a coordinate abnormal trajectory point.

(2) The trajectory point generated by fixed devices. If a user trajectory remained in the same area for
more than eight hours, it was regarded as a trajectory point generated by fixed devices.

(3) The floor abnormal point. If a trajectory point of the user jumped between different floors within
a short period, it was regarded as a floor abnormal point.

4.2. Evaluation Metrics

In this study, we regarded the clusters in the reconstructed trajectory point set DB as the
high-density indoor crowd locations and used crowd density (CD), point density (PD), and running
time as the quantitative evaluation indexes of the IndoorSRC framework. The CD and PD can be
defined by Equations (9) and (10), respectively:

CD =
m∑
i

CrowdNumi
Vi

×
∆t
m

, (9)

PD =
m∑
i

PointNumi
Vi

×
∆t
m

, (10)

where m represents the number of clusters detected by the IndoorSRC framework, Vi represents the
volume of a certain cluster (i.e., the convex hull volume of the three-dimensional point set), CrowdNumi
represents the number of users in a cluster, PointNumi represents the number of trajectory points in a
cluster, and ∆t represents the time step.
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4.3. Variable Estimation

The hyperparameters of the IndoorSRC framework primarily included parameters in the
Indoor-STAGNES and Indoor-STOPTICS algorithms. The Indoor-STAGNES algorithm has two auxiliary
functions. First, it simplifies the user trajectory and reduces the number of trajectory points, thereby
reducing the running time of the Indoor-STOPTICS algorithm. Second, it ensures that a single user
contains only one trajectory point in a particular spatiotemporal neighborhood. Thus, the detection
performance of the IndoorSRC framework predominantly depends on the Indoor-STOPTICS algorithm.
Hence, we set the distance threshold dthreh and the time threshold tthreh to fixed values in the
Indoor-STAGNES algorithm, wherein the distance threshold dthreh was fixed to 5 m with reference to
the average distance between indoor shops and the time threshold tthreh was fixed to 4 min.

The hyperparameters of Indoor-STOPTICS mainly include the radius ε1, time window ε2,
and minimum number of points MinPts. In the Indoor-STDBSCAN algorithm, the main test time
window ε2 influences the detection performance. To determine the parameters in Indoor-STOPTICS,
the control variable method was used to obtain the combination of parameter values and the best
detection performance. In the parameter estimation phase, the radius ε1 was set to infinity for generating
the decision graph, time window ε2 was the best parameter found in [1 min, 2 min, 3 min, . . . , 10 min],
and minimum number of MinPts was set to 5 × ln(M) [33], where M represents the number of points
in the set DB. Figure 6 shows the effect of the time window ε2 on detection performance. The crowd
density first increased and then decreased, whereas the point density first increased and then stabilized.
This is due to the fact that when the time window ε2 is greater than the time threshold tthreh in the
Indoor-STAGNES algorithm, the probability of including multiple points of a user in the neighborhood
(Definition 5) is higher in the Indoor-STOPTICS algorithm. This, therefore, leads to a decrease in the
crowd density; the two auxiliary functions of the Indoor-AGNES algorithm is also confirmed, to a
certain extent. In this study, we eventually fix the time window ε2 to 5 min.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 

 

PD =  ∑
PointNum𝑖

𝑉𝑖
 ×  

𝛥𝑡

𝑚

𝑚

𝑖

, (10) 

where 𝑚 represents the number of clusters detected by the IndoorSRC framework, 𝑉𝑖 represents the 

volume of a certain cluster (i.e., the convex hull volume of the three-dimensional point set), 

CrowdNum𝑖  represents the number of users in a cluster, PointNum𝑖  represents the number of 

trajectory points in a cluster, and 𝛥𝑡 represents the time step. 

4.3. Variable Estimation 

The hyperparameters of the IndoorSRC framework primarily included parameters in the 

Indoor-STAGNES and Indoor-STOPTICS algorithms. The Indoor-STAGNES algorithm has two 

auxiliary functions. First, it simplifies the user trajectory and reduces the number of trajectory points, 

thereby reducing the running time of the Indoor-STOPTICS algorithm. Second, it ensures that a single 

user contains only one trajectory point in a particular spatiotemporal neighborhood. Thus, the 

detection performance of the IndoorSRC framework predominantly depends on the Indoor-

STOPTICS algorithm. Hence, we set the distance threshold 𝑑𝑡ℎ𝑟𝑒ℎ and the time threshold 𝑡𝑡ℎ𝑟𝑒ℎ to 

fixed values in the Indoor-STAGNES algorithm, wherein the distance threshold 𝑑𝑡ℎ𝑟𝑒ℎ was fixed to 

5 m with reference to the average distance between indoor shops and the time threshold 𝑡𝑡ℎ𝑟𝑒ℎ was 

fixed to 4 min. 

The hyperparameters of Indoor-STOPTICS mainly include the radius 𝜖1, time window 𝜖2, and 

minimum number of points 𝑀𝑖𝑛𝑃𝑡𝑠 . In the Indoor-STDBSCAN algorithm, the main test time 

window 𝜖2  influences the detection performance. To determine the parameters in Indoor-

STOPTICS, the control variable method was used to obtain the combination of parameter values and 

the best detection performance. In the parameter estimation phase, the radius 𝜖1 was set to infinity 

for generating the decision graph, time window 𝜖2  was the best parameter found in 

[1 𝑚𝑖𝑛, 2 𝑚𝑖𝑛, 3 𝑚𝑖𝑛, … ,10 𝑚𝑖𝑛], and minimum number of 𝑀𝑖𝑛𝑃𝑡𝑠 was set to 5 ×  ln (𝑀) [33], where 

𝑀 represents the number of points in the set 𝐷𝐵. Figure 6 shows the effect of the time window 𝜖2 

on detection performance. The crowd density first increased and then decreased, whereas the point 

density first increased and then stabilized. This is due to the fact that when the time window 𝜖2 is 

greater than the time threshold 𝑡𝑡ℎ𝑟𝑒ℎ  in the Indoor-STAGNES algorithm, the probability of 

including multiple points of a user in the neighborhood (Definition 5) is higher in the Indoor-

STOPTICS algorithm. This, therefore, leads to a decrease in the crowd density; the two auxiliary 

functions of the Indoor-AGNES algorithm is also confirmed, to a certain extent. In this study, we 

eventually fix the time window 𝜖2 to 5 min. 

 

Figure 6. Impact of parameters (𝜖2) on IndoorSRC. 
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4.4. IndoorSRC Framework Performance

The IndoorSRC detection results on specific floors obtained after determining the optimal
combination of parameters, using 11:00–16:00 as the research time, are presented graphically in Figure 7.
The reconstructed trajectory point set DB shows an obvious aggregation pattern in different regions
and at different times. After drawing the decision graph of the set DB, the spatial coordinates and
time of the high-density crowd location can be detected. For example, when the distance threshold
ε1 = 6 m, there will be eight clusters in the set DB; upon further determining the width of each cluster,
five high-density crowd locations will be obtained. Table 2 shows the spatial and temporal information
of each high-density crowd location. These locations are mostly crowded at noon and are primarily
located in the dining area. For example, “Food Shangjia” is part of the food court inside the shopping
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mall and three short-period–high-density crowd locations were formed there at noon. “Fisherman’s
lamp” and “Chinese Restaurant” are restaurants inside the shopping mall; long-period–high-density
crowd locations were formed here.
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Figure 7. Detection results of the IndoorSRC framework: (a) floor graph of set DB; (b) spatiotemporal
prism graph of set DB; (c) decision graph of set DB; and (d) detection results of set DB.

Table 2. Indoor high-density crowd locations and time characteristics.

High-Density Crowd Locations Time

Location 1 Food Shangjia 11:31–11:56
Location 2 Food Shangjia 12:07–12:34
Location 3 Chinese Restaurant 12:16–13:32
Location 4 Fisherman’s lamp 12:20–13:24
Location 5 Food Shangjia 14:14–14:17

4.5. Comparison with Baselines

To verify the performance of the proposed IndoorSRC framework, it was compared with the
existing ST-OPTICS, and the experimental results were analyzed from the perspectives of CD, PD,
and running time.

Figure 8 shows the comparison results of the point and crowd densities with the baseline. From these
perspectives, the crowd density detected by the IndoorSRC algorithm is much higher than that calculated
by ST-OPTICS. This is because there is more stay-point information in the indoor movement trajectory.
If ST-OPTICS is used to identify high-density crowd locations directly, the clusters obtained are mostly
“high-density point locations” rather than “high-density crowd locations”. The density of points detected
by the IndoorSRC algorithm is slightly lower than that by ST-OPTICS as the IndoorSRC framework
simplifies and reconstructs the indoor movement trajectory so that the adjacent trajectory points in the
reconstructed trajectory are farther apart. This makes the trajectory points more sparse, resulting in a



Sensors 2020, 20, 5078 12 of 15

slight decrease in the point density. Therefore, the IndoorSRC framework is more suitable for detecting
high-density indoor crowd locations.
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Figure 9 shows the comparative results of the running time with the baseline approach. In this
study, we compared the running time of the entire framework with baseline and not the running time
of a simple single component, such as Indoor-STOPTICS or Indoor-STAGNES. From the perspective of
the framework running time, when the number of users is small, the running time of the IndoorSRC
framework is slightly higher than that of the ST-OPTICS algorithm, as the former simplifies and
reconstructs the indoor movement trajectory, which increases the running time of the framework.
As the number of users increases, the running time of the ST-OPTICS algorithm exceeds that of the
IndoorSRC framework. This is because, when the number of trajectory points is very large, although
the IndoorSRC framework simplifies and reconstructs the indoor movement trajectory, it greatly
reduces the number of trajectory points, and the time consumed by simplification and reconstruction
is far less than that consumed by direct detection.Sensors 2020, 20, x FOR PEER REVIEW 13 of 15 
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5. Conclusions and Future Work

Accurate and robust detection of high-density indoor crowd locations is of great significance for
early warning and emergency rescue during indoor safety accidents. Compared with the outdoor
environment, the spatial structure of the indoor environment is more complicated, and tightly packed
indoor crowds are more likely to cause security accidents. In this paper, the IndoorSRC framework is
proposed to detect high-density indoor crowd locations. First, Indoor-STAGNES is proposed to detect
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the stay points of the indoor trajectory and simplify it. Then, the use of a Kalman filter algorithm
to reconstruct the indoor trajectory is proposed. Finally, Indoor-STOPTICS is proposed to detect the
location of high-density crowds in the indoor environment.

Experimentally, a two-week real indoor trajectory was used to verify the detection performance of
the proposed framework. First, we used the control variable method to obtain the optimal parameter
combination of the IndoorSRC framework. Afterward, we analyzed the predictive performance of
the IndoorSRC framework using the dataset. Then, we conducted a comparison with the existing
ST-OPTICS algorithm. Compared with the existing approach, the IndoorSRC framework considerably
improved the detection performance in running time and crowd density, which demonstrates the
efficiency of the IndoorSRC framework.

The following problems need to be investigated in the future. This study considered the high
density of indoor crowds as the only necessary condition for indoor congestion, trampling, and other
safety accidents; however, additionally, the direction of user movement can affect the occurrence
of indoor safety accidents to a great extent. For example, when the crowd density is high and the
users’ walking directions are the same, accidents often do not occur. When the crowd density is high
and the users’ walking directions are disordered, there is more probability of an accident occurring.
Therefore, future studies should introduce additional constraints, such as direction, to further improve
the practicality of the IndoorSRC framework.

Author Contributions: P.W. contributed to data preprocessing, experiment, and the writing of the manuscript;
X.Z. formulated the general research idea and contributed to writing the manuscript; F.G. advised on the
experimental discussion and materials; Y.Z. and M.L. contributed to the manuscript revisions. All authors have
read and agreed to the published version of the manuscript.
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Nos. 2016YFB0502200, 2016YFB0502204) and the National Natural Science Foundation of China (Grant Nos.
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