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Abstract. To overcome the problem of dimension curse in the processing of pre-
dicting indoor location by using the traditionalMarkov chains, this paper proposes
a novel hybrid Markov-LSTM model to predict the indoor user’s next location,
which adopt the multi-order Markov chains (k-MCs) to model the long indoor
location sequences and use LSTM to reduce dimension through combining mul-
tiple first-order MCs. Finally, we conduct comprehensive experiments on the real
indoor trajectories to evaluate our proposed model. The results show that the
Markov-LSTMmodel significantly outperforms five existing baseline methods in
terms of its predictive performance.
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1 Introduction

As a classical statistical model, the first-order Markov chain (1-MC) has strong inter-
pretability and is widely used in location prediction. However, 1-MC assumes that the
location at the next moment is only related to the current location, which significantly
limits the predictive performance of the model [1, 2]. To address this deficiency, the
multi-order Markov chain (k-MC) is proposed [3]. The k-MC assumes that the location
at the next moment is related to the previous k locations but is prone to problems with
dimensionality disaster, i.e., its state space explodes with an increase in k, which renders
k-MC less practical in the field of location predictions [4].

Therefore, we propose a hybrid Markov-LSTMmodel. The model study attempts to
combine the advantages of theMarkov and LSTMmodels to improve the performance of
the location prediction model. This study makes several significant contributions, which
are summarized as follows:

(1) A new multi-step Markov transition probability matrix, which divides the multi-
order Markov model into multiple first-order models and solves the shortcomings
of the multi-order Markov model in the dimension disaster.

(2) Fusion of the prediction results of the multiple first-order Markov models based on
the advantages of the LSTM for predicting long-sequence data. This improved the
practicality of the multi-order Markov model for location prediction.
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2 Methodology

The structure of Markov-LSTM is presented in Fig. 1. Our method is divided into four
phases: location sequence detection, multi-step transition probability matrix definition,
adjacent locations selection, and fusion multiple Markov chains.

Fig. 1. Markov-LSTM model overall process.

2.1 Definition of the multi-step transition probability matrix

In this study, we used the indoor-STDBSCAN [5] and the nearest-neighbor search to
convert the trajectory into a location sequence. In order to improve the practicability of
k-MC in location prediction, we propose a novel k-step Markov chain, MC(k) .

Definition 1 (1-Step Transition Probability Matrix). The 1-step transition probabil-
ity matrix, Yu(1), of user u is equivalent to the 1-order transition probability matrix,
Yu(1)
ij , which represents the probability that user u moves from location li through one

step to location lj. Y
u(1)
ij can be defined with the following expression:

Yu(1)
ij =
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where locSequ represents the location sequence,
{
lui

}m
i=1, of user

u,
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}∣
∣
∣ represents the distance that user u moves from loca-

tion li through one step to location lj,
∑m

p=1 |{lup = li}| represents the total distance that
user u moves from location li through one step to other locations, and N represents the
total number of shops in the mall.

Definition 2 (k-Step Transition Probability Matrix). The k-step transition probabil-
ity matrix, Yu(k), of user u is a N × N matrix, y

∧u(li→∗:k) = Yu(k)
i→∗, which represents the

probability that user u moves from location li through k steps to other locations. The
definitions of Yu(k) and y

∧u(li→∗:k) for user u can be expressed with Eqs. (2) and (3),
respectively:
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Yu(k) = P(Lum+1|Lum−k+1) Y
u(k) ∈ R

N×N (2)

y
∧u(li→∗:k) = P(Lum+1|Lum−k+1 = lum−k+1) y

∧u(li→∗:k) ∈ R
1×N (3)

where Yu(k) can be directly obtained by Yu(1), i.e. Yu(k) = (
Yu(1)

)k
, Lum−k+1 represents

a random variable of user u, Lum−k+1 = lum−k+1 indicates that user u determines to visit
location lum−k+1 at random variable Lum−k+1 (lum−k+1 can be obtained in the location

sequence locSequ), Yu(k) describes the effect that cross-location has on the prediction
results from another perspective.

2.2 Selection of the best adjacency locations

Similar to the k-MC, theMarkov-LSTMmodel must also determine the hyperparameter,
k, i.e., the number of locations that the prediction result depends on. This value is usually
determined using cross-validation to minimize the model prediction error [6, 7]. Taking
user u with a k value of ku as an example, when ku > 1, the k-MC can be decomposed
based on the following expressions.
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(4)

where
{
y
∧u

(
lum−i+1→∗:i)}ku

i=1
represents the prediction results ofmultiple first-orderMarkov

models for user u.

2.3 Fuse multiple Markov models

For each user, u, we have established ku first-order Markov models. Therefore, this
study combines ku first-order Markov models to ensure location prediction perfor-
mance. Considering the order of the ku first-order Markov model prediction results,

i.e.
{
y
∧u

(
lum−i+1→∗:i)}k

i=1
, we use the LSTM model to fuse ku results.

3 Experimental results and analysis

3.1 Data sources

The experimental data consisted mainly of Wi-Fi positioning data for 50 users and
shop data for a shopping mall in Jinan City, China. The data covered the eight floors
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of the shopping mall from December 20, 2017, to February 1, 2018. Data for each
trajectory included the unique identifier of the user, record upload time, the user’s (X,
Y ) coordinates, and the unique floor identifier. There are 489 shops in the mall. Data for
each shop included the shop’s unique ID, the shape of the shop (a polygon composed of
the coordinate sequence), the shop name, and the floor ID.

3.2 Evaluation metrics and comparative methods

In this study, we treats location prediction as a classification problem. Using
Accuracy@X , Precision@X , Recall@X , and F1 − Measure@X (top X locations) as
quantitative indicators of the evaluation model [8].

To comprehensively evaluate the performance of the Markov-LSTM model, we
used five baseline methods for comparison: 1-MC, HMM (Hidden Markov model),
RNN (Recurrent neural network), LSTM (Long-short-term-memory network), andGRU
(Gated-recurrent-unit network). The prediction performance ofHMM,RNN,LSTM, and
GRU is related to the number of hidden states. In the comparison experiment, the number
of states in HMM was varied among 10, 15, and 20 states. The number of hidden states
in RNN, LSTM, and GRU was varied among 64, 128, and 256 states.

3.3 Comparison with baselines

In this section, Fig. 2 compares the prediction performance of the five models.

(1) From an overall perspective. If we take X = 3 as an example, the average
Accuracy@3, Precision@3, Recall@3, and F1 − Measure@3 of the 1-MC and
HMM were 39.64%, 36.71%, 35.21%, and 35.87%, respectively. The average
Accuracy@3, Precision@3, Recall@3, and F1−Measure@3 of the RNN, LSTM,
and GRU were 64.74%, 62.10%, 55.91%, and 58.84%, respectively. Compared
with the Markov-LSTM, the four indicators for the Markov-LSTM improved by
7.33%, 7.47%, 5.46%, and 6.38%, respectively.

(2) From a local perspective, the 1-MC model achieved poor prediction perfor-
mance, with Accuracy@3, Precision@3, Recall@3, and F1 − Measure@3 at
28.64%, 24.77%, 26.36%, and 25.54%, respectively. The LSTM model achieved
good predictive performance, with Accuracy@3, Precision@3, Recall@3, and
F1−Measure@3 at 67.79%, 65.78%, 55.15%, and 55.99%, respectively. Overall,
theMarkov-LSTMmodel improved indoor location prediction performance signif-
icantly by enhancing the Accuracy@3 by between 6.29 and 43.43%, Precision@3
by between 3.79 and 44.8%, Recall@3 by between 9.23 and 35.02%, and the
F1 − Measure@3 by between 13.8 and 39.68%.
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Fig. 2. Comparisons of the baselines using the dataset: (a) location prediction accuracy, (b)
location prediction precision, (b) location prediction recall, and (d) location prediction f1-measure.

4 Conclusions

In this study, we proposed a novel hybrid Markov-LSTM model for indoor location
prediction. During experiments, we conducted a comparison with five existing baseline
methods, including the MC, HMM, RNN, LSTM, and GRU models. Compared with
the existing methods, the Markov-LSTM model significantly improved indoor location
prediction performance by enhancing the Accuracy@3 by between 6.29 and 43.43%,
Precision@3 by between 3.79 and 44.8%, Recall@3 by between 9.23 and 35.02%, and
the F1−Measure@3 by between 13.8 and 39.68%. This demonstrates the efficiency of
the Markov-LSTM model.
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